PDF
Abstract
Perovskite solar cells (PSCs) are regarded as the most promising new generation of green energy technology due to their outstanding device performance and simple processing technology. Traditional processing methods, such as thermal annealing and thermal evaporation, face significant challenges in further enhancing device performance and stability. In recent years, laser processing has garnered extensive attention from researchers due to its notable advantages in terms of speed, high efficiency, and controllability. In this review, we systematically summarize the role of laser in the active layer, transport layer, and electrode of perovskite photovoltaic cells. First, we systematically elucidate the mechanism governing the nucleation and crystallization of laser-processed perovskite films, along with its influence on the micro-nano structures of these films. Concurrently, a thorough explication of the micro-nano structures pertaining to the laser-processed transport layer, the interconnection between transport layers, the electrode, and their respective impacts on carrier transport and collection efficiency within the device will be provided. Most importantly, we believe that these approaches will provide scientists with new ways of thinking and system schemes for improving the performance and stability of perovskite solar cells.
Keywords
halide perovskite
/
laser processing
/
micro-nano structure
/
photophysical properties
Cite this article
Download citation ▾
Chunpeng Song, Shenyi Deng, Shihui Lou, Xipeng Yin, Qiuju Liang, Jiangang Liu.
Laser Processing in Halide Photovoltaic Cells.
Battery Energy, 2025, 4(3): e20240010 DOI:10.1002/bte2.20240010
| [1] |
T. Matsui, J. Y. Seo, M. Saliba, et al., “Room-Temperature Formation of Highly Crystalline Multication Perovskites for Efficient, Low-Cost Solar Cells,” Advanced Materials 29, no. 15 (2017): 1606258.
|
| [2] |
P. Guo, X. Yang, Q. Ye, et al., “Laser-Generated Nanocrystals in Perovskite: Universal Embedding of Ligand-Free and Sub-10 nm Nanocrystals in Solution-Processed Metal Halide Perovskite Films for Effectively Modulated Optoelectronic Performance,” Advanced Energy Materials 9, no. 35 (2019): 1901341-1901351.
|
| [3] |
L. Yangi, Y. Li, Y. Pei, et al., “A Novel 2D Perovskite as Surface ‘Patches’ for Efficient Flexible Perovskite Solar Cells,” Journal of Materials Chemistry A 8, no. 16 (2020): 7808-7818.
|
| [4] |
Y. Vaynzof, “The Future of Perovskite Photovoltaics—Thermal Evaporation or Solution Processing?,” Advanced Energy Materials 10, no. 48 (2020): 2003073.
|
| [5] |
Y. Rong, Y. Hu, A. Mei, et al., “Challenges for Commercializing Perovskite Solar Cells,” Science 361 (2018): eaat8235.
|
| [6] |
F. Igbari, Z. K. Wang, and L. S. Liao, “Progress of Lead-Free Halide Double Perovskites,” Advanced Energy Materials 9, no. 12 (2019): 1803150.
|
| [7] |
I. Susic, L. Gil-Escrig, F. Palazon, et al., “Quadruple-Cation Wide-Bandgap Perovskite Solar Cells With Enhanced Thermal Stability Enabled by Vacuum Deposition,” ACS Energy Letters 7, no. 4 (2022): 1355-1363.
|
| [8] |
Q. Zhang, J. Wang, and G. Liu, “Auxiliary Guidance Manufacture and Revealing Potential Mechanism of Perovskite Solar Cell Using Machine Learning,” Journal of Energy Chemistry 86 (2023): 146-157.
|
| [9] |
J. D. Ziegler, Y. Cho, S. Terres, et al., “Mobile Trions in Electrically Tunable 2D Hybrid Perovskites,” Advanced Materials 35, no. 18 (2023): 2210221.
|
| [10] |
Y. Wu, B. Chang, L. Wang, et al., “Intrinsic Dipole Arrangement to Coordinate Energy Levels for Efficient and Stable Perovskite Solar Cells,” Advanced Materials 35, no. 18 (2023): 2300174.
|
| [11] |
J. Luo, R. He, H. Lai, et al., “Improved Carrier Management via a Multifunctional Modifier for High-Quality Low-Bandgap Sn-Pb Perovskites and Efficient All-Perovskite Tandem Solar Cells,” Advanced Materials 35, no. 22 (2023): 2300352.
|
| [12] |
J. S. Kim, J. M. Heo, G. S. Park, et al., “Ultra-Bright, Efficient and Stable Perovskite Light-Emitting Diodes,” Nature 611, no. 7937 (2022): 688-694.
|
| [13] |
W. Bai, T. Xuan, H. Zhao, et al., “Perovskite Light-Emitting Diodes With an External Quantum Efficiency Exceeding 30%,” Advanced Materials 35, no. 39 (2023): 2302283.
|
| [14] |
A. Kojima, K. Teshima, Y. Shirai, et al., “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells,” Journal of the American Chemical Society 131, no. 17 (2009): 6050-6051.
|
| [15] |
Q. Tan, Z. Li, G. Luo, et al., “Inverted Perovskite Solar Cells Using Dimethylacridine-Based Dopants,” Nature 620, no. 7974 (2023): 545-551.
|
| [16] |
L. Shen, P. Song, L. Zheng, et al., “Ion Diffusion Management Enables All-Interface Defect Passivation of Perovskite Solar Cells,” Advanced Materials 35, no. 39 (2023): 2301624.
|
| [17] |
Y. Cui, Y. Wang, J. Bergqvist, et al., “Wide-Gap Non-Fullerene Acceptor Enabling High-Performance Organic Photovoltaic Cells for Indoor Applications,” Nature Energy 4, no. 9 (2019): 768-775.
|
| [18] |
J. Bullock, Y. Wan, M. Hettick, et al., “Dopant-Free Partial Rear Contacts Enabling 23% Silicon Solar Cells,” Advanced Energy Materials 9, no. 9 (2019): 1803367.
|
| [19] |
A. Roland, J. Fullenwarth, J. B. Ledeuil, et al., “How Carbon Coating or Continuous Carbon Pitch Matrix Influence the Silicon Electrode/Electrolyte Interfaces and the Performance in Li-Ion Batteries,” Battery Energy 1, no. 1 (2022): 20210009.
|
| [20] |
J. Xin, C. Zhao, Z. Geng, et al., “Elucidate the Thermal Degradation Mechanism of Y6-Based Organic Solar Cells by Establishing Structure-Property Correlation,” Advanced Energy Materials 14, no. 30 (2024): 2401433.
|
| [21] |
Q. Liang, M. Duan, Z. Geng, et al., “Regulation of Molecular Orientation in Organic Solar Cells,” Chemical Engineering Journal 488 (2024): 150783.
|
| [22] |
J. Liu, X. Liu, J. Xin, et al., “Dual Function of the Third Component in Ternary Organic Solar Cells: Broaden the Spectrum and Optimize the Morphology,” Small 20, no. 24 (2024): 2308863.
|
| [23] |
C. Song, S. Lou, S. Deng, et al., “Strain Regulation and Photophysical Properties in Halide Perovskite,” Solar RRL 7, no. 20 (2023): 2300567.
|
| [24] |
H. Zhu, S. Teale, M. N. Lintangpradipto, et al., “Long-Term Operating Stability in Perovskite Photovoltaics,” Nature Reviews Materials 8, no. 9 (2023): 569-586.
