PDF
Abstract
Metal-organic frameworks (MOFs), as a new type of functional material, have received much attention in recent years. High ionic conductivity, large specific surface area, controllable pore structure and geometry make it possible to be used as electrode materials. Meanwhile, different types of MOF derivatives can be prepared by adjusting the metal central element, which provides options for finding electrode materials for high-performance batteries. This paper reviews the recent research progress of pristine MOFs for sodium/potassium-ion batteries. In addition, this paper describes the working principle, advantages, and challenges of MOFs in sodium/potassium-ion batteries, strategies to improve the electrochemical performance, as well as future prospects and directions.
Keywords
electrode materials
/
MOFs
/
potassium-ion batteries
/
sodium-ion batteries
Cite this article
Download citation ▾
Ben-Jian Xin, Xing-Long Wu.
Research progresses on metal-organic frameworks for sodium/potassium-ion batteries.
Battery Energy, 2024, 3(4): 20230074 DOI:10.1002/bte2.20230074
| [1] |
Tang X, Liu C, Wang H, Lv LP, Sun W, Wang Y. Pristine metal-organic frameworks for next-generation batteries. Coord Chem Rev. 2023;494:215361.
|
| [2] |
Zhao X-X, Fu W, Zhang H-X, et al. Pearl-structure-enhanced NASICON cathode toward ultrastable sodium-ion batteries. Adv Sci. 2023;10(19):2301308.
|
| [3] |
Si Y, Jiang Y, Liu J, Guan H, Wu XL, Shan C. Regulating Li-ion flux via engineering oxidized ZIF-8/polyacrylonitrile fiber interlayer for Li metal batteries with high performance. J Mater Chem A. 2023;11(14):7564-7571.
|
| [4] |
Lin J, Chenna Krishna Reddy R, Zeng C, Lin X, Zeb A, Su CY. Metal-organic frameworks and their derivatives as electrode materials for potassium ion batteries: a review. Coord Chem Rev. 2021;446:214118.
|
| [5] |
Liu X, Tan Y, Wang W, et al. Conformal prelithiation nanoshell on LiCoO2 enabling high-energy Lithium-ion batteries. Nano Lett. 2020;20(6):4558-4565.
|
| [6] |
Zhang Q, Zhang F, Zhang M, Yu Y, Yuan S, Liu Y. A highly efficient silicone-modified polyamide acid binder for silicon-based anode in lithium-ion batteries. ACS Appl Energy Mater. 2021;4(7):7209-7218.
|
| [7] |
Tong B, Huang J, Zhou Z, Peng Z. The salt matters: enhanced reversibility of Li–O2 batteries with a Li[(CF3SO2)(n-C4F9SO2)N]-based electrolyte. Adv Mater. 2018;30(1):1704841.
|
| [8] |
Ge X, Li X, Wang Z, et al. Facile synthesis of NaVPO4F/C cathode with enhanced interfacial conductivity towards long-cycle and high-rate sodium-ion batteries. Chem Eng J. 2019;357:458-462.
|
| [9] |
Fang Y, Zeng Y, Jin Q, et al. Nitrogen-doped amorphous Zn–carbon multichannel fibers for stable lithium metal anodes. Angew Chem Int Ed. 2021;60(15):8515-8520.
|
| [10] |
Innocenti A, Adenusi H, Passerini S. Assessing n-type organic materials for lithium batteries: a techno-economic review. InfoMat. 2023;5(11):e12480.
|
| [11] |
Rajagopalan R, Tang Y, Ji X, Jia C, Wang H. Advancements and challenges in potassium ion batteries: a comprehensive review. Adv Funct Mater. 2020;30(12):1909486.
|
| [12] |
Li L, Hu Z, Lu Y, et al. A low-strain potassium-rich prussian blue analogue cathode for high power potassium-ion. Angew Chem Int Ed. 2021;60(23):13050-13056.
|
| [13] |
Li Y, Liu C, Xie Z, Yao J, Cao G. Superior sodium storage performance of additive-free V2O5 thin film electrodes. J Mater Chem A. 2017;5(32):16590-16594.
|
| [14] |
Zhang K-Y, Gu Z-Y, Ang EH, et al. Advanced polyanionic electrode materials for potassium-ion batteries: progresses, challenges and application prospects. Mater Today. 2022;54:189-201.
