K2[(VOHPO4)2(C2O4)]·2H2O as a high-potential cathode material for potassium-ion batteries

Xiaogang Niu , Nan Li , Yifan Chen , Jianwen Zhang , Yusi Yang , Lulu Tan , Linlin Wang , Zhe Zhang , Stanislav S. Fedotov , Dmitry Aksyonov , Jianghao Wu , Lin Guo , Yujie Zhu

Battery Energy ›› 2024, Vol. 3 ›› Issue (4) : 20240006

PDF
Battery Energy ›› 2024, Vol. 3 ›› Issue (4) : 20240006 DOI: 10.1002/bte2.20240006
RESEARCH ARTICLE

K2[(VOHPO4)2(C2O4)]·2H2O as a high-potential cathode material for potassium-ion batteries

Author information +
History +
PDF

Abstract

Potassium-ion batteries (KIBs) represent a promising energy storage solution owing to the abundance of potassium resources. The efficacy of KIBs relies significantly on the electrochemical attributes of both their electrode materials and electrolytes. In the current investigation, we synthesized a layered compound K2[(VOHPO4)2(C2O4)]·2H2O via a heterogeneous nucleation approach and assessed its viability as a cathode material for KIBs. When integrated with a salt-concentrated electrolyte with oxidation stability over 6 V, the compounds exhibit a high discharge potential of 4.1 V (vs. K+/K) alongside a reversible capacity of 106.2 mAh g−1. Furthermore, there is no capacity decay after 500 cycles at 100 mA g−1. This study shows the promise of layered metal organic frameworks as high-potential materials for KIBs.

Keywords

cathode materials / potassium-ion batteries / vanadium-based phosphate oxalates

Cite this article

Download citation ▾
Xiaogang Niu, Nan Li, Yifan Chen, Jianwen Zhang, Yusi Yang, Lulu Tan, Linlin Wang, Zhe Zhang, Stanislav S. Fedotov, Dmitry Aksyonov, Jianghao Wu, Lin Guo, Yujie Zhu. K2[(VOHPO4)2(C2O4)]·2H2O as a high-potential cathode material for potassium-ion batteries. Battery Energy, 2024, 3(4): 20240006 DOI:10.1002/bte2.20240006

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li Z, Zhang Y, Zhang J, et al. Sodium-ion battery with a wide operation-temperature rangefrom −70 to 100°C. Angew Chemie Int Ed. 2022;134:e202116930.

[2]

Wan Y, Song K, Chen W, et al. Ultra-high initial Coulombic efficiency induced by interface engineering enables rapid, stable sodium storage. Angew Chem Int Ed. 2021;60:11481-11486.

[3]

Wang C, Liu L, Zhao S, et al. Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery. Nat Commun. 2021;12:2256.

[4]

Wen Y, He K, Zhu Y, et al. Expanded graphite as superior anode for sodium-ion batteries. Nat Commun. 2014;5:4033.

[5]

Sun J, Lee HW, Pasta M, et al. A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat Nanotechnol. 2015;10:980-985.

[6]

Feng W, Wang H, Jiang Y, et al. A strain-relaxation red phosphorus freestanding anode for non-aqueous potassium ion batteries. Adv Energy Mater. 2022;12:2103343.

[7]

Luo X, Li W, Liang H, et al. Covalent organic frameworkwith highly accessible carbonyls and π-cation effect for advanced potassium-ionbatteries. Angew Chemie Int Ed. 2022;61:e202117661.

[8]

Hwang JY, Myung ST, Sun YK. Recent progress in rechargeable potassium batteries. Adv Funct Mater. 2018;28:1802938.

[9]

Guo X, Gao H, Wang S, et al. MXene-based aerogel anchored with antimony single atoms and quantum dots for high-performance potassium-ion batteries. Nano Lett. 2022;22:1225-1232.

[10]

Pasta M, Wessells CD, Huggins RA, Cui Y. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat Commun. 2012;3:1149.

[11]

Jiang L, Lu Y, Zhao C, et al. Building aqueous K-ion batteries for energy storage. Nat Energy. 2019;4:495-503.

