PDF
Abstract
Organic solar cells (OSCs) have received widespread attention due to their light weight, low cost, semitransparency, and ease-of-solution processing. By continuously improving materials design, active layer morphology, and device fabrication techniques, the power conversion efficiency (PCE) of OSCs have exceeded 20%. The morphology of the active layer, which includes the phase separation structure, the degree of crystallinity of molecules, and the domain sizes, plays a critically important role in the performance, which is significantly influenced by the crystallization dynamics of the donor and acceptor. Therefore, it is crucial to comprehensively understand how the dynamics impact the film structure and how to effectively employ the kinetic procedure to enhance the structure of the active layer in OSCs. In this review, the methods and principles of kinetics characterization were introduced. Afterward, the latest advancements in the control of film-forming and the post annealing process are outlined, unveiling the underlying mechanism. In conclusion, the potential and future of OSCs were anticipated and projected. Researchers may gain a comprehensive understanding of how dynamic process affects the morphology through this review, potentially enhancing the performance of OSCs.
Keywords
active layer
/
crystallization dynamics
/
morphology
/
organic solar cells
Cite this article
Download citation ▾
Qiuju Liang, Mingzhi Duan, Xingpeng Liu, Haolei Zhu, Kaiqi Yang, Wen Zhang, Jingming Xin, Jiangang Liu.
Recent advances in effect of crystallization dynamics process on the morphology of active layer in organic solar cells.
Battery Energy, 2024, 3(4): 20230073 DOI:10.1002/bte2.20230073
| [1] |
Liu B, Xu Y, Xia D, Xiao C, Yang Z, Li W. Semitransparent organic solar cells based on non-fullerene electron acceptors. Acta Phys Chim Sin. 2020;37(3):2009056-0.
|
| [2] |
Zhan L, Yin S, Li Y, et al. Multiphase morphology with enhanced carrier lifetime via quaternary strategy enables high-efficiency, thick-film, and large-area organic photovoltaics. Adv Mater. 2022;34(45):e2206269.
|
| [3] |
Genene Z, Mammo W, Wang E, Andersson MR. Recent advances in n-type polymers for all-polymer solar cells. Adv Mater. 2019;31(22):40.
|
| [4] |
Lee C, Lee S, Kim GU, Lee W, Kim BJ. Recent advances, design guidelines, and prospects of all-polymer solar cells. Chem Rev. 2019;119(13):8028-8086.
|
| [5] |
Yao H, Wang J, Xu Y, Zhang S, Hou J. Recent progress in chlorinated organic photovoltaic materials. Acc Chem Res. 2020;53(4):822-832.
|
| [6] |
Cheng P, Li G, Zhan X, Yang Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat Photon. 2018;12(3):131-142.
|
| [7] |
Li Y. All-small-molecule organic solar cells: hierarchical morphology control achieves efficiency breakthrough. Acta Phys Chim Sin. 2020;36(7):2001011-0.
|
| [8] |
Xu XY, Wu HB, Liang SJ, et al. Quantum efficiency and voltage losses in P3HT: non-fullerene solar cells. Acta Phys Chim Sin. 2022;38(11):11.
|
| [9] |
He X, Chan CCS, Zou X, et al. Modulating the mixing gibbs free energy to enhance solid-liquid phase separation for high-performance organic solar cells. Adv Energy Mater. 2023;13(11):10.
|
| [10] |
Wang J, Zheng Z, Bi P, et al. Tandem organic solar cells with 20.6%efficiency enabled by reduced voltage losses. Natl Sci Rev. 2023;10(6):11.
|
| [11] |
Xu T, Luo Z, Ma R, et al. High-performance organic solar cells containing pyrido [2, 3-b] quinoxaline-core-based small-molecule acceptors with optimized orbit overlap lengths and molecular packing. Angew Chem Int Ed. 2023;135(20):e202304127.
|
| [12] |
Luo Z, Gao Y, Lai H, et al. Asymmetric side-chain substitution enables a 3D network acceptor with hydrogen bond assisted crystal packing and enhanced electronic coupling for efficient organic solar cells. Energy Environ Sci. 2022;15(11):4601-4611.
|
| [13] |
Wei W, Zhang C, Chen Zhan, et al. Precise methylation yields acceptor with hydrogen-bonding network for high-efficiency and thermally stable polymer solar cells, angew. Chem Int Ed. 2023;63(6):e202315625.
|
| [14] |
He Z, Zhong C, Huang X, et al. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv Mater. 2011;23(40):4636-4643.