|
| [15] |
Wang Y, Xiao F, Chen X, et al. Extraordinarily stable and wide-temperature range sodium/potassium-ion batteries based on 1D SnSe2-SePAN composite nanofibers. InfoMat. 2023;5(9):e12467.
|
| [16] |
Xin Y, Ge Y, Li Z, et al. Research progress on modification strategies of organic electrode materials for energy storage. Batteries. Acta Physico-Chim Sin. 2024;40(2):2303060.
|
| [17] |
Yang F, Liu Z, Wang D, et al. Preparation and properties of P-Bi2Te3/MXene superstructure-based anode for potassium-ion battery. Acta Physico-Chim Sin. 2023;40(2):2303006.
|
| [18] |
Hsieh H-W, Wang C-H, Huang A-F, Su WN, Hwang BJ. Green chemical delithiation of lithium iron phosphate for energy storage application. Chem Eng J. 2021;418:129191.
|
| [19] |
Alvin S, Cahyadi HS, Hwang J, Chang W, Kwak SK, Kim J. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon. Adv Energy Mater. 2020;10(20):2000283.
|
| [20] |
Du M, Du K-D, Guo J-Z, et al. Direct reuse of oxide scrap from retired lithium-ion batteries: advanced cathode materials for sodium-ion batteries. Rare Met. 2023;42(5):1603-1613.
|
| [21] |
Hao Y, Shao J, Yuan Y, et al. Design of phosphide anodes harvesting superior sodium storage: progress, challenges, and perspectives. Adv Funct Mater. 2023;33(13):2212692.
|
| [22] |
Yang G-Z, Chen Y-F, Feng B-Q, et al. Surface-dominated potassium storage enabled by single-atomic sulfur for high-performance K-ion battery anodes. Energy Environ Sci. 2023;16(4):1540-1547.
|
| [23] |
Liu Q, Hu Z, Li W, et al. Sodium transition metal oxides: the preferred cathode choice for future sodium-ion batteries? Energy Environ Sci. 2021;14(1):158-179.
|
| [24] |
Zhang X, Zhang Z, Xu S, Xu C, Rui X. Advanced vanadium oxides for sodium-ion batteries. Adv Funct Mater. 2023;33(49):2306055.
|
| [25] |
Fang Y, Yu X-Y, Lou XW. Nanostructured electrode materials for advanced sodium-ion. Matter. 2019;1(1):90-114.
|
| [26] |
Huang Z-X, Zhang X-L, Zhao X-X, et al. Suppressing oxygen redox in layered oxide cathode of sodium-ion batteries with ribbon superstructure and solid-solution behavior. J Mater Sci Technol. 2023;160:9-17.
|
| [27] |
Gu Z-Y, Guo J-Z, Sun Z-H, et al. Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries. Sci Bull. 2020;65(9):702-710.
|
| [28] |
Huang Z-X, Gu Z-Y, Heng Y-L, Huixiang Ang E, Geng HB, Wu XL. Advanced layered oxide cathodes for sodium/potassium-ion batteries: development, challenges and prospects. Chem Eng J. 2023;452:139438.
|
| [29] |
Tang Y, Li W, Feng P, et al. High-performance manganese hexacyanoferrate with cubic structure as superior cathode material for sodium-ion batteries. Adv Funct Mater. 2020;30(10):1908754.
|
| [30] |
Ma Y, Ma Y, Dreyer SL, et al. High-entropy metal–organic frameworks for highly reversible sodium storage. Adv Mater. 2021;33(34):2101342.
|
| [31] |
Li D, Wang C, Hu J, et al. Phenanthraquinone-based polymer organic cathodes for highly efficient Na-ion batteries. Chem Eng J. 2022;449:137745.
|
| [32] |
Zhu Y, Wang Y, Wang Y, Xu T, Chang P. Research progress on carbon materials as negative electrodes in sodium-and potassium-ion batteries. Carbon Energy. 2022;4(6):1182-1213.
|
| [33] |
Yang Z, Song Y, Zhang C, et al. Porous 3D silicon-diamondyne blooms excellent storage and diffusion properties for Li, Na, and K ions. Adv Energy Mater. 2021;11(33):2101197.
|
| [34] |
Zhang L, Hu X, Chen C, et al. In operando mechanism analysis on nanocrystalline silicon anode material for reversible and ultrafast sodium storage. Adv Mater. 2017;29(5):1604708.
|
| [35] |
Loaiza LC, Monconduit L, Seznec V. Si and Ge-based anode materials for Li-, Na-, and K-ion batteries: a perspective from structure to electrochemical mechanism. Small. 2020;16(5):1905260.