[12]

Shu W, Huang M, Geng L, Qiao F, Wang X. Highly crystalline prussian blue for kinetics enhanced potassium storage. Small. 2023;19:2207080.

[13]

Liu Y, Gu ZY, Heng YL, et al. Interface defect induced upgrade of K-storage properties in KFeSO4F cathode: from lowered Fe-3d orbital energy level to advanced potassium-ion batteries. Green Energy Environ. 2023;10:11.

[14]

Wang M, Qin B, Xu F, et al. Hetero-structural and hetero-interfacial engineering of MXene@Bi2S3/MO7S8 hybrid for advanced sodium/potassium-ion batteries. J Colloid Interface Sci. 2023;650:446-455.

[15]

Gu Z, Zhao X, Li K, et al. Homeostatic solid solution reaction in phosphate cathode: breaking high-voltage barrier to achieve high energy density and long life of sodium-ion batteries. Adv Mater. 2024;19:202400690.

[16]

Yang W, Hou L, Wang P, et al. High mass loading NiCO2O4 with shell-nanosheet/core-nanocage hierarchical structure for high-rate solid-state hybrid supercapacitors. Green Energy Environ. 2022;7:723-733.

[17]

Ko S, Yamada Y, Yamada A. A 62 m K-ion acqueous electrolyte. Electrochemistry. 2020;116:106764.

[18]

Ji B, Zhang F, Song X, Tang Y. A novel potassium-ion-based dual-ion battery. Adv Mater. 2017;29:1700519.

[19]

Tan H, Lin X. Electrolyte design strategies for non-aqueous high-voltage potassium-based batteries. Molecules. 2023;28:823.

[20]

Li J, Zhang W, Zheng W. Metal selenides find plenty of space in architecting advanced sodium/potassium ion batteries. Small. 2023;10:2305021.

[21]

Li X, Zhou Y, Deng B, Li J, Xiao Z. Research progress of biomass carbon materials as anode materials for potassium-ion batteries. Front Chem. 2023;11:1162909.

[22]

Park S, Park S, Park Y, Alfaruqi MH, Hwang JY, Kim J. A new material discovery platform of stable layered oxide cathodes for K-ion batteries. Energy Environ Sci. 2021;14:5864-5874.

[23]

Choi JU, Kim J, Hwang JY, Jo JH, Sun YK, Myung ST. K0.54[CO0.5MN0.5]O2: new cathode with high power capability for potassium-ion batteries. Nano Energy. 2019;61:284-294.

[24]

Luo RJ, Bao J, Li XL, et al. Tetrahedral occupied V ions enabling reversible three-electron redox of cr3+/cr6+ in layered cathode materials for potassium-ion batteries. Small. 2023;09:2304945.

[25]

Shi H, Gao X-W, Wang X, et al. Surface residual alkali reverse utilization: stabilizing the lay-structured oxide cathode for high stability potassium ion batteries. Chem Eng J. 2024;484:149574.

[26]

Liu ZD, Gao XW, Mu JJ, et al. Multiphase riveting structure for high power and long lifespan potassium-ion batteries. Adv Funct Mater. 2024;26:2315006.

[27]

Zhang C, Xu Y, Zhou M. Potassium Prussian blue nanoparticles: a low-cost cathodematerial for potassium-ion batteries. Adv Funct Mater. 2017;27:1604307.

[28]

Ge J, Fan L, Rao AM, Zhou J, Lu B. Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nat Sustain. 2021;5:225-234.

[29]

Bai Y, YuChi K, Liu X, et al. Progress of prussian blue and its analogues as cathode materials for potassium ion batteries. Eur J Inorg Chem. 2023;26(1):e202300246.

[30]

Li X, Zhang X, Xu J, et al. Potassium-rich iron hexacyanoferrate/carbon clothelectrode for flexible and wearable potassium-ion batteries. Adv Sci. 2024;11:2305467.

[31]

Chihara K, Katogi A, Kubota K, Komaba S. KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries. Chem Commun. 2017;53:5208-5211.

[32]

Kim H, Seo DH, Bianchini M, et al. A new strategy for high-voltage cathodes for K-ion batteries: stoichiometric KVPO4F. Adv Energy Mater. 2018;8:1801591.

