Effect of ether medium in LiTFSI and LiFSI-based liquid electrolytes for lithium–sulfur batteries

Nico L. Grotkopp , Marcella Horst , Georg Garnweitner

Battery Energy ›› 2024, Vol. 3 ›› Issue (4) : 20240002

PDF
Battery Energy ›› 2024, Vol. 3 ›› Issue (4) : 20240002 DOI: 10.1002/bte2.20240002
RESEARCH ARTICLE

Effect of ether medium in LiTFSI and LiFSI-based liquid electrolytes for lithium–sulfur batteries

Author information +
History +
PDF

Abstract

Liquid battery electrolytes are utilized in most battery systems to date as they provide improved electrode contact and ionic conductivity compared to solid electrolytes; however, they pose major challenges regarding safety. Being highly flammable, toxic, and volatile, leakage of such a liquid electrolyte is always considered a major safety risk. Hence, the improvement of liquid electrolytes remains an important goal, especially for high gravimetric energy battery systems like the lithium–sulfur battery (LSB), which is considered a suitable battery type to enable fully electric-powered aviation. Here, a study on the effects of a variation of the electrolyte media and salt was conducted to establish an inexpensive alternative liquid electrolyte system to the state-of the-art DOL/DME electrolyte of LSB. The combination of DEGMEE and LiFSI led to the best cycling performance showing an increase in cycling stability (110 cycles at 97% Coulombic efficiency) and specific capacity (~500 mAh g−1 in the 110th cycle) at a moderately high C-rate of 0.25 C, which for our coin cell system translates to a moderate current of ~1.8 mA (~1.2 mA cm−2).

Keywords

DEGDEE / DEGMEE / Li metal / postmortem / SEM-EDX

Cite this article

Download citation ▾
Nico L. Grotkopp, Marcella Horst, Georg Garnweitner. Effect of ether medium in LiTFSI and LiFSI-based liquid electrolytes for lithium–sulfur batteries. Battery Energy, 2024, 3(4): 20240002 DOI:10.1002/bte2.20240002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu W, Wang J, Ding F, et al. Lithium metal anodes for rechargeable batteries. Energy Environ Sci. 2014;7:513-537.

[2]

Chen S, Niu C, Lee H, et al. Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-metal batteries. Joule. 2019;3:1094-1105.

[3]

Ogumi Z, Kostecki R, Guyomard D, Inaba M. Lithium-ion batteries—the 25th anniversary of commercialization. Electrochem Soc Interface. 2016;25:65.

[4]

Pal U, Rakov D, Lu B, et al. Interphase control for high performance lithium metal batteries using ether aided ionic liquid electrolyte. Energy Environ Sci. 2022;15:1907-1919.

[5]

Aurbach D, Talyosef Y, Markovsky B, et al. Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochim Acta. 2004;50:247-254.

[6]

Liu J, Ihuaenyi S, Kuphal R, et al. A comparison of carbonate-based and ether-based electrolyte systems for lithium metal batteries. J Electrochem Soc. 2023;170:010535.

[7]

Zhang J, Wang D-W, Lv W, et al. Ethers illume sodium-based battery chemistry: uniqueness, surprise, and challenges. Adv Energy Mater. 2018;8:1801361.

[8]

Peltzer RM, Gauss J, Eisenstein O, Cascella M. The Grignard reaction—unraveling a chemical puzzle. J Am Chem Soc. 2020;142:2984-2994.

[9]

Down JL, Lewis J, Moore B, Wilkinson G. 761. The solubility of alkali metals in ethers. J Chem Soc. 1959:3767-3773.

[10]

Rao HSP. Ultrasonic acceleration for the preparation of dry ether and dry tetrahydrofuran. J Chem Educ. 1988;65:931.

[11]

Jeon EJ, Jean-Fulcrand A, Kwade A, Garnweitner G. A room-temperature high performance all-solid-state lithium-sulfur battery enabled by a cross-linked copolymer@ceramic hybrid solid electrolyte. Nano Energy. 2022;104:107912.

[12]

Fang R, Xu B, Grundish NS, et al. Li2S6-integrated PEO-based polymer electrolytes for all-solid-state lithium-metal batteries. Angew Chem Int Ed. 2021;60:17701-17706.