|
| [36] |
Luo X-X, Li W-H, Liang H-J, et al. Covalent organic framework with highly accessible carbonyls and π-cation effect for advanced potassium-ion. Angew Chem Int Ed Engl. 2022;61(10):e202117661.
|
| [37] |
Ge J, Yi X, Fan L, Lu B. An all-organic aqueous potassium dual-ion battery. J Energy Chem. 2021;57:28-33.
|
| [38] |
Liang Y, Luo C, Wang F, et al. An organic anode for high temperature potassium-ion batteries. Adv Energy Mater. 2019;9(2):1802986.
|
| [39] |
Wang H, Zhu Q-L, Zou R, Xu Q. Metal-organic frameworks for energy applications. Chem. 2017;2(1):52-80.
|
| [40] |
Zheng Y, Zheng S, Xue H, Pang H. Metal–organic frameworks for lithium–sulfur batteries. J Mater Chem A. 2019;7(8):3469-3491.
|
| [41] |
Li J, Weng Z, Qin Z, et al. Recent advances in multifunctional metal-organic frameworks for lithium metal batteries. Sci China: Chem. 2023. In press.
|
| [42] |
Zhu B, Liang Z, Xia D, Zou R. Metal-organic frameworks and their derivatives for metal-air batteries. Energy Storage Mater. 2019;23:757-771.
|
| [43] |
Sun R, Dou M, Chen Z, et al. Engineering strategies of metal-organic frameworks toward advanced batteries. Battery Energy. 2023;2(3):20220064.
|
| [44] |
Cui Y, Li B, He H, Zhou W, Chen B, Qian G. Metal–organic frameworks as platforms for functional materials. Acc Chem Res. 2016;49(3):483-493.
|
| [45] |
Hurlbutt K, Wheeler S, Capone I, Pasta M. Prussian Blue analogs as battery. Joule. 2018;2(10):1950-1960.
|
| [46] |
Wang W, Gang Y, Hu Z, et al. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nat Commun. 2020;11(1):980.
|
| [47] |
Liu Y, Fan S, Gao Y, et al. Isostructural synthesis of iron-based prussian blue analogs for sodium-ion batteries. Small. 2023;19(43):2302687.
|
| [48] |
Liu X, Cao Y, Sun J. Defect engineering in Prussian Blue analogs for high-performance sodium-ion batteries. Adv Energy Mater. 2022;12(46):2202532.
|
| [49] |
Du G, Pang H. Recent advancements in Prussian blue analogues: preparation and application in batteries. Energy Storage Mater. 2021;36:387-408.
|
| [50] |
Zhao X, Xing Z, Huang C. Investigation of high-entropy Prussian blue analog as cathode material for aqueous sodium-ion batteries. J Mater Chem A. 2023;11(42):22835-22844.
|
| [51] |
Shu W, Han C, Wang X. Prussian blue analogues cathodes for nonaqueous potassium-ion batteries: past, present, and future. Adv Funct Mater. 2023;34(1):2309636.
|
| [52] |
Geng P, Wang L, Du M, et al. MIL-96-Al for Li–S batteries: shape or size? Adv Mater. 2022;34(4):2107836.
|
| [53] |
Yamada T, Shiraishi K, Kitagawa H, Kimizuka N. Applicability of MIL-101(Fe) as a cathode of lithium ion batteries. Chem Commun. 2017;53(58):8215-8218.
|
| [54] |
Sava Gallis DF, Pratt Iii HD, Anderson TM, Chapman KW. Electrochemical activity of Fe-MIL-100 as a positive electrode for Na-ion batteries. J Mater Chem A. 2016;4(36):13764-13770.
|
| [55] |
Yanuar MA, Kim J. FeOF nanoparticles wrapped by graphitic carbon layers prepared from Fe-MIL-88B as a cathode material for sodium-ion batteries. Carbon. 2019;149:483-491.
|
| [56] |
Jia D, Shen Z, Lv Y, et al. In situ electrochemical tuning of MIL-88B(V)@rGO into amorphous V2O5@rGO as cathode for high-performance aqueous zinc-ion battery. Adv Funct Mater. 2023;34(2):2308319.
|
| [57] |
Deng S, Tie Z, Yue F, Cao H, Yao M, Niu Z. Rational design of ZnMN2O4 quantum dots in a carbon framework for durable aqueous zinc-ion batteries. Angew Chem Int Ed. 2022;61(12):e202115877.