[33]

Lin X, Huang J, Tan H, Huang J, Zhang B. K3V2(PO4)2F3 as a robust cathode for potassium-ion batteries. Energy Storage Mater. 2019;16:97-101.

[34]

Tereshchenko IV, Aksyonov DA, Zhugayevych A, Antipov EV, Abakumov AM. Reversible electrochemical potassium deintercalation from >4 V positive electrode material K6(VO)2(V2O3)2(PO4)4(P2O7). Solid State Ionics. 2020;357:115468.

[35]

Gao Y, Li W, Ou B, et al. A dilute fluorinated phosphate electrolyte enables 4.9 V-class potassium ion full batteries. Adv Funct Mater. 2023;07:2305829.

[36]

Deng H, Liu L, Shi Z. Effect of copper substitution on the electrochemical properties of high entropy layered oxides cathode materials for sodium-ion batteries. Mater Lett. 2023;340:134113.

[37]

Deng T, Fan X, Luo C, et al. Self-templated formation of P2-type K0.6CoO2 microspheres for high reversible potassium-ion batteries. Nano Lett. 2018;18:1522-1529.

[38]

Kim H, Seo DH, Urban A, et al. Stoichiometric layered potassium transition metal oxide for rechargeable potassium batteries. Chem Mater. 2018;30:6532-6539.

[39]

Deng T, Fan X, Chen J, et al. Layered P2-type K0.65Fe0.5MN0.5O2 microspheres as superior cathode for high-energy potassium-ion batteries. Adv Funct Mater. 2018;28:1800219.

[40]

Hameed AS, Reddy MV, Nagarathinam M, et al. Room temperature large-scale synthesis of layered frameworks as low-cost 4 V cathode materials for lithium ion batteries. Sci Rep. 2015;5:16270.

[41]

Liao J, Hu Q, Mu J, He X, Wang S, Chen C. A vanadium-based metal–organic phosphate framework material K2[(VO)2(HPO4)2(C2O4)] as a cathode for potassium-ion batteries. Chem Commun. 2019;55:659-662.

[42]

Hameed AS, Katogi A, Kubota K, Komaba S. A layered inorganic–organic open framework material as a 4 V positive electrode with high-rate performance for K-ion batteries. Adv Energy Mater. 2019;9:1902528.

[43]

Niu X, Li N, Chen Y, et al. Structure evolution of V2O5 as electrode materials for metal-ion batteries. Batter Supercaps. 2023;6:e202300238.

[44]

Cui X, Liu H, Du X, et al. Low-cost and large-scale preparation of H2O and Mg2+co-preintercalated vanadium oxide with high-performance aqueous Zn-ion batteries. Energy Fuels. 2023;37:5530-5539.

[45]

Sánchez-Oseguera A, López-Meléndez A, Lucio-Porto R, Arredondo-Espinoza EU, González-Santiago O, Ramírez-Cabrera MA. Anticancer activity of VOHPO4·2H2O nanoparticles in vitro. J Drug Delivery Sci Technol. 2020;60:102032.

[46]

Ma X, Li J, Rankin MA, Croll LM, Dahn JR. Highly porous MnOx prepared from Mn(C2O4)·3H2O as an adsorbent for the removal of SO2 and NH3. Microporous Mesoporous Mater. 2017;244:192-198.

[47]

Wang D, Belharouak I, Zhou G, Amine K. Synthesis of lithium and manganese-rich cathode materials via an oxalate co-precipitation method. J Electrochem Soc. 2013;160: A3108-A3112.

[48]

Sai Gautam G, Canepa P, Richards WD, Malik R, Ceder G. Role of structural H2O in intercalation electrodes: the case of mg in nanocrystalline Xerogel-V2O5. Nano Lett. 2016;16:2426-2431.

[49]

Jeon B, Kwak HH, Hong ST. Bilayered Ca0.28V2O5·H2O: high-capacity cathode material for rechargeable Ca-ion batteries and its charge storage mechanism. Chem Mater. 2022;34:1491-1498.