|
| [25] |
L. Duan, D. Walter, N. Chang, et al., “Stability Challenges for the Commercialization of Perovskite-Silicon Tandem Solar Cells,” Nature Reviews Materials 8, no. 4 (2023): 261-281.
|
| [26] |
M. V. Khenkin, E. A. Katz, A. Abate, et al., “Consensus Statement for Stability Assessment and Reporting for Perovskite Photovoltaics Based on ISOS Procedures,” Nature Energy 5, no. 1 (2020): 35-49.
|
| [27] |
S. Yang, Y. Wang, P. Liu, et al., “Functionalization of Perovskite Thin Films With Moisture-Tolerant Molecules,” Nature Energy 1, no. 2 (2016): 1-7.
|
| [28] |
Q. Ji, L. Bi, J. Zhang, et al., “The Role of Oxygen Vacancies of ABO3 Perovskite Oxides in the Oxygen Reduction Reaction,” Energy & Environmental Science 13, no. 5 (2020): 1408-1428.
|
| [29] |
Y. Lin, Y. Liu, S. Chen, et al., “Revealing Defective Nanostructured Surfaces and Their Impact on the Intrinsic Stability of Hybrid Perovskites,” Energy & Environmental Science 14, no. 3 (2021): 1563-1572.
|
| [30] |
J. Hao, Z. Dai, M. Guan, et al., “Simultaneous Enhancement of Luminescence and Stability of Lead Halide Perovskites by a Diatomite Microcavity for Light-Emitting Diodes,” Chemical Engineering Journal 417 (2021): 128056.
|
| [31] |
J. Wei, Q. Wang, J. Huo, et al., “Mechanisms and Suppression of Photoinduced Degradation in Perovskite Solar Cells,” Advanced Energy Materials 11, no. 3 (2021): 2002326.
|
| [32] |
G. Nazir, S. Y. Lee, J. H. Lee, et al., “Stabilization of Perovskite Solar Cells: Recent Developments and Future Perspectives,” Advanced Materials 34, no. 50 (2022): 2204380.
|
| [33] |
M. H. Nazir, A. Rahil, E. Partenie, et al., “Comparison of Lithium-Ion Battery Cell Technologies Applied in the Regenerative Braking System,” Battery Energy 1, no. 4 (2022): 20220022.
|
| [34] |
H. Li, C. Chen, H. Hu, et al., “Strategies for High-Performance Perovskite Solar Cells From Materials, Film Engineering to Carrier Dynamics and Photon Management,” InfoMat 4, no. 7 (2022): e12322.
|
| [35] |
Y. Zhan, Q. Cheng, Y. Song, et al., “Micro-Nano Structure Functionalized Perovskite Optoelectronics: From Structure Functionalities to Device Applications,” Advanced Functional Materials 32, no. 24 (2022): 2200385.
|
| [36] |
D. Jin, C. Park, J. Han, et al., “Ethyl 2-(2-Fluoroethoxy) Ethyl Carbonate as a New Electrolyte Additive for High-Voltage Li-Metal Batteries,” Battery Energy 2, no. 1 (2023): 20220034.
|
| [37] |
Y. Ding, Y. Li, and Z. S. Wu, “Recent Advances and Challenges in the Design of Li-Air Batteries Oriented Solid-State Electrolytes,” Battery Energy 2, no. 2 (2023): 20220014.
|
| [38] |
J. Peng, D. Wu, H. Li, et al., “Long-Life High-Capacity Lithium Battery With Liquid Organic Cathode and Sulfide Solid Electrolyte,” Battery Energy 2, no. 3 (2023): 20220059.
|
| [39] |
R. A. Rajan, H. Tao, W. Yu, et al., “Space-Resolved Light Emitting and Lasing Behaviors of Crystalline Perovskites Upon Femtosecond Laser Ablation,” Materials Today Physics 31 (2023): 101000.
|
| [40] |
J. Lu, A. Carvalho, J. Wu, et al., “Enhanced Photoresponse From Phosphorene-Phosphorene-Suboxide Junction Fashioned by Focused Laser Micromachining,” Advanced Materials 28, no. 21 (2016): 4090-4096.
|
| [41] |
Y. Rho and C. P. Grigoropoulos, “A Laser-Based Chemical Process Enables Reversible Doping of Graphene,” Nature Electronics 5, no. 8 (2022): 485-486.
|
| [42] |
R. A. Rajan, H. Tao, W. Yu, et al., “Space-Resolved Light Emitting and Lasing Behaviors of Crystalline Perovskites Upon Femtosecond Laser Ablation,” Materials Today Physics 31 (2023): 101000.
|
| [43] |
A. L. Palma, “Laser-Processed Perovskite Solar Cells and Modules,” Solar RRL 4, no. 4 (2020): 1900432.
|
| [44] |
S. Sánchez, M. Vallés-Pelarda, J. A. Alberola-Borràs, et al., “Flash Infrared Annealing as a Cost-Effective and Low Environmental Impact Processing Method for Planar Perovskite Solar Cells,” Materials Today 31 (2019): 39-46.
|
| [45] |
L. A. Muscarella, E. M. Hutter, S. Sanchez, et al., “Crystal Orientation and Grain Size: Do They Determine Optoelectronic Properties of MAPbI3 Perovskite?,” Journal of Physical Chemistry Letters 10, no. 20 (2019): 6010-6018.
|
| [46] |
F. Li, W. Zhu, C. Bao, et al., “Laser-Assisted Crystallization of CH3NH3PBI3 Films for Efficient Perovskite Solar Cells With a High Open-Circuit Voltage,” Chemical Communications 52, no. 31 (2016): 5394-5397.
|
| [47] |
M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, et al., “Maximizing and Stabilizing Luminescence From Halide Perovskites With Potassium Passivation,” Nature 555, no. 7697 (2018): 497-501.
|
| [48] |
E. Kasparavicius, M. Franckevičius, V. Malinauskiene, et al., “Oxidized Spiro-Ometad: Investigation of Stability in Contact With Various Perovskite Compositions,” ACS Applied Energy Materials 4, no. 12 (2021): 13696-13705.
|
| [49] |
M. Hadouchi, T. Koketsu, Z. Hu, et al., “The Origin of Fast-Charging Lithium Iron Phosphate for Batteries,” Battery Energy 1, no. 1 (2022): 20210010.
|
| [50] |
R. Zhang, H. Zhou, P. Sun, et al., “Research Progress on Nanoparticles Applied in Redox Flow Batteries,” Battery Energy 1, no. 4 (2022): 20220023.
|
| [51] |
K. Wang, S. Sun, C. Zhang, et al., “Whispering-Gallery-Mode Based CH3NH3PbBr3 Perovskite Microrod Lasers With High Quality Factors,” Materials Chemistry Frontiers 1, no. 3 (2017): 477-481.
|
| [52] |
K. Wang, S. Sun, C. Zhang, et al., “Microstructures of Organometal Trihalide Perovskites for Solar Cells: Their Evolution From Solutions and Characterization,” Journal of Physical Chemistry Letters 6, no. 23 (2015): 4827-4839.
|
| [53] |
W. A. Dunlap-Shohl, Y. Zhou, N. P. Padture, and D. B. Mitzi, “Synthetic Approaches for Halide Perovskite Thin Films,” Chemical Reviews 119, no. 5 (2018): 3193-3295.
|
| [54] |
M. Kedia, M. Rai, H. Phirke, et al., “Light Makes Right: Laser Polishing for Surface Modification of Perovskite Solar Cells,” ACS Energy Letters 8 (2023): 2603-2610.
