A robust network binder enables high-performance silicon anode via localized linking by small molecules

Junyi Chen , Lin Han , Wu Zhang , Guangying Wan , Zhen Zhang , Xinyong Tao , Tiefeng Liu

Battery Energy ›› 2024, Vol. 3 ›› Issue (5) : 20240008

PDF
Battery Energy ›› 2024, Vol. 3 ›› Issue (5) : 20240008 DOI: 10.1002/bte2.20240008
RESEARCH ARTICLE

A robust network binder enables high-performance silicon anode via localized linking by small molecules

Author information +
History +
PDF

Abstract

The importance of network binder for improving cycling lifespan of silicon (Si) anode needs no further emphasis. However, the linear structure of natural polymer hardly creates a robust network binder. Herein, we propose a facile strategy of establishing a robust network binder by using small molecules of tartaric acid (TA) to locally link sodium carboxymethyl cellulose (CMC). Through hydrogen or covalent bonds, the resultant CMC-TA binder exhibits improved tensile and adhesive properties. The Si anode using CMC-TA binder delivers a satisfactory specific capacity of 2213 mAh g−1 after 100 cycles at the rate of 0.2 C, with a capacity retention rate of 68.8%. This result has well confirmed the effectiveness of using small molecules to reinforce hydrogen-bonding linking between CMC and between Si particles for a high-performance Si anode.

Keywords

network binder / silicon anode / sodium carboxymethyl cellulose / tartaric acid

Cite this article

Download citation ▾
Junyi Chen, Lin Han, Wu Zhang, Guangying Wan, Zhen Zhang, Xinyong Tao, Tiefeng Liu. A robust network binder enables high-performance silicon anode via localized linking by small molecules. Battery Energy, 2024, 3(5): 20240008 DOI:10.1002/bte2.20240008

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ren WF, Zhou Y, Li JT, Huang L, Sun SG. Si anode for next-generation lithium-ion battery. Curr Opin Electrochem. 2019;18:46-54.

[2]

Eshetu GG, Figgemeier E. Confronting the challenges of next-generation silicon anode-based lithium-ion batteries: role of designer electrolyte additives and polymeric binders. ChemSusChem. 2019;12(12):2515-2539.

[3]

Obrovac MN, Chevrier VL. Alloy negative electrodes for Li-ion batteries. Chem Rev. 2014;114(23):11444-11502.

[4]

Mazouzi D, Karkar Z, Hernandez CR, et al. Critical roles of binders and formulation at multiscales of silicon-based composite electrodes. J Power Sources. 2015;280:533-549.

[5]

Salah M, Murphy P, Hall C, Francis C, Kerr R, Fabretto M. Pure silicon thin-film anodes for lithium-ion batteries: a review. J Power Sources. 2019;414:48-67.

[6]

Shen X, Tian Z, Fan R, et al. Research progress on silicon/carbon composite anode materials for lithium-ion battery. J Energy Chem. 2018;27(4):1067-1090.

[7]

Yang YF, Yang JL, Pan F, Cui Y. From intercalation to alloying chemistry: structural design of silicon anodes for the next generation of lithium-ion batteries. Chin J Struct Chem. 2020;39(1):16-19.

[8]

Wang F, Chen G, Zhang N, Liu X, Ma R. Engineering of carbon and other protective coating layers for stabilizing silicon anode materials. Carbon Energy. 2019;1(2):219-245.

[9]

Li J, Lewis RB, Dahn JR. Sodium carboxymethyl cellulose -A potential binder for Si negative electrodes for Li-ion batteries. Electrochem Solid State Lett. 2007;10(2): a17-a20.

[10]

Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today. 2012;7(5):414-429.

[11]

Chen H, Ling M, Hencz L, et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem Rev. 2018;118(18):8936-8982.

[12]

Liu G, Zheng H, Song X, Battaglia VS. Particles and polymer binder interaction: a controlling factor in lithium-ion electrode performance. J Electrochem Soc. 2012;159(3): a214-a221.

[13]

Zhao H, Wei Y, Qiao R, et al. Conductive polymer binder for high-tap-density nanosilicon material for lithium-ion battery negative electrode application. Nano Lett. 2015;15(12):7927-7932.

[14]

Higgins TM, Park S-H. King PJ, et al. A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano. 2016;10(3):3702-3713.

[15]

Wang L, Liu T, Peng X, et al. Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries. Adv Funct Mater. 2018;28(3):1704858.

[16]

Xu Z, Yang J, Zhang T, Nuli Y, Wang J, Hirano S. Silicon microparticle anodes with self-healing multiple network binder. Joule. 2018;2(5):950-961.

[17]

Liu T, Chu Q, Yan C, Zhang S, Lin Z, Lu J. Interweaving 3D network binder for high-areal-capacity Si anode through combined hard and soft polymers. Adv Energy Mater. 2019;9(3):1802645.

[18]

Dou W, Zheng M, Zhang W, et al. Review on the binders for sustainable high-energy-density lithium ion batteries: status, solutions, and prospects. Adv Funct Mater. 2023;33(45):2305161.