|
| [58] |
Xu X, Qi C, Hao Z, et al. The surface coating of commercial LiFePO4 by utilizing ZIF-8 for high electrochemical performance lithium ion battery. Nano Micro Lett. 2017;10(1):1.
|
| [59] |
Yan C, Zhao H, Li J, et al. Mild-temperature solution-assisted encapsulation of phosphorus into ZIF-8 derived porous carbon as lithium-ion battery anode. Small. 2020;16(11):1907141.
|
| [60] |
Sun X, Xu W, Zhang X, Lei T, Lee SY, Wu Q. ZIF-67@Cellulose nanofiber hybrid membrane with controlled porosity for use as Li-ion battery separator. J Energy Chem. 2021;52:170-180.
|
| [61] |
Wu Z, Wang L, Chen S, et al. Facile and low-temperature strategy to prepare hollow ZIF-8/CNT polyhedrons as high-performance lithium-sulfur cathodes. Chem Eng J. 2021;404:126579.
|
| [62] |
Zhang M, Mao H, Liang Y, Yu X. Recent progress in zeolitic imidazolate frameworks (ZIFs)-derived nanomaterials for effective lithium polysulfide management in lithium–sulfur batteries. J Mater Chem A. 2023;11(34):17892-17919.
|
| [63] |
Li Z, Sun Y, Wu X, Yuan H, Yu Y, Tan Y. Boosting adsorption and catalysis of polysulfides by multifunctional separator for lithium–sulfur batteries. ACS Energy Lett. 2022;7(12):4190-4197.
|
| [64] |
Cai M, Huang Z, Huang Y, Zou J, Shi S, Geng F. Construction of a surface heterosphere for a Li-rich manganese-based cathode with improved Li storage properties. Ceram Int. 2021;47(7, Part A):9551-9559.
|
| [65] |
Huang Z-X, Zhang X-L, Zhao X-X, et al. Hollow Na0.62K0.05MN0.7Ni0.2CO0.1O2 polyhedra with exposed stable {001} facets and K riveting for sodium-ion batteries. Sci China Mater. 2023;66(1):79-87.
|
| [66] |
Wang T, Huang Z, Wang D, et al. PxSy nanoparticles encapsulated in graphene as highly reversible cathode for sodium ion batteries. Chin Chem Lett. 2023;34(1):107216.
|
| [67] |
Liu W-D, Tang X, Feng J-A, et al. Recent advances in vacancy engineering for reliable lithium-sulfur batteries. Rare Met. 2024;43(2):455-477.
|
| [68] |
Mao Y, Chen Y, Qin J, Shi C, Liu E, Zhao N. Capacitance controlled, hierarchical porous 3D ultra-thin carbon networks reinforced prussian blue for high performance Na-ion battery cathode. Nano Energy. 2019;58:192-201.
|
| [69] |
Liu Y, He D, Han R, Wei G, Qiao Y. Nanostructured potassium and sodium ion incorporated Prussian blue frameworks as cathode materials for sodium-ion batteries. Chem Commun. 2017;53(40):5569-5572.
|
| [70] |
Tang Y, Zhang W, Xue L, et al. Polypyrrole-promoted superior cyclability and rate capability of NaxFe[Fe(CN)6] cathodes for sodium-ion batteries. J Mater Chem A. 2016;4(16):6036-6041.
|
| [71] |
Wang T, Zhu T, Wu J, et al. The effect of hydrogen induced point defects on lithiation kinetics in manganese niobate anode. J Alloys Compd. 2021;877:160190.
|
| [72] |
Wei T, Lu J, Zhang P, et al. An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chin Chem Lett. 2023. In press.
|
| [73] |
Yue Y, Binder AJ, Guo B, et al. Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications. Angew Chem Int Ed. 2014;53(12):3134-3137.
|
| [74] |
Lee H-W, Wang RY, Pasta M, Woo Lee S, Liu N, Cui Y. Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat Commun. 2014;5(1):5280.
|
| [75] |
Jiang Y, Shen L, Ma H, et al. A low-strain metal organic framework for ultra-stable and long-life sodium-ion batteries. J Power Sources. 2022;541:231701.
|
| [76] |
Wessells CD, Peddada SV, Huggins RA, Cui Y. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 2011;11(12):5421-5425.