|
| [55] |
M. Kedia, M. Rai, H. Phirke, et al., “Single-Source Vapor-Deposition of MA1-xFAxPbI3 Perovskite Absorbers for Solar Cells,” Advanced Functional Materials 634, no. 50 (2023): 2300588.
|
| [56] |
W. A. Dunlap-Shohl, E. T. Barraza, A. Barrette, et al., “MAPbI3 Solar Cells With Absorber Deposited by Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation,” ACS Energy Letters 3, no. 2 (2018): 270-275.
|
| [57] |
X. Shan, S. Wang, M. Fu, et al., “Precisely Preparing Lead Iodide Passivation Layer for Enhancing the Performance of Triple Cation Perovskite Solar Cells Using Krypton Fluoride Excimer Laser,” Journal of Power Sources 555 (2023): 232368.
|
| [58] |
W. Kong, C. Zhao, J. Xing, et al., “Enhancing Perovskite Solar Cell Performance Through Femtosecond Laser Polishing,” Solar RRL 4, no. 7 (2020): 2000189.
|
| [59] |
C. Song, L. Tong, F. Liu, et al., “Addressing the Reliability and Electron Transport Kinetics in Halide Perovskite Film via Pulsed Laser Engineering,” Advanced Functional Materials 30, no. 5 (2020): 1906781.
|
| [60] |
X. L. Trinh, N. H. Tran, H. Seo, et al., “Enhanced Performance of Perovskite Solar Cells via Laser-Induced Heat Treatment on Perovskite Film,” Solar Energy 206 (2020): 301-307.
|
| [61] |
X. Shan, S. Wang, W. Dong, et al., “Flash Surface Treatment of CH3NH3PbI3 Films Using 248 nm KrF Excimer Laser Enhances the Performance of Perovskite Solar Cells,” Solar RRL 3, no. 7 (2019): 1900020.
|
| [62] |
U. Bansode, R. Naphade, U. Game OBansode, et al., “Hybrid Perovskite Films by a New Variant of Pulsed Excimer Laser Deposition: A Room-Temperature Dry Process,” Journal of Physical Chemistry C 119, no. 17 (2015): 9177-9185.
|
| [63] |
U. Bansode and S. Ogale, “On-Axis Pulsed Laser Deposition of Hybrid Perovskite Films for Solar Cell and Broadband Photo-Sensor Applications,” Journal of Applied Physics 121, no. 13 (2017): 133107.
|
| [64] |
T. Jeon, H. M. Jin, S. H. Lee, et al., “Laser Crystallization of Organic-Inorganic Hybrid Perovskite Solar Cells,” ACS Nano 10, no. 8 (2016): 7907-7914.
|
| [65] |
Y. Sun, K. Zhou, Q. Sun, et al., “Room-Temperature Continuous-Wave Electrically Injected Ingan-Based Laser Directly Grown on Si,” Nature Photonics 10, no. 9 (2016): 595-599.
|
| [66] |
C. Sämann, K. Kelesiadou, S. S. Hosseinioun, M. Wachtler, J. R. Köhler, and K. P. Birke, “Laser Porosificated Silicon Anodes for Lithium Ion Batteries,” Advanced Energy Materials 8, no. 1 (2018): 1701705.
|
| [67] |
D. A. Coucheron, M. Fokine, N. Patil, et al., “Laser Recrystallization and Inscription of Compositional Microstructures in Crystalline Sige-Core Fibres,” Nature Communications 7, no. 1 (2016): 13265.
|
| [68] |
D. H. Lowndes, D. Geohegan, A. Puretzky, D. Norton, and C. Rouleau, “Synthesis of Novel Thin-Film Materials by Pulsed Laser Deposition,” Science 273, no. 5277 (1996): 898-903.
|
| [69] |
X. Zhang, P. Baral, N. Chakraborty, et al., “Blade Coating Inverted Perovskite Solar Cells With Vacuum-Assisted Nucleation Based on Bottom Quasi-2D Passivation,” Solar RRL 7, no. 5 (2023): 2200900.
|
| [70] |
W. Yu, M. Wei, Z. Tang, et al., “Separating Crystal Growth From Nucleation Enables the In Situ Controllable Synthesis of Nanocrystals for Efficient Perovskite Light-Emitting Diodes,” Advanced Materials 35, no. 33 (2023): e2301114.
|
| [71] |
P. Shi, Y. Ding, B. Ding, et al., “Oriented Nucleation in Formamidinium Perovskite for Photovoltaics,” Nature 620, no. 7973 (2023): 323-327.
|
| [72] |
M. I. Saidaminov, A. L. Abdelhady, B. Murali, et al., “Crystallization of Methylammonium Lead Halide Perovskites by Optical Trapping,” Angewandte Chemie 130, no. 41 (2018): 13612-13616.
|
| [73] |
Y. Tsuboi, M. Nishino, T. Sasaki, et al., “High-Quality Bulk Hybrid Perovskite Single Crystals Within Minutes by Inverse Temperature Crystallization,” Nature Communications 6, no. 1 (2015): 7586.
|
| [74] |
K. Yuyama, M. J. Islam, K. Takahashi, T. Nakamura, and V. Biju, “Poly (N-Isopropylacrylamide) Microparticles Produced by Radiation Pressure of a Focused Laser Beam: A Structural Analysis by Confocal Raman Microspectroscopy Combined With a Laser-Trapping Technique,” Journal of Physical Chemistry B 109, no. 15 (2005): 7033-7039.
|
| [75] |
Y. Gao, C. Liu, Y. Xie, et al., “Can Nanosecond Laser Achieve High-Performance Perovskite Solar Modules With Aperture Area Efficiency Over 21%?,” Advanced Energy Materials 12, no. 41 (2022): 2202287.
|
| [76] |
P. You, G. Li, G. Tang, J. Cao, and F. Yan, “Ultrafast Laser-Annealing of Perovskite Films for Efficient Perovskite Solar Cells,” Energy & Environmental Science 13, no. 4 (2020): 1187-1196.
|
| [77] |
W. Luo, C. Wu, W. Sun, X. Guo, L. Xiao, and Z. Chen, “High Crystallization of Perovskite Film by a Fast Electric Current Annealing Process,” ACS Applied Materials & Interfaces 9, no. 32 (2017): 26915-26920.
|
| [78] |
Y. Shi, R. Li, G. Yin, et al., “Laser-Induced Secondary Crystallization of CsPbBr3 Perovskite Film for Robust and Low Threshold Amplified Spontaneous Emission,” Advanced Functional Materials 32, no. 49 (2022): 2207206.
|
| [79] |
J. Liu, K. Song, Y. Shin, et al., “Light-Induced Self-Assembly of Cubic CsPbBr3 Perovskite Nanocrystals Into Nanowires,” Chemistry of Materials 31, no. 17 (2019): 6642-6649.
|
| [80] |
Y. Dong, H. Hu, X. Xu, et al., “Photon-Induced Reshaping in Perovskite Material Yields of Nanocrystals With Accurate Control of Size and Morphology,” Journal of Physical Chemistry Letters 10, no. 15 (2019): 4149-4156.
|
| [81] |
S. Cheng, Q. Chang, Z. Wang, L. Xiao, E. E. Chia, and H. Sun, “Observation of Net Stimulated Emission in CsPbBr3 Thin Films Prepared by Pulsed Laser Deposition,” Advanced Optical Materials 9, no. 17 (2021): 2100564.