[19]

Tiefeng L, Ben Z, Ouwei S, et al. Research progress of the binders for the silicon anode. Chem J Chin Univ. 2021;42(5):1446-1463.

[20]

Lopez J, Chen Z, Wang C, Andrews SC, Cui Y, Bao Z. The effects of cross-linking in a supramolecular binder on cycle life in silicon microparticle anodes. ACS Appl Mater Interfaces. 2016;8(3):2318-2324.

[21]

Ryou M-H, Kim J, Lee I, et al. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Adv Mater. 2013;25(11):1571-1576.

[22]

Ling M, Xu Y, Zhao H, et al. Dual-functional gum arabic binder for silicon anodes in lithium ion batteries. Nano Energy. 2015;12:178-185.

[23]

Koo B, Kim H, Cho Y, Lee KT, Choi NS, Cho J. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew Chem Int Ed. 2012;51(35):8762-8767.

[24]

Kovalenko I, Zdyrko B, Magasinski A, et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science. 2011;334(6052):75-79.

[25]

Zhang W, Zheng J, Ren Z, et al. Anode-free sodium metal pouch cell using Cu3P nanowires in situ grown on current collector. Adv Mater. 2024;36(15):2310347.

[26]

Hays KA, Ruther RE, Kukay AJ, et al. What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes? J Power Sources. 2018;384:136-144.

[27]

Li Z, Wan Z, Zeng X, et al. A robust network binder via localized linking by small molecules for high-areal-capacity silicon anodes in lithium-ion batteries. Nano Energy. 2021;79:105430.

[28]

Yanagisawa Y, Nan Y, Okuro K, Aida T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science. 2018;359(6371):72-76.

[29]

Song J, Zhou M, Yi R, et al. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv Funct Mater. 2014;24(37):5904-5910.

[30]

Liu J, Sun M, Zhang Q, et al. A robust network binder with dual functions of Cu2+ions as ionic crosslinking and chemical binding agents for highly stable Li-S batteries. J Mater Chem A. 2018;6(17):7382-7388.

[31]

Wu Z-Y, Deng L, Li J-T. et al. Multiple hydrogel alginate binders for Si anodes of lithium-ion battery. Electrochim Acta. 2017;245:371-378.

[32]

Liu J, Zhang Q, Wu Z-Y. et al. A high-performance alginate hydrogel binder for the Si/C anode of a Li-ion battery. Chem Commun. 2014;50(48):6386-6389.

[33]

Nguyen CC, Seo DM, Chandrasiri KWDK, Lucht BL. Improved cycling performance of a Si nanoparticle anode utilizing citric acid as a surface-modifying agent. Langmuir. 2017;33(37):9254-9261.

[34]

Han L, Liu T, Sheng O, et al. Undervalued roles of binder in modulating solid electrolyte interphase formation of silicon-based anode materials. ACS Appl Mater Interfaces. 2021;13(38):45139-45148.

[35]

Chandrasiri KWDK, Nguyen CC, Parimalam BS, Jurng S, Lucht BL. Citric acid based pre-SEI for improvement of silicon electrodes in lithium ion batteries. J Electrochem Soc. 2018;165(10): a1991-a1996.

[36]

Gorgieva S, Kokol V. Synthesis and application of new temperature-responsive hydrogels based on carboxymethyl and hydroxyethyl cellulose derivatives for the functional finishing of cotton knitwear. Carbohydr Polymers. 2011;85(3):664-673.

[37]

Demitri C, Del Sole R, Scalera F, et al. Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci. 2008;110(4):2453-2460.

[38]

Wang W, Yang S. Enhanced overall electrochemical performance of silicon/carbon anode for lithium-ion batteries using fluoroethylene carbonate as an electrolyte additive. J Alloys Compd. 2017;695:3249-3255.

[39]

Li Z, Tang W, Yang Y, et al. Engineering prelithiation of polyacrylic acid binder: a universal strategy to boost initial coulombic efficiency for high-areal-capacity si-based anodes. Adv Funct Mater. 2022;32(40):2206615.

[40]

Huang W, Wang Y, Lv L, Wang Y, Li X, Zheng H. In situ construction of a multifunctional interface regulator with amino-modified conjugated diene toward high-rate and long-cycle silicon anodes. ACS Appl Mater Interfaces. 2022;14(11):13317-13325.

[41]

Nguyen CC, Yoon T, Seo DM, Guduru P, Lucht BL. Systematic investigation of binders for silicon anodes: interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation. ACS Appl Mater Interfaces. 2016;8(19):12211-12220.

[42]

Aurbach D, Weissman I, Schechter A, Cohen H. X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions. A comparison with previous studies by Fourier transform infrared spectroscopy. Langmuir. 1996;12(16):3991-4007.

[43]

Zheng Z, Gao H, Ke C, et al. Constructing robust cross-linked binder networks for silicon anodes with improved lithium storage performance. ACS Appl Mater Interfaces. 2021;13(45):53818-53828.

[44]

Jia H, Zou L, Gao P, et al. High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes. Adv Energy Mater. 2019;9(31):1900784.

RIGHTS & PERMISSIONS

2024 The Authors. Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

186

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/