[50]

Clites M, Hart JL, Taheri ML, Pomerantseva E. Chemically preintercalated bilayered KxV2O5·nH2O nanobelts as a high-performing cathode material for K-ion batteries. ACS Energy Lett. 2018;3:562-567.

[51]

Xu M, Xiao A, Li W, Lucht BL. Investigation of lithium tetrafluorooxalatophosphate [LiPF4(C2O4)] as a lithium-ion battery electrolyte for elevated temperature performance. J Electrochem Soc. 2010;157:A115.

[52]

Malitesta C, Tepore A, Valli L, Genga A, Siciliano T. X-Ray photoelectron spectroscopy characterisation of Langmuir–Blodgett films containing TiO2 nanoparticles grown by room-temperature hydrolysis of TiO(C2O4)22−. Thin Solid Films. 2002;422:112-119.

[53]

Xu J, Teng F, Yao W, Zhu Y. Morphology-dependent photoelectrochemical properties of multi-scale layered Bi(C2O4)OH. RSC Adv. 2016;6:23537-23549.

[54]

Rezaei M, Najafi Chermahini A, Dabbagh HA. Selective oxidation of toluene to benzaldehyde by H2O2 with mesoporous silica KIT-6 supported VOHPO4 0.5H2O catalyst. J Environ Chem Eng. 2017;5:3529-3539.

[55]

Hameed AS. Room temperature synthesis of RGO/[K2(VO)2(C2O4)(HPO4)2] for greener and cheaper lithium ion batteries. Phosphate Based Cathodes and Reduced Graphene Oxide Composite Anodes for Energy Storage Applications. Springer;2016:67-80.

[56]

Xu K, Hu S, Wu C, et al. Highly entangled K0.5V2O5 superlong nanobelt membranes for flexible nonvolatile memory devices. J Mater Chem. 2012;22:18214.

[57]

Liu YJ, Cowen JA, Kaplan T, et al. Investigation of the alkali-metal vanadium oxide xerogel bronzes: AxV2O5·nH2O (A =K and Cs). Chem Mater. 1995;7:1616-1624.

[58]

Sun HX, Wang HN, Zou YH, Meng X. Tuning proton conduction by different particle sizes in open-framework metal phosphates. Inorg Chem Commun. 2021;124:108322.

[59]

Sun J, Zheng G, Lee HW, et al. Formation of stable phosphorus–carbon bond for enhanced performance in black phosphorus nanoparticle–graphite composite battery anodes. Nano Lett. 2014;14:4573-4580.

[60]

Li X, Ou XW, Tang YB. 6.0 V high-voltage and concentrated electrolyte toward high energy density K-based dual-graphite battery. Adv Energy Mater. 2020;10:2002567.

[61]

Yamada Y, Furukawa K, Sodeyama K, et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J Am Chem Soc. 2014;136:5039-5046.

[62]

Zhang Y, Wu M, Teng W, Ma J, Zhang R, Huang Y. Water-stable cathode for high rate Na-ion batteries. ACS Appl Mater Interfaces. 2020;12:15220-15227.

[63]

Jo JH, Hwang JY, Choi J, Sun YK, Myung ST. Layered K0.28MnO2·0.15H2O as a cathode material for potassium-ion intercalation. ACS Appl Mater Interfaces. 2019;11:43312-43319.

[64]

Xu Y, Deng X, Li Q, et al. Vanadium oxide pillared by interlayer Mg2+ ions and water as ultralong-life cathodes for magnesium-ion batteries. Chem. 2019;5:1194-1209.

[65]

Niu X, Qu J, Hong Y, et al. High-performance layered potassium vanadium oxide for K-ion batteries enabled by reduced long-range structural order. J Mater Chem A. 2021;9:13125-13134.

[66]

Li S, Li M, Shen R, et al. K3V3(PO4)4/C: a new carbon-coated layered structure cathode material for potassium-ion batteries. J Alloys Compd. 2023;969:172446.

[67]

Chu S, Shao C, Tian J, et al. High entropy-induced kinetics improvement and phase transition suppression in K-ion battery layered cathodes. ACS Nano. 2023;18:337-346.

RIGHTS & PERMISSIONS

2024 The Authors. Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/