|
| [82] |
N. A. Shepelin, Z. P. Tehrani, N. Ohannessian, C. W. Schneider, D. Pergolesi, and T. Lippert, “A Practical Guide to Pulsed Laser Deposition,” Chemical Society Reviews 52, no. 7 (2023): 2294-2321.
|
| [83] |
Z. Lu, Y. Xu, Y. Yu, et al., “Ultrahigh Speed and Broadband Few-Layer MoTe2/Si 2D-3D Heterojunction-Based Photodiodes Fabricated by Pulsed Laser Deposition,” Advanced Functional Materials 30, no. 9 (2020): 1907951.
|
| [84] |
H. M. Christen and G. Eres, “Recent Advances in Pulsed-Laser Deposition of Complex Oxides,” Journal of Physics: Condensed Matter 20, no. 26 (2008): 264005.
|
| [85] |
D. Liu, X. Li, C. Shi, and Q. Liang. “CH3NH3PbI3 Thin Films Prepared by Pulsed Laser Deposition for Optoelectronic Applications,” Materials Letters 188 (2017): 271-274.
|
| [86] |
V. M. Kiyek, Y. A. Birkhölzer, Y. Smirnov, et al., “Single-Source, Solvent-Free, Room Temperature Deposition of Black γ-CsSnI3 Films,” Advanced Materials Interfaces 7, no. 11 (2020): 2000162.
|
| [87] |
N. Rodkey, S. Kaal, L. P. Sebastia, et al., “Pulsed Laser Deposition of Cs2AgBiBr6: From Mechanochemically Synthesized Powders to Dry, Single-Step Deposition,” Chemistry of Materials 33, no. 18 (2021): 7417-7422.
|
| [88] |
N. Pellet, P. Gao, G. Gregori, et al., “Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting,” Angewandte Chemie International Edition 53, no. 12 (2014): 3151-3157.
|
| [89] |
W. Ge, N. K. Li, R. D. McCormick, E. Lichtenberg, Y. G. Yingling, and A. D. Stiff-Roberts, “Emulsion-Based Rir-Maple Deposition of Conjugated Polymers: Primary Solvent Effect and Its Implications on Organic Solar Cell Performance,” ACS Applied Materials & Interfaces 8, no. 30 (2016): 19494-19506.
|
| [90] |
Q. Yu, W. Ge, A. Atewologn, et al., “RIR-MAPLE Deposition of Multifunctional Films Combining Biocidal and Fouling Release Properties,” Journal of Materials Chemistry B 2, no. 27 (2014): 4371-4378.
|
| [91] |
R. Pate and R. A. Stiff, “The Impact of Laser-Target Absorption Depth on the Surface and Internal Morphology of Matrix-Assisted Pulsed Laser Evaporated Conjugated Polymer Thin Films,” Chemical Physics Letters 477, no. 4-6 (2009): 406-410.
|
| [92] |
E. T. Barraza, S. W. A. Dunlap, D. B. Mitzi, and R. A. D. Stiff, “Deposition of Methylammonium Lead Triiodide by Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation,” Journal of Electronic Materials 47 (2018): 917-926.
|
| [93] |
R. D. Torres, S. L. Johnson, R. F. Haglund, J. Hwang, P. L. Burn, and P. H. Holloway, “Mechanisms of Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation,” Critical Reviews in Solid State and Materials Sciences 36, no. 1 (2011): 16-45.
|
| [94] |
U. Bansode and S. Ogale, “On-Axis Pulsed Laser Deposition of Hybrid Perovskite Films for Solar Cell and Broadband Photo-Sensor Applications,” Journal of Applied Physics 121, no. 13 (2017): 133107.
|
| [95] |
A. F. Harper, P. J. Diemer, and O. D. Jurchescu, “Contact Patterning by Laser Printing for Flexible Electronics on Paper,” NPJ Flexible Electronics 3, no. 1 (2019): 11.
|
| [96] |
P. J. Diemer, A. F. Harper, M. R. NiazIi, et al., “Laser-Printed Organic Thin-Film Transistors,” Advanced Materials Technologies 2, no. 11 (2017): 1700167.
|
| [97] |
X. Tian, L. Wang, W. Li, Q. Lin, and Q. Cao, “Whispering Gallery Mode Lasing From Perovskite Polygonal Microcavities via Femtosecond Laser Direct Writing,” ACS Applied Materials & Interfaces 13, no. 14 (2021): 16952-16958.
|
| [98] |
Z. Cai, B. Liu, X. Zou, and H. M. Cheng, “Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures,” Chemical Reviews 118, no. 13 (2018): 6091-6133.
|
| [99] |
G. Grancini, C. Roldán-Carmona, and I. Zimmermann, “One-Year Stable Perovskite Solar Cells by 2D/3D Interface Engineering,” Nature Communications 8, no. 1 (2017): 15684.
|
| [100] |
C. Tyznik, Z. A. Lamport, J. Sorli, et al., “Laser Printed Metal Halide Perovskites,” Journal of Physics: Materials 3, no. 3 (2020): 034010.
|
| [101] |
K. Sun, D. Tan, X. Fang, et al., “Three-Dimensional Direct Lithography of Stable Perovskite Nanocrystals in Glass,” Science 375, no. 6578 (2022): 307-310.
|
| [102] |
X. Huang, Q. Guo, S. Kang, et al., “Three-Dimensional Laser-Assisted Patterning of Blue-Emissive Metal Halide Perovskite Nanocrystals Inside a Glass With Switchable Photoluminescence,” ACS Nano 14, no. 3 (2020): 3150-3158.
|
| [103] |
X. Tian, R. Wang, Y. Xu, et al., “Triangular Micro-Grating via Femtosecond Laser Direct Writing Toward High-Performance Polarization-Sensitive Perovskite Photodetectors,” Advanced Optical Materials 10, no. 19 (2022): 2200856.
|
| [104] |
X. Tian, Y. Xu, H. Zhao, et al., “Femtosecond Laser Direct Writing of Perovskite Patterns With Whispering Gallery Mode Lasing,” Journal of Materials Chemistry C 8, no. 22 (2020): 7314-7321.
|
| [105] |
H. Tsai, R. Asadpour, J. C. Blancon, et al., “Light-Induced Lattice Expansion Leads to High-Efficiency Perovskite Solar Cells,” Science 360, no. 6384 (2018): 67-70.
|
| [106] |
F. Zhang, D. H. Kim, H. Lu, et al., “Enhanced Charge Transport in 2D Perovskites via Fluorination of Organic Cation,” Journal of the American Chemical Society 141, no. 14 (2019): 5972-5979.
|
| [107] |
A. Simbula, L. Wu, F. Pitzalis, et al., “Exciton Dissociation in 2D Layered Metal-Halide Perovskites,” Nature Communications 14, no. 1 (2023): 4125.
|
| [108] |
X. Zhao, T. Liu, and L. Y. Loo, “Advancing 2D Perovskites for Efficient and Stable Solar Cells: Challenges and Opportunities,” Advanced Materials 34, no. 3 (2022): 2105849.
|
| [109] |
T. A. Berhe, J. H. Cheng, W. N. Su, et al., “Identification of the Physical Origin Behind Disorder, Heterogeneity, and Reconstruction and Their Correlation With the Photoluminescence Lifetime in Hybrid Perovskite Thin Films,” Journal of Materials Chemistry A 5, no. 39 (2017): 21002-21015.