|
| [15] |
Chen Y, Wan X, Long G. High performance photovoltaic applications using solution-processed small molecules. Acc Chem Res. 2013;46(11):2645-2655.
|
| [16] |
Liu Y, Liu B, Ma C-Q, et al. Recent progress in organic solar cells (Part II device engineering). Sci China Chem. 2022;65(8):1457-1497.
|
| [17] |
Qiao F, Sun K, Chu H, et al. Design strategies of ZnO heterojunction arrays towards effective photovoltaic applications. Battery Energy. 2022;1(1):20210008.
|
| [18] |
Tarique WB, Uddin A. A review of progress and challenges in the research developments on organic solar cells. Mater Sci Semicond Process. 2023;163:107541.
|
| [19] |
Sun LC, Chen YC, Sun MT, Zheng YJ. Organic solar cells: physical principle and recent advances. Chem Asian J. 2023;18(5):13.
|
| [20] |
Li X, Tang A, Wang H, et al. Benzotriazole-based 3D four-arm small molecules enable 19.1%efficiency for PM6: Y6-based ternary organic solar cells. Angew Chem Int Ed. 2023;62(39):e202306847.
|
| [21] |
Mu XY, Ji YW, Yin H, Gao K. Interfacial hole-charge-transfer dynamics in organic solar cells: a dynamic. Phys Rev Appl. 2023;19(5):10.
|
| [22] |
Sun B, Tokmoldin N, Alqahtani O, et al. Toward more efficient organic solar cells: a detailed study of loss pathway and its impact on overall device performance in Low-Offset organic solar cells. Adv Energy Mater. 2023;13(26):11.
|
| [23] |
Zhou Y, Hu L, Tang X, et al. Employing fullerene acceptor as the third component to enhance charge transfer for high-efficiency ternary organic solar cells. Mater Lett. 2023;341:134291.
|
| [24] |
McDowell C, Abdelsamie M, Toney MF, Bazan GC. Solvent additives: key morphology-directing agents for solution-processed organic solar cells. Adv Mater. 2018;30(33):30.
|
| [25] |
Huang Y, Kramer EJ, Heeger AJ, Bazan GC. Bulk heterojunction solar cells: morphology and performance relationships. Chem Rev. 2014;114(14):7006-7043.
|
| [26] |
Mao Y, Li W, Chen M, et al. Evolution of molecular aggregation in bar-coated non-fullerene organic solar cells. Mater Chem Front. 2019;3(6):1062-1070.
|
| [27] |
Liu J, Chen L, Gao B, et al. Constructing the nanointerpenetrating structure of PCDTBT:PC70BM bulk heterojunction solar cells induced by aggregation of PC70BM via mixed-solvent vapor annealing. J Mater Chem A. 2013;1(20):6216-6225.
|
| [28] |
Yang D, Grott S, Jiang XY, et al. In situ studies of solvent additive effects on the morphology development during printing of bulk heterojunction films for organic solar cells, small. Methods. 2020;4(9):7.
|
| [29] |
Radford CL, Pettipas RD, Kelly TL. Watching paint dry: operando solvent vapor annealing of organic solar cells. J Phys Chem Lett. 2020;11(15):6450-6455.
|
| [30] |
Xin J, Li W, Zhang Y, et al. A review of nonfullerene solar cells: insight into the correlation among molecular structure, morphology, and device performance. Battery Energy. 2022;2(2):20220040.
|
| [31] |
Schmidt-Hansberg B, Sanyal M, Klein MFG, et al. Moving through the phase diagram: morphology formation in solution cast polymer-fullerene blend films for organic solar cells. ACS Nano. 2011;5(11):8579-8590.
|
| [32] |
Engmann S, Ro HW, Herzing A, et al. Film morphology evolution during solvent vapor annealing of highly efficient small molecule donor/acceptor blends. J Mater Chem A. 2016;4(40):15511-15521.
|
| [33] |
Lee C, Li Y, Lee W, et al. Correlation between phase-separated domain sizes of active layer and photovoltaic performances in all-polymer solar cells. Macromolecules. 2016;49(14):5051-5058.
|
| [34] |
Ye L, Xiong Y, Li S, et al. Precise manipulation of multilength scale morphology and its influence on eco-friendly printed all-polymer solar cells. Adv Funct Mater. 2017;27(33):10.
|
| [35] |
Manigrasso J, Chillón I, Genna V, et al. Author correction: visualizing group II intron dynamics between the first and second steps of splicing. Nat Commun. 2022;13(1):1.