[13]

Fang R, Xu H, Xu B, Li X, Li Y, Goodenough JB. Reaction mechanism optimization of solid-state Li–S batteries with a PEO-based electrolyte. Adv Funct Mater. 2021;31:2001812.

[14]

Fang R, Liang C, Xia Y, et al. Supercritical CO2-mediated incorporation of sulfur into carbon matrix as cathode materials towards high-performance lithium–sulfur batteries. J Mater Chem A. 2018;6:212-222.

[15]

Nilsson V, Kotronia A, Lacey M, Edström K, Johansson P. Highly concentrated LiTFSI–EC electrolytes for lithium metal batteries. ACS Appl Energy Mater. 2020;3:200-207.

[16]

Ponnada S, Kiai MS, Gorle DB, Nowduri A. History and recent developments in divergent electrolytes towards high-efficiency lithium–sulfur batteries—a review. Mater Adv. 2021;2:4115-4139.

[17]

Barchasz C, Leprêtre J-C, Patoux S, Alloin F. Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries. Electrochim Acta. 2013;89:737-743.

[18]

Liu G, Sun Q, Li Q, Zhang J, Ming J. Electrolyte issues in lithium–sulfur batteries: development, prospect, and challenges. Energy Fuels. 2021;35:10405-10427.

[19]

Kim H, Wu F, Lee JT, et al. In situ formation of protective coatings on sulfur cathodes in lithium batteries with LiFSI-based organic electrolytes. Adv Energy Mater. 2015;5:1401792.

[20]

Grotkopp NL, Horst M, Batzer M, Garnweitner G, Jean-Fulcrand A. Adv Energy Sustainability Res. 2023;4:2200146.

[21]

Lide DR, Milne GWA. Handbook of Data on Organic Compounds. CRC Press;1994.

[22]

Datenbank CHEMSAFE, DECHEMA-PTB-BAM. 2023. https://gestis.dguv.de/data?name=030730

[23]

Chemos GmbH &Co. KG. Safety Data Sheet—Diethylene Glycol Methyl Ethyl Ether. https://www.chemos.de/import/data/msds/DE_de/1002-67-1-A0082477-DE-de.pdf

[24]

Merck KGaA. Polyethylene Glycol Dimethyl Ether 500. https://www.sigmaaldrich.com/DE/de/product/mm/814171

[25]

Merck KGaA. Polyethylenglykol-dimethylether 250. https://www.sigmaaldrich.com/DE/de/product/aldrich/445878

[26]

Ottani S, Vitalini D, Comelli F, Castellari C. Densities, viscosities, and refractive indices of poly(ethylene glycol) 200 and 400 +cyclic ethers at 303.15 K. J Chem Eng Data. 2002;47:1197-1204.

[27]

Esteve X, Boer D, Patil KR, Chaudhari SK, Coronas A. Densities, viscosities, and enthalpies of mixing of the binary system methanol +polyethylene glycol 250 dimethyl ether at 303.15 K. J Chem Eng Data. 1994;39:767-769.

[28]

Gao T, Han Y, Fraggedakis D, et al. Interplay of lithium intercalation and plating on a single graphite particle. Joule. 2021;5:393-414.

[29]

Guan W, Lv Y, Ma C, Zhang Q, Wei A, Liu X. Lithiophilic liquid metal layer induced lithium plating/stripping in a 3D Cu matrix to mitigate lithium dendrites and volume expansion. Mater Chem Fron. 2023;7:315-324.

[30]

Holleman AF, Nils W. Lehrbuch der anorganischen Chemie. De Gruyter;1985.

[31]

Steudel R. Elemental Sulfur and Sulfur-Rich Compounds. Springer;2004.

[32]

Yu X, Pan H, Zhou Y, et al. Adv Energy Mater. 2015;5:1500072.

[33]

Zheng J, Gu M, Wang C, et al. Controlled nucleation and growth process of Li2S2/Li2S in lithium-sulfur batteries. J Electrochem Soc. 2013;160: A1992-A1996.

[34]

Yu L, Ong SJH, Liu X, Mandler D, Xu ZJ. The importance of the dissolution of polysulfides in lithium-sulfur batteries and a perspective on high-energy electrolyte/cathode design. Electrochim Acta. 2021;392:139013.

RIGHTS & PERMISSIONS

2024 The Authors. Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/