|
| [110] |
Z. Lin, M. C. Folgueras, H. K. Le, M. Gao, and P. Yang, “Laser-Accelerated Phase Transformation in Cesium Lead Iodide Perovskite,” Matter 5, no. 5 (2022): 1455-1465.
|
| [111] |
C. Weiguang and S. K. Banerjee, “Engineering Strategies for Two-Dimensional Perovskite Solar Cells,” Trends in Chemistry 4, no. 11 (2022): 1005-1020.
|
| [112] |
X. Zhao, T. Liu, and Y.-L. Loo, “Advancing 2D Perovskites for Efficient and Stable Solar Cells: Challenges and Opportunities,” Advanced Materials 34, no. 3 (2022): e2105849.
|
| [113] |
L. Yan, J. Ma, P. Li, et al., “Charge-Carrier Transport in Quasi-2D Ruddlesden-Popper Perovskite Solar Cells,” Advanced Materials 34, no. 7 (2022): e2106822.
|
| [114] |
X. Sheng, Y. H. Li, M. Xia, and E. Z. Shi, “Quasi-2D Halide Perovskite Crystals and Their Optoelectronic Applications,” Journal of Materials Chemistry A 10, no. 37 (2022): 19169-19183.
|
| [115] |
S. Peng, J. Ma, P. Li, S. Zang, Y. Zhang, and Y. Song, “Regulation of Quantum Wells Width Distribution in 2D Perovskite Films for Photovoltaic Application,” Advanced Functional Materials 32, no. 43 (2022): 2205289.
|
| [116] |
A. Kumar, A. Solanki, M. Manjappa, et al., “Excitons in 2D Perovskites for Ultrafast Terahertz Photonic Devices,” Science Advances 6, no. 8 (2020): eaax8821.
|
| [117] |
X. Chen, H. Lu, K. Wang, et al., “Tuning Spin-Polarized Lifetime in Two-Dimensional Metal-Halide Perovskite Through Exciton Binding Energy,” Journal of the American Chemical Society 143, no. 46 (2021): 19438-19445.
|
| [118] |
J. V. Passarelli, C. M. Mauck, S. W. Winslow, et al., “Tunable Exciton Binding Energy in 2D Hybrid Layered Perovskites Through Donor-Acceptor Interactions Within the Organic Layer,” Nature Chemistry 12, no. 8 (2020): 672-682.
|
| [119] |
C. Katan, A. D. Mohite, and J. Even, “Entropy in Halide Perovskites,” Nature Materials 17, no. 5 (2018): 377-379.
|
| [120] |
Y. Wang, C. Liu, Y. Ren, et al., “Visualizing Light-Induced Microstrain and Phase Transition in Lead-Free Perovskites Using Time-Resolved X-ray Diffraction,” Journal of the American Chemical Society 144, no. 12 (2022): 5335-5341.
|
| [121] |
C. Song, H. Yang, F. Liu, et al., “Ultrafast Femtosecond Pressure Modulation of Structure and Exciton Kinetics in 2D Halide Perovskites for Enhanced Light Response and Stability,” Nature Communications 12, no. 1 (2021): 4879.
|
| [122] |
C. S. Montross, T. Wei, L. Ye Mai, et al., “Laser Shock Processing and Its Effects on Microstructure and Properties of Metal Alloys: A Review,” International Journal of Fatigue 24, no. 10 (2002): 1021-1036.
|
| [123] |
X. Tang, S. Yi, Q. Yuan, Q. Shu, D. Han, and L. Feng, “2D Non-Layered In2S3 as Multifunctional Additive for Inverted Organic-Free Perovskite Solar Cells With Enhanced Performance,” Solar RRL 6, no. 6 (2022): 2101013.
|
| [124] |
T. Qiao, D. Parobek, Y. Dong, E. Ha, and D. H. Son, “Photoinduced Mn Doping in Cesium Lead Halide Perovskite Nanocrystals,” Nanoscale 11, no. 12 (2019): 5247-5253.
|
| [125] |
T. Zhu, Y. Yang, S. Zhou, et al., “Bulk Heterojunction Perovskite Solar Cells Incorporated With Solution-Processed TiOx Nanoparticles as the Electron Acceptors,” Chinese Chemical Letters 31, no. 9 (2020): 2249-2253.
|
| [126] |
T. Niu, J. Lu, M. C. Tang, et al., “High Performance Ambient-Air-Stable FAPbI3 Perovskite Solar Cells With Molecule-Passivated Ruddlesden-Popper/3D Heterostructured Film,” Energy & Environmental Science 11, no. 12 (2018): 3358-3366.
|
| [127] |
P. Vasa, R. Sharma, M. Singh, A. K. Dharmadhikari, J. A. Dharmadhikari, and D. Mathur, “Generation of Stable Colloidal Gold Nanoparticles by Ultrashort Laser-Induced Melting and Fragmentation,” Materials Research Express 1, no. 3 (2014): 035028.
|
| [128] |
S. Hashimoto, D. Werner, and T. Uwada, “Studies on the Interaction of Pulsed Lasers With Plasmonic Gold Nanoparticles Toward Light Manipulation, Heat Management, and Nanofabrication,” Journal of Photochemistry and Photobiology, C: Photochemistry Reviews 13, no. 1 (2012): 28-54.
|
| [129] |
P. Guo, C. Liu, X. Li, et al., “Laser Manufactured Nano-MXenes With Tailored Halogen Terminations Enable Interfacial Ionic Stabilization of High Performance Perovskite Solar Cells,” Advanced Energy Materials 12, no. 46 (2022): 2202395.
|
| [130] |
H. Yu, X. Li, Z. Hao, et al., “Fabrication of Metal/Semiconductor Nanocomposites by Selective Laser Nano-Welding,” Nanoscale 9, no. 21 (2017): 7012-7015.
|
| [131] |
H. Yu, W. Zhao, L. Ren, et al., “Laser-Generated Supranano Liquid Metal as Efficient Electron Mediator in Hybrid Perovskite Solar Cells,” Advanced Materials 32, no. 34 (2020): 2001571.
|
| [132] |
N. Misra, L. Xu, M. Rogers, S. H. Ko, C. Grigoropoulos, “Pulsed Laser Annealing of Semiconductor Structures for Functional Devices,” Physica Status Solidi C 5, no. 10 (2008): 3264-3270.
|
| [133] |
S. G. Davison and M. Steslicka, Basic Theory of Surface States (Oxford University Press, 1996). 46.
|
| [134] |
J. Xue, R. Wang, and Y. Yang, “The Surface of Halide Perovskites From Nano to Bulk,” Nature Reviews Materials 5, no. 11 (2020): 809-827.
|
| [135] |
Z. Xu, Y. X. Liu, M. Azadeh, et al., “Identifying the Interfacial Polarization in Non-Stoichiometric Lead-Free Perovskites by Defect Engineering,” Angewandte Chemie International Edition English 62, no. 9 (2023): e202216776.
|
| [136] |
Q. Qian, Z. Wan, H. Takenaka, et al., “Photocarrier-Induced Persistent Structural Polarization in Soft-Lattice Lead Halide Perovskites,” Nature Nanotechnology 18, no. 4 (2023): 357-364.
|
| [137] |
Q. Zhou, C. Cai, Q. Xiong, et al., “Surface Polarity Regulation by Relieving Fermi-Level Pinning With Naphthalocyanine Tetraimides Toward Efficient Perovskite Solar Cells With Improved Photostability,” Advanced Energy Materials 12, no. 27 (2022): 2201243.