|
| [36] |
Yu Q, Xu J, Fu J, et al. Crystallinity dictates the selection of fullerene or non-fullerene acceptors in a small molecule organic solar cell. Dyes Pigm. 2021;187:109085.
|
| [37] |
Yang C, Yu R, Liu C, Li H, Zhang S, Hou J. Achieving over 10%efficiency in poly(3-hexylthiophene)-based organic solar cells via solid additives. ChemSusChem. 2021;14(17):3607-3613.
|
| [38] |
Liu F, Zhang J, Zhou Z, Zhang J, Wei Z, Zhu X. Poly(3-hexylthiophene)-based non-fullerene solar cells achieve high photovoltaic performance with small energy loss. J Mater Chem A. 2017;5(32):16573-16579.
|
| [39] |
Li S, Liu W, Shi M, et al. A spirobifluorene and diketopyrrolopyrrole moieties based non-fullerene acceptor for efficient and thermally stable polymer solar cells with high open-circuit voltage. Energy Environ Sci. 2016;9(2):604-610.
|
| [40] |
Holliday S, Ashraf RS, Wadsworth A, et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat Commun. 2016;7:11585.
|
| [41] |
Liu J, Zeng S, Jing P, Zhao K, Liang Q. Investigating the effect of cosolvents on P3HT/O-IDTBR film-forming kinetics and film morphology. J Energy Chem. 2020;51:333-341.
|
| [42] |
Pelse I, Hernandez JL, Engmann S, Herzing AA, Richter LJ, Reynolds JR. Cosolvent effects when blade-coating a low-solubility conjugated polymer for bulk heterojunction organic photovoltaics. ACS Appl Mater Interfaces. 2020;12(24):27416-27424.
|
| [43] |
Xu Y, Yao H, Ma L, et al. Tuning the hybridization of local exciton and charge-transfer states in highly efficient organic photovoltaic cells. Angew Chem Int Ed. 2020;59(23):9004-9010.
|
| [44] |
Zhu L, Zhang M, Zhou G, et al. Efficient organic solar cell with 16.88%efficiency enabled by refined acceptor crystallization and morphology with improved charge transfer and transport properties. Adv Energy Mater. 2020;10(18):1904234.
|
| [45] |
Yao H, Qian D, Zhang H, et al. Critical role of molecular electrostatic potential on charge generation in organic solar cells. Chin J Chem. 2018;36(6):491-494.
|
| [46] |
Ojala A, Petersen A, Fuchs A, et al. Merocyanine/C60 planar heterojunction solar cells: effect of dye orientation on exciton dissociation and solar cell performance. Adv Funct Mater. 2012;22(1):86-96.
|
| [47] |
Schubert M, Collins BA, Mangold H, et al. Correlated donor/acceptor crystal orientation controls photocurrent generation in all-polymer solar cells. Adv Funct Mater. 2014;24(26):4068-4081.
|
| [48] |
Vohra V, Kawashima K, Kakara T, et al. Efficient inverted polymer solar cells employing favourable molecular orientation. Nat Photonics. 2015;9(6):403-408.
|
| [49] |
Jung J, Lee W, Lee C, Ahn H, Kim BJ. Controlling molecular orientation of naphthalenediimide-based polymer acceptors for high performance all-polymer solar cells. Adv Energy Mater. 2016;6(15):10.
|
| [50] |
Jo JW, Jung JW, Ahn H, Ko MJ, Jen AKY, Son HJ. Effect of molecular orientation of donor polymers on charge generation and photovoltaic properties in bulk heterojunction all-polymer solar cells. Adv Energy Mater. 2017;7(1):9.
|
| [51] |
Ran NA, Roland S, Love JA, et al. Impact of interfacial molecular orientation on radiative recombination and charge generation efficiency. Nat Commun. 2017;8:79.
|
| [52] |
Nakano K, Tajima K. Organic planar heterojunctions: from models for interfaces in bulk heterojunctions to high-performance solar cells. Adv Mater. 2017;29(25):33.
|
| [53] |
Liu J, Lu H, Yin Y, et al. Thermodynamic and kinetic insights for regulating molecular orientation in nonfullerene all-small-molecule solar cells. Battery Energy. 2022;1(3):20220013.
|
| [54] |
Zhao L, Wang H, Ji H, et al. A review on smart strategies for active layer phase separation regulation of organic solar cells. APL Mater. 2023;11(12):120601.
|
| [55] |
Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Polymer photovoltaic cells -enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science. 1995;270(5243):1789-1791.