|
| [77] |
Wessells CD, Peddada SV, McDowell MT, Huggins RA, Cui Y. The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes. J Electrochem Soc. 2011;159(2): A98-A103.
|
| [78] |
Pasta M, Wessells CD, Liu N, et al. Full open-framework batteries for stationary energy storage. Nat Commun. 2014;5(1):3007.
|
| [79] |
Shao T, Li C, Liu C, et al. Electrolyte regulation enhances the stability of Prussian blue analogues in aqueous Na-ion storage. J Mater Chem A. 2019;7(4):1749-1755.
|
| [80] |
Wu X, Luo Y, Sun M, et al. Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries. Nano Energy. 2015;13:117-123.
|
| [81] |
Lu Y, Wang L, Cheng J, Goodenough JB. Prussian blue: a new framework of electrode materials for sodium batteries. Chem Commun. 2012;48(52):6544-6546.
|
| [82] |
Wang L, Lu Y, Liu J, et al. A superior low-cost cathode for a Na-ion battery. Angew Chem Int Ed. 2013;52(7):1964-1967.
|
| [83] |
Jiang Y, Yu S, Wang B, et al. Prussian Blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv Funct Mater. 2016;26(29):5315-5321.
|
| [84] |
Jo I-H, Lee S-M, Kim H-S, Jin BS. Electrochemical properties of NaxMnFe(CN)6·zH2O synthesized in a Taylor-Couette reactor as a Na-ion battery cathode material. J Alloys Compd. 2017;729:590-596.
|
| [85] |
You Y, Wu X-L, Yin Y-X, Guo YG. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ Sci. 2014;7(5):1643-1647.
|
| [86] |
Su D, Cortie M, Wang G. Fabrication of N-doped graphene–carbon nanotube hybrids from Prussian Blue for lithium–sulfur batteries. Adv Energy Mater. 2017;7(8):1602014.
|
| [87] |
Lim YV, Wang Y, Kong D, et al. Cubic-shaped WS2 nanopetals on a Prussian blue derived nitrogen-doped carbon nanoporous framework for high performance sodium-ion batteries. J Mater Chem A. 2017;5(21):10406-10415.
|
| [88] |
Guari Y, Cahu M, Félix G, et al. Nanoheterostructures based on nanosized Prussian blue and its analogues: design, properties and applications. Coord Chem Rev. 2022;461:214497.
|
| [89] |
Yang D, Xu J, Liao X-Z, He YS, Liu H, Ma ZF. Structure optimization of Prussian blue analogue cathode materials for advanced sodium ion batteries. Chem Commun. 2014;50(87):13377-13380.
|
| [90] |
Li W-J, Chou S-L, Wang J-Z, et al. Multifunctional conducing polymer coated Na1+xMnFe(CN)6 cathode for sodium-ion batteries with superior performance via a facile and one-step chemistry approach. Nano Energy. 2015;13:200-207.
|
| [91] |
You Y, Yao H-R, Xin S, et al. Subzero-temperature cathode for a sodium-ion battery. Adv Mater. 2016;28(33):7243-7248.
|
| [92] |
Fang Y, Yu X-Y, Lou XW. Formation of hierarchical Cu-doped CoSe2 microboxes via sequential ion exchange for high-performance sodium-ion batteries. Adv Mater. 2018;30(21):1706668.
|
| [93] |
Fang Y, Luan D, Chen Y, Gao S, Lou XW. Synthesis of copper-substituted CoS2@CuxS double-shelled nanoboxes by sequential ion exchange for efficient sodium storage. Angew Chem Int Ed. 2020;59(7):2644-2648.
|
| [94] |
Wang J, Guo X, Jing Q, et al. Rational design of self-sacrificial template derived quasi-Cu-MOF composite as anodes for high-performance lithium-ion batteries. Chin Chem Lett. 2023;34(6):107675.
|
| [95] |
Ou C, Tan M-D, Li Z-B, et al. Carbon-coated hybrid crystals with fast electrochemical reaction kinetics for ultra-stable and high-load sodium-ion batteries. Rare Met. 2024;43(2):647-657.
|
| [96] |
Fernández de Luis R, Ponrouch A, Rosa Palacín M, Karmele Urtiaga M, Arriortua MI. Electrochemical behavior of [{Mn(Bpy)}(VO3)2]≈(H2O)1.24 and [{Mn(Bpy)0.5}(VO3)2]≈(H2O)0.62 inorganic–organic Brannerites in lithium and sodium cells. J Solid State Chem. 2014;212:92-98.