|
| [138] |
L. Nie, T. Wang, X. Yu, et al., “Multicolor Display Fabricated via Stacking CW Laser-Patterned Perovskite Films,” ACS Energy Letters 8, no. 4 (2023): 2025-2032.
|
| [139] |
A. Ummadisingu and M. Grtzel, “Revealing the Detailed Path of Sequential Deposition for Metal Halide Perovskite Formation,” Science Advances 4, no. 2 (2018): e1701402.
|
| [140] |
Q. Chen, X. Huang, D. Yang, et al., “Three-Dimensional Laser Writing Aligned Perovskite Quantum Dots in Glass for Polarization-Sensitive Anti-Counterfeiting,” Advanced Optical Materials 11, no. 10 (2023): 2300090.
|
| [141] |
D. Sun, J. Yuan, T. Wang, et al., “Enhanced Performance in Perovskites Films by Defect Engineering and Charge Carrier Transportation via Pulsed Laser Doping of 2D MoS2,” Sustainable Materials and Technologies 36 (2023): e00622.
|
| [142] |
M. Motlag, X. Liu, N. P. D. Nurmalasari, et al., “Molecular-Scale Nanodiamond With High-Density Color Centers Fabricated From Graphite by Laser Shocking,” Cell Reports Physical Science 1, no. 5 (2020): 100054.
|
| [143] |
H. Q. Jiang, L. Tong, H. D. Liu, et al., “Graphene-Metal-Metastructure Monolith via Laser Shock-Induced Thermochemical Stitching of MOF Crystals,” Matter 2, no. 6 (2020): 1535-1549.
|
| [144] |
M. Koerdt and F. Vollertsen, “Fabrication of an Integrated Optical Mach-Zehnder Interferometer Based on Refractive Index Modification of Polymethylmethacrylate by Krypton Fluoride Excimer Laser Radiation,” Applied Surface Science 257, no. 12 (2011): 5237-5240.
|
| [145] |
V. C. Hoang, K. Dave, and V. G. Gome, “Carbon Quantum Dot-Based Composites for Energy Storage and Electrocatalysis: Mechanism, Applications and Future Prospects,” Nano Energy 66 (2019): 104093.
|
| [146] |
Q. Chen, H. Zhou, T. B. Song, et al., “Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites Toward High Performance Solar Cells,” Nano Letters 14, no. 7 (2014): 4158-4163.
|
| [147] |
B. Shi, X. Yao, F. Hou, et al., “Unraveling the Passivation Process of PbI2 to Enhance the Efficiency of Planar Perovskite Solar Cells,” Journal of Physical Chemistry C 122, no. 37 (2018): 21269-21276.
|
| [148] |
G. P. Mao, W. Wang, S. Shao, et al., “Research Progress in Electron Transport Layer in Perovskite Solar Cells,” Rare Metals 37 (2018): 95-106.
|
| [149] |
J. Dagar, M. Fenske, A. Al-Ashouri, et al., “Compositional and Interfacial Engineering Yield High-Performance and Stable Pin Perovskite Solar Cells and Mini-Modules,” ACS Applied Materials & Interfaces 13, no. 11 (2021): 13022-13033.
|
| [150] |
X. Xiao, J. Dai, Y. Fang, et al., “Suppressed Ion Migration Along the In-Plane Direction in Layered Perovskites,” ACS Energy Letters 3, no. 3 (2018): 684-688.
|
| [151] |
D. Wei, F. Ma, and R. Wang, “Ion-Migration Inhibition by the Cation-π Interaction in Perovskite Materials for Efficient and Stable Perovskite Solar Cells,” Advanced Materials 30, no. 31 (2018): 1707583.
|
| [152] |
H. Zhang, H. Wang, M. Ma, Y. Wu, S. Dong, and Q. Xu, “Application of Compact TiO2 Layer Fabricated by Pulsed Laser Deposition in Organometal Trihalide Perovskite Solar Cells,” Solar RRL 2, no. 8 (2018): 1800097.
|
| [153] |
G. C. Wilkes, X. Deng, J. J. Choi, and M. C. Gupta, “Laser Annealing of TiO2 Electron-Transporting Layer in Perovskite Solar Cells,” ACS Applied Materials & Interfaces 48 (2018): 10.
|
| [154] |
T. He, S. Li, Y. Jiang, et al., “Reduced-Dimensional Perovskite Photovoltaics With Homogeneous Energy Landscape,” Nature Communications 11, no. 1 (2020): 1672.
|
| [155] |
H. Mo, D. Wang, Q. Chen, et al., “Laser-Assisted Ultrafast Fabrication of Crystalline Ta-Doped TiO2 for High-Humidity-Processed Perovskite Solar Cells,” ACS Applied Materials & Interfaces 13 (2022): 14.
|
| [156] |
W. Zhao, P. Guo, C. Liu, et al., “Laser Derived Electron Transport Layers With Embedded p-n Heterointerfaces Enabling Planar Perovskite Solar Cells With Efficiency Over 25%,” Advanced Materials 35, no. 31: 2300403.
|
| [157] |
Q. Chen, M. Z. Mokhtar, J. C. R. Ke, et al., “A One-Step Laser Process for Rapid Manufacture of Mesoscopic Perovskite Solar Cells Prepared Under High Relative Humidity,” Sustainable Energy & Fuels 2, no. 6 (2018): 1216-1224.
|
| [158] |
S. Mazumdar, B. Du, P. Lin, et al., “Nano-Electrical Conductivity Guided Optimization of Pulsed Laser Deposited ZnO Electron Transporting Layer for Efficient Perovskite Solar Cell,” Journal of Power Sources 468 (2020): 228392.
|
| [159] |
Z. Qiu, S. Yuan, H. Gong, et al., “The Influence of Physical Properties of ZnO Films on the Efficiency of Planar ZnO/Perovskite/P3 HT Solar Cell,” Journal of the American Ceramic Society 100, no. 1 (2017): 176-184.
|
| [160] |
R. Xia, A. G. Yin, A. S. Wang, A. W. Dong, and A. L. You, “Precision Excimer Laser Annealed Ga-Doped ZnO Electron Transport Layers for Perovskite Solar Cells,” RSC Advances 8, no. 32 (2018): 17694-17701.
|
| [161] |
H. Mo, Q. Chen, D. Wang, et al., “Laser Processing of KBr-Modified SnO2 for Efficient Rigid and Flexible Ambient-Processed Perovskite Solar Cells,” Solar RRL 6, no. 12 (2022): 2200798.
|
| [162] |
J. H. Park, J. Seo, S. Park, et al., “Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured p-Type NiO Electrode Formed by a Pulsed Laser Deposition,” Advanced Materials 27, no. 27 (2015): 4013-4019.
|
| [163] |
Z. Qiu, H. Gong, G. Zheng, et al., “Enhanced Physical Properties of Pulsed Laser Deposited NiO Films via Annealing and Lithium Doping for Improving Perovskite Solar Cell Efficiency,” Journal of Materials Chemistry C 5, no. 28 (2017): 7084-7094.
|
| [164] |
J. Chen, X. Cai, D. Yang, et al., “Recent Progress in Stabilizing Hybrid Perovskites for Solar Cell Applications,” Journal of Power Sources 355 (2017): 98-133.