|
| [56] |
Liang Q, Hu Z, Yao J, et al. Blending donors with different molecular weights: an efficient strategy to resolve the conflict between coherence length and intermixed phase in polymer/nonfullerene solar cells. Small. 2022;18(3):e2103804.
|
| [57] |
Dittmer JJ, Marseglia EA, Friend RH. Electron trapping in dye/polymer blend photovoltaic cells. Adv Mater. 2000;12(17):1270-1274.
|
| [58] |
Österbacka R, An CP, Jiang XM, Vardeny ZV. Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals. Science. 2000;287(5454):839-842.
|
| [59] |
Yang X, Loos J, Veenstra SC, et al. Nanoscale morphology of high-performance polymer solar cells. Nano Lett. 2005;5(4):579-583.
|
| [60] |
Zhao Y, Xie Z, Qu Y, Geng Y, Wang L. Solvent-vapor treatment induced performance enhancement of poly(3-hexylthiophene): methanofullerene bulk-heterojunction photovoltaic cells. Appl Phys Lett. 2007;90(4):3.
|
| [61] |
Park JH, Kim JS, Lee JH, Lee WH, Cho K. Effect of annealing solvent solubility on the performance of poly(3-hexylthiophene)/methanofullerene solar cells. J Phys Chem C. 2009;113(40):17579-17584.
|
| [62] |
Shrotriya V, Yao Y, Li G, Yang Y. Effect of self-organization in polymer/fullerene bulk heterojunctions on solar cell performance. Appl Phys Lett. 2006;89(6):3.
|
| [63] |
Shao B, Vanden Bout DA. Probing the molecular weight dependent intramolecular interactions in single molecules of PCDTBT. J Mater Chem C. 2017;5(37):9786-9791.
|
| [64] |
Noriega R. Efficient charge transport in disordered conjugated polymer microstructures. Macromol Rapid Commun. 2018;39(14):9.
|
| [65] |
Steyrleuthner R, Schubert M, Howard I, et al. Aggregation in a high-mobility n-type low-bandgap copolymer with implications on semicrystalline morphology. J Am Chem Soc. 2012;134(44):18303-18317.
|
| [66] |
Richter LJ, DeLongchamp DM, Amassian A. Morphology development in solution-processed functional organic blend films: an in situ viewpoint. Chem Rev. 2017;117(9):6332-6366.
|
| [67] |
Giussani E, Brambilla L, Fazzi D, et al. Structural characterization of highly oriented naphthalene-diimide-bithiophene copolymer films via vibrational spectroscopy. J Phys Chem B. 2015;119(5):2062-2073.
|
| [68] |
Shen YF, Zhang H, Zhang JQ, et al. In situ absorption characterization guided slot-die-coated high-performance large-area flexible organic solar cells and modules. Adv Mater. 2022;35(10):9.
|
| [69] |
Fauvell TJ, Zheng T, Jackson NE, Ratner MA, Yu L, Chen LX. Photophysical and morphological implications of single-strand conjugated polymer folding in solution. Chem Mater. 2016;28(8):2814-2822.
|
| [70] |
Liu JG, Chen L, Gao BR, et al. Constructing the nanointerpenetrating structure of PCDTBT:PC70BM bulk heterojunction solar cells induced by aggregation of PC70BM via mixed-solvent vapor annealing. J Mater Chem A. 2013;1(20):6216-6225.
|
| [71] |
Liu J, Liang Q, Wang H, et al. Improving the morphology of PCDTBT:PC70BM bulk heterojunction by mixed-solvent vapor-assisted imprinting: inhibiting intercalation, optimizing vertical phase separation, and enhancing photon absorption. J Phys Chem C. 2014;118(9):4585-4595.
|
| [72] |
Zhang R, Yang H, Zhou K, et al. Optimized domain size and enlarged D/A interface by tuning intermolecular interaction in all-polymer ternary solar cells. J Polym Sci Part B Polym Phys. 2016;54(18):1811-1819.
|
| [73] |
Güldal NS, Kassar T, Berlinghof M, Unruh T, Brabec CJ. In situ characterization methods for evaluating microstructure formation and drying kinetics of solution-processed organic bulk-heterojunction films. J Mater Res. 2017;32(10):1855-1879.
|
| [74] |
Liu Y, Yangui A, Zhang R, et al. In situ optical studies on morphology formation in organic photovoltaic blends. Small Methods. 2021;5(10):e2100585.