|
| [97] |
Li C, Yang Q, Shen M, Ma J, Hu B. The electrochemical Na intercalation/extraction mechanism of ultrathin cobalt(II) terephthalate-based MOF nanosheets revealed by synchrotron X-ray absorption spectroscopy. Energy Storage Mater. 2018;14:82-89.
|
| [98] |
Liu Y, Zhao X, Fang C, et al. Activating aromatic rings as Na-ion storage sites to achieve high capacity. Chem. 2018;4(10):2463-2478.
|
| [99] |
Zhang S, Li X, Ding B, Li H, Liu X, Xu Q. A novel spitball-like CO3(NO3)2(OH)4@Zr-MOF@RGO anode material for sodium-ion storage. J Alloys Compd. 2020;822:153624.
|
| [100] |
Jin Y, Zhao C, Sun Z, et al. Facile synthesis of Fe-MOF/RGO and its application as a high performance anode in lithium-ion batteries. RSC Adv. 2016;6(36):30763-30768.
|
| [101] |
Wei R, Dong Y, Zhang Y, Zhang R, Al-Tahan MA, Zhang J. In-situ self-assembled hollow urchins F-Co-MOF on rGO as advanced anodes for lithium-ion and sodium-ion batteries. J Colloid Interface Sci. 2021;582:236-245.
|
| [102] |
Zhou D, Wu T, Xiao Z. Self-supported metal-organic framework nanoarrays for alkali metal ion batteries. J Alloys Compd. 2022;894:162415.
|
| [103] |
Liang H-J, Gu Z-Y, Zhao X-X, et al. Advanced flame-retardant electrolyte for highly stabilized K-ion storage in graphite anode. Sci Bull (Beijing). 2022;67(15):1581-1588.
|
| [104] |
Bai P, Ji X, Zhang J, et al. Formation of LiF-rich cathode-electrolyte interphase by electrolyte reduction. Angew Chem Int Ed. 2022;61(26):e202202731.
|
| [105] |
Hu Y-S, Lu Y. The mystery of electrolyte concentration: from superhigh to ultralow. ACS Energy Lett. 2020;5(11):3633-3636.
|
| [106] |
Geng Y, Pan L, Peng Z, et al. Electrolyte additive engineering for aqueous Zn ion batteries. Energy Storage Mater. 2022;51:733-755.
|
| [107] |
Gossage ZT, Hosaka T, Matsuyama T, Tatara R, Komaba S. Fluorosulfonamide-type electrolyte additives for long-life K-ion batteries. J Mater Chem A. 2023;11(2):914-925.
|
| [108] |
Hu X, Li Y, Liu J, Wang Z, Bai Y, Ma J. Constructing LiF/Li2CO3-rich heterostructured electrode electrolyte interphases by electrolyte additive for 4.5 V well-cycled lithium metal batteries. Sci Bul. 2023;68(12):1295-1305.
|
| [109] |
Kim T, Hyeok Ahn S, Song Y-Y, et al. Prussian blue-type sodium-ion conducting solid electrolytes for all solid-state batteries. Angew Chem Int Ed. 2023;62(42):e202309852.
|
| [110] |
Liu H, Pan H, Yan M, Zhang X, Jiang Y. Extraordinary ionic conductivity excited by hierarchical ion-transport pathways in MOF-based quasi-solid electrolytes. Adv Mater. 2023;35(26):2300888.
|
| [111] |
Yu X, Grundish NS, Goodenough JB, Manthiram A. Ionic liquid (IL) laden metal–organic framework (IL-MOF) electrolyte for quasi-solid-state sodium batteries. ACS Appl Mater Interfaces. 2021;13(21):24662-24669.
|
| [112] |
Guo J, Feng F, Zhao S, et al. Achieving ultra-stable all-solid-state sodium metal batteries with anion-trapping 3D fiber network enhanced polymer electrolyte. Small. 2023;19(16):2206740.
|
| [113] |
Wu Y, Qiu X, Liang F, et al. A metal-organic framework-derived bifunctional catalyst for hybrid sodium-air batteries. Appl Catal B. 2019;241:407-414.
|
| [114] |
Dhir S, Wheeler S, Capone I, Pasta M. Outlook on K-Ion batteries. Chem. 2020;6(10):2442-2460.