|
| [165] |
Z. Guo, L. Gao, C. Zhang, et al., “Low-Temperature Processed Non-TiO2 Electron Selective Layers for Perovskite Solar Cells,” Journal of Materials Chemistry A 6, no. 11 (2018): 4572-4589.
|
| [166] |
Z. Chu, M. Yang, P. Schulz, et al., “Impact of Grain Boundaries on Efficiency and Stability of Organic-Inorganic Trihalide Perovskites,” Nature Communications 8, no. 1 (2017): 2230.
|
| [167] |
C. L. Tsai, Y. C. Lu, S. E. Chiang, et al., “Bright and Fast-Response Perovskite Light-Emitting Diodes With an ICBA: Modified-C60 Nanocomposite Electrical Confinement Layer,” Nanoscale 12 (2020): 4061-4068.
|
| [168] |
H. Liu, Z. Huang, S. Wei, et al., “Nano-Structured Electron Transporting Materials for Perovskite Solar Cells,” Nanoscale 8, no. 12 (2015): 6209.
|
| [169] |
Z. Su, D. Xu, Q. Ma, et al., “Atomic Layer Deposited ZnO-SnO2 Electron Transport Bilayer for Wide-Bandgap Perovskite Solar Cells,” Solar RRL 7, no. 3 (2022): 2201026.
|
| [170] |
Z. Chen, J. Wang, H. Wu, et al., “A Transparent Electrode Based on Solution-Processed ZnO for Organic Optoelectronic Devices,” Nature Communications 13, no. 1 (2022): 4387.
|
| [171] |
X. Pu, Q. Cao, et al., “One-Step Construction of a Perovskite/TiO2 Heterojunction Toward Highly Stable Inverted All-Layer-Inorganic CsPbI2Br Perovskite Solar Cells With 17.1% Efficiency,” Advanced Energy Materials 13, no. 36 (2023): 2301607.
|
| [172] |
L. Duan, H. Zhang, F. T. Eickemeyer, et al., “CsPbBr3 Quantum Dots-Sensitized Mesoporous TiO2 Electron Transport Layers for High-Efficiency Perovskite Solar Cells,” Solar RRL 7, no. 11 (2023): 2300072.
|
| [173] |
H. Shu, C. Peng, Q. Chen, et al., “Strategy of Enhancing Built-in Field to Promote the Application of C-TiO2/SnO2 Bilayer Electron Transport Layer in High-Efficiency Perovskite Solar Cells (24.3%),” Small 18, no. 45 (2022): e2204446.
|
| [174] |
M. F. Chen, K. Lin, and Y. S. Ho, “Laser Annealing Process of ITO Thin Films Using Beam Shaping Technology,” Optics and Lasers in Engineering 50, no. 3 (2012): 491-495.
|
| [175] |
S. K. Pathak, A. Abate, P. Ruckdeschel, et al., “Performance and Stability Enhancement of Dye-Sensitized and Perovskite Solar Cells by Al Doping of TiO2,” Advanced Functional Materials 24, no. 38 (2014): 6046-6055.
|
| [176] |
J. Shen, D. J. Green, R. E. Tressler, et al., “Stress Relaxation of a Soda Lime Silicate Glass Below the Glass Transition Temperature,” Journal of Non-Crystalline Solids 324, no. 3 (2003): 277-288.
|
| [177] |
T. Salim, S. Sun, Y. Abe, et al., “Perovskite-Based Solar Cells: Impact of Morphology and Device Architecture on Device Performance,” Journal of Materials Chemistry A 3, no. 17 (2014): 8943-8969.
|
| [178] |
J. M. C. Garrido and J. M. Silveyra, “A Review of Typical PLD Arrangements: Challenges, Awareness, and Solutions,” Optics and Lasers in Engineering 168 (2023): 107677.
|
| [179] |
D. Son, B. J. Moon, A. Lee, et al., “Polarity Effects of ZnO on Charge Recombination at CsPbBr3 Nanoparticles/ZnO Interfaces,” Applied Surface Science 483 (2019): 165-169.
|
| [180] |
I. Ohkubo, A. Ohtomo, T. Ohnishi, et al., “In-Plane and Polar Orientations of ZnO Thin Films Grown on Atomically Flat Sapphire,” Surface Science 443, no. 1-2 (1999): L1043-L1048.
|
| [181] |
B. P. Zhang, K. Wakatsuki, N. T. Binh, N. Usami, and Y. Segawa, “Effects of Growth Temperature on the Characteristics of ZnO Epitaxial Films Deposited by Metalorganic Chemical Vapor Deposition,” Thin Solid Films 449, no. 1 (2004): 12-19.
|
| [182] |
S. Kaebisch, M. Timpel, H. Kirmse, M. A. Gluba, N. Koch, and N. H. Nickel, “Polarity of Pulsed Laser Deposited ZnO Nanostructures,” Applied Physics Letters 108, no. 8 (2016): 083114.1-083114.4.
|
| [183] |
C. Q. Luo, F. C. Ling, M. A. Rahman, et al., “Surface Polarity Control in ZnO Films Deposited by Pulsed Laser Deposition,” Applied Surface Science 483 (2019): 1129-1135.
|
| [184] |
J. Burschka, N. Pellet, S. J. Moon, et al., “Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells,” Nature 499, no. 7458 (2013): 316-319.
|
| [185] |
R. Betancur, M. Maymó, X. Elias, L. T. Vuong, and J. Martorell, “Sputtered NiO as Electron Blocking Layer in P3HT:PCBM Solar Cells Fabricated in Ambient Air,” Solar Energy Materials and Solar Cells 95, no. 2 (2011): 735-739.
|
| [186] |
J. H. Park, D. H. Kim, S. S. Shin, et al., A Hierarchically Organized Photoelectrode Architecture for Highly Efficient CdS/CdSe-Sensitized Solar Cells,” Advanced Energy Materials 4, no. 3 (2014): 1300395.
|
| [187] |
L. Fagiolari and F. Bella, “Carbon-Based Materials for Stable, Cheaper and Large-Scale Processable Perovskite Solar cells,” Energy & Environmental Science 12, no. 12 (2019): 3437-3472.
|
| [188] |
D. Wang, Q. Chen, H. Mo, et al., “In Situ Laser Generation of NiOx Nanoparticles Embedded in Graphene Flakes for Ambient-Processed Hole-Transport-Layer-Free Perovskite Solar Cells,” Carbon 214 (2023): 118360.
|
| [189] |
M. S. Zediker, V. Gapontsev, N. Moshegov, et al., “Highly-Efficient High-Power Pumps for Fiber Lasers,” SPIE 10086 (2017): 1008604.
|
| [190] |
F. Vivaldi, A. Dallinger, A. Bonini, et al., “Three-Dimensional (3D) Laser-Induced Graphene: Structure, Properties, and Application to Chemical Sensing,” ACS Applied Materials & Interfaces 13, no. 26 (2021): 30245-30260.
|
| [191] |
C. Schultz, M. Fenske, J. Dagar, et al., “Ablation Mechanisms of Nanosecond and Picosecond Laser Scribing for Metal Halide Perovskite Module Interconnection-An Experimental and Numerical Analysis,” Solar Energy 198 (2020): 410-418.
|
| [192] |
C. Schultz, M. Fenske, J. Dagar, et al., “Ablation Mechanisms of Nanosecond and Picosecond Laser Scribing for Metal Halide Perovskite Module Interconnection—An Experimental and Numerical Analysis,” Solar Energy 198 (2020): 410-418.