|
| [75] |
Engmann S, Bokel FA, Ro HW, DeLongchamp DM, Richter LJ. Real-time photoluminescence studies of structure evolution in organic solar cells. Adv Energy Mater. 2016;6(10):12.
|
| [76] |
Huang WY, Huang PT, Han YK, Lee CC, Hsieh TL, Chang MY. Aggregation and gelation effects on the performance of poly(3-hexylthiophene)/fullerene solar cells. Macromolecules. 2008;41(20):7485-7489.
|
| [77] |
Wu WR, Jeng US, Su CJ, et al. Competition between fullerene aggregation and poly(3-hexylthiophene) crystallization upon annealing of bulk heterojunction solar cells. ACS Nano. 2011;5(8):6233-6243.
|
| [78] |
Zhang C, Mumyatov A, Langner S, et al. Overcoming the thermal instability of efficient polymer solar cells by employing novel fullerene-based acceptors. Adv Energy Mater. 2017;7(3):8.
|
| [79] |
Roehling JD, Baran D, Sit J, et al. Nanoscale morphology of PTB7 based organic photovoltaics as a function of fullerene size. Sci Rep. 2016;6:30915.
|
| [80] |
Perez LA, Chou KW, Love JA, et al. Solvent additive effects on small molecule crystallization in bulk heterojunction solar cells probed during spin casting. Adv Mater. 2013;25(44):6380-6384.
|
| [81] |
Liu F, Ferdous S, Schaible E, et al. Fast printing and in situ morphology observation of organic photovoltaics using slot-die coating. Adv Mater. 2015;27(5):886-891.
|
| [82] |
Wodo O, Ganapathysubramanian B. Modeling morphology evolution during solvent-based fabrication of organic solar cells. Comput Mater Sci. 2012;55:113-126.
|
| [83] |
Schmelzer JWP. Crystal nucleation and growth in glass.-forming melts: experiment and theory. J Non-Cryst Solids. 2008;354(2-9):269-278.
|
| [84] |
Cormier L. Nucleation in glasses-new experimental findings and recent theories. Proc Mater Sci. 2014;7:60-71.
|
| [85] |
de Zerio AD, Müller C. Glass forming acceptor alloys for highly efficient and thermally stable ternary organic solar cells. Adv Energy Mater. 2018;8(28):18.
|
| [86] |
Levitsky A, Schneider SA, Rabkin E, Toney MF, Frey GL. Bridging the thermodynamics and kinetics of temperature-induced morphology evolution in polymer/fullerene organic solar cell bulk heterojunction. Mater Horiz. 2021;8(8):1272-1285.
|
| [87] |
Hu Y, Cao X, Fan H. Crystallization of D-A conjugated polymers: a review of recent research. Polymers. 2022;14(21):4612.
|
| [88] |
Ronsin OJJ, Harting J. Role of the interplay between spinodal decomposition and crystal growth in the morphological evolution of crystalline bulk heterojunctions. Energy Technol. 2020;8(12):17.
|
| [89] |
Gerek ZN, Elliott JR. Self-diffusivity estimation by molecular dynamics. Ind Eng Chem Res. 2010;49(7):3411-3423.
|
| [90] |
Fokin VM, Schmelzer JWP, Nascimento MLF, Zanotto ED. Diffusion coefficients for crystal nucleation and growth in deeply undercooled glass-forming liquids. J Chem Phys. 2007;126(23):6.
|
| [91] |
Hu H, Ghasemi M, Peng Z, et al. The role of demixing and crystallization kinetics on the stability of non-fullerene organic solar cells. Adv Mater. 2020;32(49):9.
|
| [92] |
Han C, Wang J, Chen L, et al. Balancing intermolecular interactions between acceptors and donor/acceptor for efficient organic photovoltaics. Adv Funct Mater. 2021;31(49):11.
|
| [93] |
Zhu L, Zhang M, Zhong W, et al. Progress and prospects of the morphology of non-fullerene acceptor based high-efficiency organic solar cells. Energy Environ Sci. 2021;14(14):4341-4357.
|
| [94] |
Yue Y, Zheng B, Yang W, Huo L, Wang J, Jiang L. Meniscus-assisted coating with optimized active-layer morphology toward highly efficient all-polymer solar cells. Adv Mater. 2022;34(14):e2108508.
|
| [95] |
van Franeker JJ, Hermida-Merino D, Gommes C, et al. Sub-micrometer structure formation during spin coating revealed by time-resolved in situ laser and X-ray scattering. Adv Funct Mater. 2017;27(46):12.