|
| [115] |
Hosaka T, Kubota K, Hameed AS, Komaba S. Research development on K-ion batteries. Chem Rev. 2020;120(14):6358-6466.
|
| [116] |
Pham TA, Kweon KE, Samanta A, Lordi V, Pask JE. Solvation and dynamics of sodium and potassium in ethylene carbonate from ab initio molecular dynamics simulations. J Phys Chem C. 2017;121(40):21913-21920.
|
| [117] |
Gao A, Li M, Guo N, et al. K-Birnessite electrode obtained by ion exchange for potassium-ion batteries: insight into the concerted ionic diffusion and K storage mechanism. Adv Energy Mater. 2019;9(1):1802739.
|
| [118] |
Eftekhari A. Potassium secondary cell based on Prussian blue cathode. J Power Sources. 2004;126(1):221-228.
|
| [119] |
Xue L, Li Y, Gao H, et al. Low-cost high-energy potassium cathode. J Am Chem Soc. 2017;139(6):2164-2167.
|
| [120] |
Li J, Zhao H, Wang J, et al. Interplanar space-controllable carboxylate pillared metal organic framework ultrathin nanosheet for superhigh capacity rechargeable alkaline battery. Nano Energy. 2019;62:876-882.
|
| [121] |
He G, Nazar LF. Crystallite size control of Prussian White analogues for nonaqueous potassium-ion batteries. ACS Energy Lett. 2017;2(5):1122-1127.
|
| [122] |
Liao J, Hu Q, Yu Y, et al. A potassium-rich iron hexacyanoferrate/dipotassium terephthalate@carbon nanotube composite used for K-ion full-cells with an optimized electrolyte. J Mater Chem A. 2017;5(36):19017-19024.
|
| [123] |
Wu X, Jian Z, Li Z, Ji X. Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries. Electrochem Commun. 2017;77:54-57.
|
| [124] |
Chen R, Huang Y, Xie M, et al. Chemical inhibition method to synthesize highly crystalline Prussian blue analogs for sodium-ion battery cathodes. ACS Appl Mater Interfaces. 2016;8(46):31669-31676.
|
| [125] |
Padigi P, Thiebes J, Swan M, Goncher G, Evans D, Solanki R. Prussian Green: a high rate capacity cathode for potassium ion batteries. Electrochim Acta. 2015;166:32-39.
|
| [126] |
Liao J, Hu Q, Mu J, He X, Wang S, Chen C. A vanadium-based metal–organic phosphate framework material K2[(VO)2(HPO4)2(C2O4)] as a cathode for potassium-ion batteries. Chem Commun. 2019;55(5):659-662.
|
| [127] |
Deng L, Yang Z, Tan L, Zeng L, Zhu Y, Guo L. Investigation of the Prussian blue analog CO3[Co(CN)6]2 as an anode material for nonaqueous potassium-ion batteries. Adv Mater. 2018;30(31):1802510.
|
| [128] |
An Y, Fei H, Zhang Z, Ci L, Xiong S, Feng J. A titanium-based metal–organic framework as an ultralong cycle-life anode for PIBs. Chem Commun. 2017;53(59):8360-8363.
|
| [129] |
Deng Q, Feng S, Hui P, et al. Exploration of low-cost microporous Fe(Ⅲ)-based organic framework as anode material for potassium-ion batteries. J Alloys Compd. 2020;830:154714.
|
| [130] |
Deng Q, Luo Z, Liu H, et al. Facile synthesis of Fe-based metal-organic framework and graphene composite as an anode material for K-ion batteries. Ionics. 2020;26(11):5565-5573.
|
| [131] |
Li C, Wang K, Li J, Zhang Q. Nanostructured potassium–organic framework as an effective anode for potassium-ion batteries with a long cycle life. Nanoscale. 2020;12(14):7870-7874.
|
| [132] |
Lu X, Zhang D, Zhong J, et al. MOF-5 as anodes for high-temperature potassium-ion batteries with ultrahigh stability. Chem Eng J. 2022;432:134416.
|
| [133] |
Sun L, Sun J, Zhai S, et al. Homologous MXene-derived electrodes for potassium-ion full batteries. Adv Energy Mater. 2022;12(23):2200113.
|
| [134] |
Hwang J-Y, Myung S-T, Sun Y-K. Sodium-ion batteries: present and future. Chem Soc Rev. 2017;46(12):3529-3614.
|
RIGHTS & PERMISSIONS
2024 The Authors. Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.