|
| [193] |
C. Huang, C.-K. Guan, B.-Q. Lin, et al., “Effect of Laser Scribing on Coating, Drying, and Crystallization of Absorber Layer of Perovskite Solar Cells,” Solar RRL 7, no. 4 (2023): 2200945.
|
| [194] |
C. Schultz, F. Schneider, A. Neubauer, et al., “Evidence of PbI2-Containing Debris Upon P2 Nanosecond Laser Patterning of Perovskite Solar Cells,” IEEE Journal of Photovoltaics 8, no. 5 (2018): 1244-1251.
|
| [195] |
M. Fenske, C. Schultz, J. Dagar, et al., “Improved Electrical Performance of Perovskite Photovoltaic Mini-Modules Through Controlled PbI2 Formation Using Nanosecond Laser Pulses for P3 Patterning,” Energy Technology: Generation, Conversion, Storage, Distribution 9, no. 4 (2021): 2000969.
|
| [196] |
L. Vesce, M. Stefanelli, L. A. Castriotta, et al., “Hysteresis-Free Planar Perovskite Solar Module With 19.1% Efficiency by Interfacial Defects Passivation,” Solar RRL 6, no. 7 (2022): 2101095.
|
| [197] |
M. Yang, D. H. Kim, T. R. Klein, Z. Li, and M. O. Reese, “Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization,” ACS Energy Letters 3, no. 2 (2018): 322-328.
|
| [198] |
A. L. Palma, F. Matteocci, A. Agresti, et al., “Laser-Patterning Engineering for Perovskite Solar Modules With 95% Aperture Ratio,” IEEE Journal of Photovoltaics 7, no. 6 (2017): 1674-1680.
|
| [199] |
D. B. Ritzer, T. Abzieher, A. Basibüyük, et al., “Upscaling of Perovskite Solar Modules: The Synergy of Fully Evaporated Layer Fabrication and All-Laser-Scribed Interconnections,” Progress in Photovoltaics: Research and Applications 30, no. 4 (2022): 360-373.
|
| [200] |
L. A. Castriotta, M. Zendehdel, N. Yaghoobi, et al., “Reducing Losses in Perovskite Large Area Solar Technology: Laser Design Optimization for Highly Efficient Modules and Minipanels,” Advanced Energy Materials 12, no. 12 (2022): 2103420.
|
| [201] |
Y. Gao, C. Liu, Y. Xie, et al., “Can Nanosecond Laser Achieve High-Performance Perovskite Solar Modules With Aperture Area Efficiency Over 21%?,” Advanced Energy Materials 12, no. 41 (2022): 2202287
|
| [202] |
S. J. Moon, J. H. Yum, L. Lofgren, et al., “Laser-Scribing Patterning for the Production of Organometallic Halide Perovskite Solar Modules,” IEEE Journal of Photovoltaics 5, no. 4 (2015): 1087-1092.
|
| [203] |
G. D. Spyropoulos, C. O. R. Quiroz, M. Salvador, et al., “Organic and Perovskite Solar Modules Innovated by Adhesive Top Electrode and Depth-Resolved Laser Patterning,” Energy & Environmental Science EES 9, no. 7 (2016): 2302-2313.
|
| [204] |
L. Rakocevic, G. Schpe, B. Turan, J. Genoe, and J. Poortmans, “Perovskite Modules With 99% Geometrical Fill Factor Using Point Contact Interconnections Design,” Progress in Photovoltaics: Research and Applications 28, no. 11 (2020): 1120-1127.
|
| [205] |
J. Dagar, S. Castro-Hermosa, M. Gasbarri, et al., “Efficient Fully Laser-Patterned Flexible Perovskite Modules and Solar Cells Based on Low-Temperature Solution-Processed SnO2/mesoporous-TiO2 Electron Transport Layers,” Nano Research 11, no. 5 (2018): 2669-2681.
|
| [206] |
G. G. Bizuneh, A. M. M. Adam, and J. Ma, “Progress on Carbon for Electrochemical Capacitors,” Battery Energy 2, no. 1 (2023): 20220021.
|
| [207] |
A. Mallick and D. Basak, “Revisiting the Electrical and Optical Transmission Properties of Co-Doped ZnO Thin Films as N-Type TCOs,” Progress in Materials Science 96, no. July (2018): 86-110.
|
| [208] |
X. Liu, H. Q. Wang, Y. Li, et al., “Regular Organic Solar Cells With Efficiency Over 10% and Promoted Stability by Ligand-and Thermal Annealing-Free Al-Doped Zno Cathode Interlayer,” Advanced Science 4, no. 8 (2017): 1700053.
|
| [209] |
H. J. Seok, J. M. Park, J. Jeong, S. Lan, D. K. Lee, and H. K. Kim, “Plasma Damage-Free Deposition of Transparent Sn-Doped In2O3 Top Cathode Using Isolated Plasma Soft Deposition for Perovskite Solar Cells,” Nano Energy 111 (2023): 108431.
|
| [210] |
K. P. Zanoni, A. Paliwal, M. A. Hernández-Fenollosa, et al., “ITO Top-Electrodes via Industrial-Scale PLD for Efficient Buffer-Layer-Free Semitransparent Perovskite Solar Cells,” Advanced Materials Technologies 7, no. 10 (2022): 2101747.
|
| [211] |
Y. Smirnov, P. A. Repecaud, E. Aydin, S. D. Wolf, and M. Morales-Masis, “Scalable Pulsed Laser Deposition of Transparent Rear Electrode for Perovskite Solar Cells,” Advanced Materials Technologies 6, no. 2 (2021): 2000856.
|
| [212] |
Q. H. Fan, M. Deng, X. Liao, and X. Deng, “Damage Mechanisms in Thin Film Solar Cells During Sputtering Deposition of Transparent Conductive Coatings,” Journal of Applied Physics 105, no. 3 (2009): 4281.
|
| [213] |
W. Meng, K. Zhang, A. Osvet, et al., “Revealing the Strain-Associated Physical Mechanisms Impacting the Performance and Stability of Perovskite Solar Cells,” Joule 6, no. 2 (2022): 458-475.
|
| [214] |
S. Deng, B. Tan, A. S. R. Chesman, et al., “Back-Contact Perovskite Solar Cell Fabrication via Microsphere Lithography,” Nano Energy 102 (2022): 107695.
|
| [215] |
M. Wong-Stringer, T. J. Routledge, T. Mcardle, et al., “A Flexible Back-Contact Perovskite Solar Micro-Module,” Energy & Environmental Science 12, no. 6 (2019): 1928-1937.
|
| [216] |
U. Bach, A. S. R. Chesman, D. M. Bacal, et al., “Solution-Processed Antireflective Coating for Back-Contact Perovskite Solar Cells,” Optics Express 28, no. 9 (2020): 12650-12660.
|
| [217] |
H. Qicheng, B. Dorota, A. N. Jumabekov, et al., “Back-Contact Perovskite Solar Cells With Honeycomb-Like Charge Collecting Electrodes,” Nano Energy 50 (2018): 710-716.
|
| [218] |
S. P. Dunfield, A. Bojar, S. Cacovich, et al., “Carrier Gradients and the Role of Charge Selective Contacts in Lateral Heterojunction all Back Contact Perovskite Solar Cells,” Cell Reports Physical Science 2, no. 8 (2021): 100520.
|
RIGHTS & PERMISSIONS
2025 The Author(s). Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.