|
| [96] |
Wang Y, Wang X, Lin B, et al. Achieving balanced crystallization kinetics of donor and acceptor by sequential-blade coated double bulk heterojunction organic solar cells. Adv Energy Mater. 2020;10(28):2000826.
|
| [97] |
Zhao H, Lin B, Xue J, et al. Kinetics manipulation enables high-performance thick ternary organic solar cells via R2R-compatible slot-die coating. Adv Mater. 2022;34(7):10.
|
| [98] |
Reichenberger M, Kroh D, Matrone GMM, et al. Controlling aggregate formation in conjugated polymers by spin-coating below the critical temperature of the disorder-order transition. J Polym Sci Part B Polym Phys. 2018;56(6):532-542.
|
| [99] |
Zhang Y, Pan S, Zhang Y, et al. Biomimetic high-flux proton pump constructed with asymmetric polymeric carbon nitride membrane. Nano Res. 2023;16:18-24.
|
| [100] |
Bhattacharya SK, Moon KS, Tummala RR, May GS. Meniscus coating: a low-cost polymer deposition method for system-on-package (SOP) substrates. IEEE Trans Electron Packag Manuf. 2003;26(2):110-114.
|
| [101] |
Ghoos T, Malinkiewicz O, Conings B, et al. Solution-processed bi-layer polythiophene-fullerene organic solar cells. RSC Adv. 2013;3(47):25197-25203.
|
| [102] |
Dai X, Deng Y, Van Brackle CH, Huang J. Meniscus fabrication of halide perovskite thin films at high throughput for large area and low-cost solar panels. Int J Extreme Manuf. 2019;1(2):022004.
|
| [103] |
Krebs FC. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol Energy Mater Sol Cells. 2009;93(4):394-412.
|
| [104] |
Peng Z, Zhang Y, Sun X, et al. Real-time probing and unraveling the morphology formation of blade-coated ternary nonfullerene organic photovoltaics with in situ X-Ray scattering. Adv Funct Mater. 2023;33(14):10.
|
| [105] |
Le Berre M, Chen Y, Baigl D. From convective assembly to Landau-Levich deposition of multilayered phospholipid films of controlled thickness. Langmuir. 2009;25(5):2554-2557.
|
| [106] |
Yao H, Cui Y, Yu R, Gao B, Zhang H, Hou J. Design, synthesis, and photovoltaic characterization of a small molecular acceptor with an ultra-narrow band gap. Angew Chem Int Ed. 2017;56(11):3045-3049.
|
| [107] |
Chen Y, Qin Y, Wu Y, et al. From binary to ternary: improving the external quantum efficiency of small-molecule acceptor-based polymer solar cells with a minute amount of fullerene sensitization. Adv Energy Mater. 2017;7(17):1700328.
|
| [108] |
Tang H, Xu T, Yan C, et al. Donor derivative incorporation: an effective strategy toward high performance all-small-molecule ternary organic solar cells. Adv Sci. 2019;6(21):1901613.
|
| [109] |
Xu X, Feng K, Yu L, Yan H, Li R, Peng Q. Highly efficient all-polymer solar cells enabled by p-doping of the polymer donor. ACS Energy Lett. 2020;5(7):2434-2443.
|
| [110] |
Yuan J, Liu D, Zhao H, et al. Patterned blade coating strategy enables the enhanced device reproducibility and optimized morphology of organic solar cells. Adv Energy Mater. 2021;11(18):10.
|
| [111] |
Zhao Y, Wang G, Wang Y, et al. A sequential slot-die coated ternary system enables efficient flexible organic solar cells. Solar RRL. 2019;3(3):9.
|
| [112] |
Zhao R, Li Y, Ding Z, et al. A Two-step heating strategy for nonhalogen solvent-processed organic solar cells based on a low-cost polymer donor. Macromolecules. 2023;56(3):867-875.
|
| [113] |
Zhu L, Zhong W, Qiu C, et al. Aggregation-induced multilength scaled morphology enabling 11.76%efficiency in all-polymer solar cells using printing fabrication. Adv Mater. 2019;31(41):e1902899.
|
| [114] |
Sun Y, Liu J, Ding Y, Han Y. Controlling the surface composition of PCBM in P3HT/PCBM blend films by using mixed solvents with different evaporation rates. Chinese J Polym Sci. 2013;31(7):1029-1037.
|
| [115] |
Jiang X, Chotard P, Luo K, et al. Revealing donor-acceptor interaction on the printed active layer morphology and the formation kinetics for nonfullerene organic solar cells at ambient conditions. Adv Energy Mater. 2022;12(14):2103977.
|
| [116] |
Zhou K, Zhang R, Liu J, et al. Donor/acceptor molecular orientation-dependent photovoltaic performance in all-polymer solar cells. ACS Appl Mater Interfaces. 2015;7(45):25352-25361.
|
| [117] |
Zhang R, Yan Y, Zhang Q, et al. To reveal the importance of the crystallization sequence on micro-morphological structures of all-crystalline polymer blends by in situ investigation. ACS Appl Mater Interfaces. 2021;13(18):21756-21764.
|
| [118] |
Su Y, Ding Z, Zhang R, et al. High-efficiency organic solar cells processed from a halogen-free solvent system. Sci China Chem. 2023;66(8):2380-2388.
|
| [119] |
Zhao H, Naveed HB, Lin B, et al. Hot hydrocarbon-solvent slot-die coating enables high-efficiency organic solar cells with temperature-dependent aggregation behavior. Adv Mater. 2020;32(39):e2002302.
|
| [120] |
Oh JY, Shin M, Lee TI, et al. Self-seeded growth of poly(3-hexylthiophene) (P3HT) nanofibrils by a cycle of cooling and heating in solutions. Macromolecules. 2012;45(18):7504-7513.
|
| [121] |
Ye L, Xie Y, Weng K, et al. Insertion of chlorine atoms onto π-bridges of conjugated polymer enables improved photovoltaic performance. Nano Energy. 2019;58:220-226.
|
| [122] |
Liang Q, Chang Y, Liang C, Zhu H, Guo Z, Liu J. Application of crystallization kinetics strategy in morphology control of solar cells based on nonfullerene blends. Acta Phys Chim Sin. 2023;39:2212006.
|
| [123] |
Zhou K, Zhao Q, Zhang R, et al. Decreased domain size of p-DTS(FBTTH2)2/P(NDI2OD-T2) blend films due to their different solution aggregation behavior at different temperatures. Phys Chem Chem Phys. 2017;19(48):32373-32380.
|
| [124] |
Yuan J, Xu Y, Shi G, et al. Engineering the morphology via processing additives in multiple all-polymer solar cells for improved performance. J Mater Chem A. 2018;6(22):10421-10432.
|
| [125] |
Yao Y, Hou J, Xu Z, Li G, Yang Y. Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells. Adv Funct Mater. 2008;18(12):1783-1789.
|
| [126] |
Hummelen JC, Brabec CJ, Padinger F, Sariciftci NS. Photovoltaic properties of conjugated polymer/methanofullerene composites embedded in a polystyrene. Matrix J Appl Phys. 1999;85(9):6866-6872.
|
| [127] |
Zhan J, Wang L, Zhang M, et al. Manipulating crystallization kinetics of conjugated polymers in nonfullerene photovoltaic blends toward refined morphologies and higher performances. Macromolecules. 2021;54(9):4030-4041.
|
| [128] |
Hernandez JL, Deb N, Wolfe RMW, et al. Simple transfer from spin coating to blade coating through processing aggregated solutions. J Mater Chem A. 2017;5(39):20687-20695.
|
| [129] |
Manley EF, Strzalka J, Fauvell TJ, et al. In situ GIWAXS analysis of solvent and additive effects on PTB7 thin film microstructure evolution during spin. Adv Mater. 2017;29(43):9.
|
| [130] |
Xu J, Zhan J, Zhou G, et al. Slot-die-coated organic solar cells optimized through multistep crystallization kinetics. Solar RRL. 2022;6(6):11.
|
| [131] |
Liu J, Zeng S, Zhang Z, Peng J, Liang Q. Optimizing the phase-separated domain size of the active layer via sequential crystallization in all-polymer solar cells. J Phys Chem Lett. 2020;11(6):2314-2321.
|
| [132] |
Liang Q, Jiao X, Yan Y, et al. Separating crystallization process of P3HT and O-IDTBR to construct highly crystalline interpenetrating network with optimized vertical phase separation. Adv Funct Mater. 2019;29(47):1807591.
|
| [133] |
Brabec CJ, Johannson H, Padinger F, Neugebauer H, Hummelen JC, Sariciftci NS. Photoinduced FT-IR spectroscopy and CW-photocurrent measurements of conjugated polymers and fullerenes blended into a conventional polymer matrix. Sol Energy Mater Sol Cells. 2000;61(1):19-33.
|
| [134] |
Camaioni N, Catellani M, Luzzati S, Migliori A. Morphological characterization of poly(3-octylthiophene):plasticizer:C60 blends. Thin Solid Films. 2002;403-404:489-494.
|
| [135] |
Guan H, Liao Q, Huang T, et al. Solid additive enables organic solar cells with efficiency up to 18.6%. ACS Appl Mater Interfaces. 2023;15(21):25774-25782.
|
| [136] |
Fan P, Sun W, Zhang X, et al. Bifunctional bis-benzophenone as A solid additive for non-fullerene solar cells. Adv Funct Mater. 2021;31(8):7.
|
| [137] |
Yan Y, Liu Y, Zhang J, Zhang Q, Han Y. Optimization of local orientation and vertical phase separation by adding a volatilizable solid additive to the J51:N2200 blend to improve its photovoltaic performance. J Mater Chem C. 2021;9(11):3835-3845.
|
| [138] |
Bin H, Zhang ZG, Gao L, et al. Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5%efficiency. J Am Chem Soc. 2016;138(13):4657-4664.
|
| [139] |
Ge J, Hong L, Song W, et al. Solvent annealing enables 15.39%efficiency all-small-molecule solar cells through improved molecule interconnection and reduced non-radiative loss. Adv Energy Mater. 2021;11(22):9.
|
| [140] |
Li G, Shrotriya V, Huang J, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater. 2005;4(11):864-868.
|
| [141] |
Li G, Shrotriya V, Yao Y, Yang Y. Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). J Appl Phys. 2005;98(4):5.
|
| [142] |
Min J, Güldal NS, Guo J, et al. Gaining further insight into the effects of thermal annealing and solvent vapor annealing on time morphological development and degradation in small molecule solar cells. J Mater Chem A. 2017;5(34):18101-18110.
|
| [143] |
Guo J, Bin H, Wang W, et al. All-small molecule solar cells based on donor molecule optimization with highly enhanced efficiency and stability. J Mater Chem A. 2018;6(32):15675-15683.
|
| [144] |
Ma W, Yang C, Gong X, Lee K, Heeger AJ. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater. 2005;10:15.
|
| [145] |
Cheng X, Li M, Liang Z, Gao M, Ye L, Geng Y. Implications of crystallization temperatures of organic small molecules in optimizing nonfullerene solar cell performance. ACS Appl Energy Mater. 2021;4(8):8442-8453.
|
| [146] |
Zhang X, Fan P, Wang Z, Zheng D, Yu J. Morphology regulation by upside-down thermal annealing based on blend thick-film organic solar cells. J Phys Chem C. 2021;125(28):15194-15199.
|
| [147] |
Jin C, Olsen BC, Luber EJ, Buriak JM. Nanopatterning via solvent vapor annealing of block copolymer thin films. Chem Mater. 2017;29(1):176-188.
|
| [148] |
Sun K, Xiao Z, Hanssen E, et al. The role of solvent vapor annealing in highly efficient air-processed small molecule solar cells. J Mater Chem A. 2014;2(24):9048-9054.
|
| [149] |
Babics M, Liang RZ, Wang K, et al. Solvent vapor annealing-mediated crystallization directs charge generation, recombination and extraction in BHJ solar cells. Chem Mater. 2018;30(3):789-798.
|
| [150] |
Harreiß C, Langner S, Wu M, et al. Understanding and controlling the evolution of nanomorphology and crystallinity of organic bulk-heterojunction blends with solvent vapor annealing. Solar RRL. 2022;6(9):2200127.
|
| [151] |
Liang Q, Han J, Song C, et al. Reducing the confinement of PBDB-T to ITIC to improve the crystallinity of PBDB-T/ITIC blends. J Mater Chem A. 2018;6(32):15610-15620.
|
| [152] |
Zhao Y, Xie Z, Qu Y, Geng Y, Wang L. Solvent-vapor treatment induced performance enhancement of poly(3-hexylthiophene):methanofullerene bulk-heterojunction photovoltaic cells. Appl Phys Lett. 2007;90(4):15.
|
| [153] |
Wu WR, Su CJ, Chuang WT, et al. Surface layering and supersaturation for top-down nanostructural development during spin coating of polymer/fullerene thin films. Adv Energy Mater. 2017;7(14):11.
|
| [154] |
Sampaio PGV, González MOA, Oliveira Ferreira P, et al. Overview of printing and coating techniques in the production of organic photovoltaic cells. Int J Energy Res. 2020;44(13):9912-9931.
|
RIGHTS & PERMISSIONS
2024 The Authors. Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.