Electrochemical activity of 3d transition metal ions in polyanionic compounds for sodium-ion batteries

Shikang Jiang , Hanlin Wang , Ting Wang , Limin Zhou , Hui Xia , Hua-Kun Liu , Shi-Xue Dou , Mingzhe Chen

Battery Energy ›› 2024, Vol. 3 ›› Issue (5) : 20230071

PDF
Battery Energy ›› 2024, Vol. 3 ›› Issue (5) : 20230071 DOI: 10.1002/bte2.20230071
PERSPECTIVE

Electrochemical activity of 3d transition metal ions in polyanionic compounds for sodium-ion batteries

Author information +
History +
PDF

Abstract

Sodium-ion batteries are expected to replace lithium-ion batteries in largescale energy storage systems due to their low cost, wide availability, and high abundance. Polyanionic materials are considered to be the most promising cathode materials for sodium-ion batteries because of their cycling stability and structural stability. However, limited by its poor electronic conductivity, the electrochemical performance needs to be further improved. This paper reviews the characterization and development of 3d transition metal ions polyanionic compounds, along with the summarized effect of structure and particle size on the performance and improvement of electrochemical properties. Meanwhile, crystal structure modulation, transition metal ion choice, and transition metal ion doping can improve the electrochemical performance and energy density of polyanionic compounds. Finally, this review points out the challenges of polyanionic compounds and puts forward some particular standpoints, contributing to the promising development of polyanionic compounds in the large-scale energy storage market.

Keywords

3d transition metals / electrochemical performance / polyanionic compounds / sodium-ion batteries

Cite this article

Download citation ▾
Shikang Jiang, Hanlin Wang, Ting Wang, Limin Zhou, Hui Xia, Hua-Kun Liu, Shi-Xue Dou, Mingzhe Chen. Electrochemical activity of 3d transition metal ions in polyanionic compounds for sodium-ion batteries. Battery Energy, 2024, 3(5): 20230071 DOI:10.1002/bte2.20230071

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guo SP, Li JC, Xu QT, Ma Z, Xue HG. Recent achievements on polyanion-type compounds for sodium-ion batteries: syntheses, crystal chemistry and electrochemical performance. J Power Sources. 2017;361:285-299.

[2]

Ni Q, Bai Y, Wu F, Wu C. Polyanion-type electrode materials for sodium-ion batteries. Adv Sci. 2017;4:1600275.

[3]

Gao Y, Zhang H, Liu XH, et al. Low-cost polyanion-type sulfate cathode for sodium-ion battery. Adv Energy Mater. 2021;11:11.

[4]

Wang H, Liu F, Yu R, Wu J. Unraveling the reaction mechanisms of electrode materials for sodium-ion and potassium-ion batteries by in situ transmission electron microscopy. Interdiscip Mater. 2022;1(2):196-212.

[5]

Ren H, Li Y, Ni Q, Bai Y, Zhao H, Wu C. Unraveling anionic redox for sodium layered oxide cathodes: breakthroughs and perspectives. Adv Mater. 2022;34:2106171.

[6]

Wang M, Wang Q, Ding X, et al. The prospect and challenges of sodium-ion batteries for low-temperature conditions. Interdiscip Mater. 2022;1(3):373-395.

[7]

Jin T, Li H, Zhu K, Wang PF, Liu P, Jiao L. Polyanion-type cathode materials for sodium-ion batteries. Chem Soc Rev. 2020;49(8):2342-2377.

[8]

Wu Y, Meng X, Yan L, et al. Vanadium-free NASICON-type electrode materials for sodium-ion batteries. J Mater Chem A. 2022;10(41):21816-21837.

[9]

Wu Z, Ye F, Liu Q, et al. Simultaneous incorporation of V and Mn element into polyanionic NASICON for high energy-density and long-lifespan Zn-ion storage. Adv Energy Mater. 2022;12(23):21816-21837.

[10]

Ren W, Qin M, Zhou Y, et al. Electrospun Na4Fe3(PO4)2(P2O7) nanofibers as free-standing cathodes for ultralong-life and high-rate sodium-ion batteries. Energy Storage Mater. 2023;54:776-783.

[11]

Liu R, Zheng S, Yuan Y, et al. Counter-intuitive structural instability aroused by transition metal migration in polyanionic sodium ion host. Adv Energy Mater. 2020;11(3):2003256.

[12]

Agarwal H, Florian J, Goldsmith BR, Singh N. The effect of anion bridging on heterogeneous charge transfer for V2+/V3+. Cell Rep Phys Sci. 2021;2(1):100307.

[13]

Xu C, Zhao J, Wang YA, et al. Reversible activation of V4+/V5+ redox couples in NASICON phosphate cathodes. Adv Energy Mater. 2022;12(25):2200966.

[14]

Zhang W, Li H, Zhang Z, Xu M, Lai Y, Chou SL. Full activation of MN4+/MN3+ redox in Na4MnCr(PO4)3 as a high-voltage and high-rate cathode material for sodium-ion batteries. Small. 2020;16(25):2001524.

[15]

Gao H, Li Y, Park K, Goodenough JB. Sodium extraction from NASICON-structured Na3MnTi(PO4)3 through Mn(III)/Mn(II) and Mn(IV)/Mn(III) redox couples. Chem Mater. 2016;28(18):6553-6559.

[16]

Wang J, Zeng W, Zhu J, et al. Fe-rich pyrophosphate with prolonged high-voltage-plateaus and suppressed voltage decay as sodium-ion battery cathode. Nano Energy. 2023;116:108822.

[17]

Zhang J, Liang G, Wang C, et al. Revisiting the stability of the Cr4+/Cr3+ redox couple in sodium superionic conductor compounds. ACS Appl Mater Interfaces. 2020;12(25):28313-28319.

[18]

Nose M, Nakayama H, Nobuhara K, Yamaguchi H, Nakanishi S, Iba H. Na4CO3(PO4)2P2O7: a novel storage material for sodium-ion batteries. J Power Sources. 2013;234:175-179.

[19]

Kawai K, Asakura D, Nishimura S, Yamada A. 4.7 V operation of the Cr4+/Cr3+ redox couple in Na3Cr2(PO4)2F3. Chem Mater. 2021;33(4):1373-1379.

[20]

Szliszka E, Czuba Z, Domino M, Mazur B, Zydowicz G, Krol W. Ethanolic extract of propolis (EEP) enhances the apoptosis-inducing potential of TRAIL in cancer cells. Molecules. 2009;14(2):738-754.

[21]

Liu C, Neale ZG, Cao G. Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater Today. 2016;19(2):109-123.

[22]

Hao Z, Shi X, Yang Z, et al. The distance between phosphate-based polyanionic compounds and their practical application for sodium-ion batteries. Adv Mater. 2023;35:2305135.

[23]

Wang X, Ren L, Wang Y, et al. A strategy to enhance rate capability by doping titanium into Na2FeP2O7@C cathode materials for Na-ion batteries. J Power Sources. 2023;557:232533.

[24]

Ali G, Lee JH, Susanto D, et al. Polythiophene-Wrapped olivine NaFePO4 as a cathode for Na-ion batteries. ACS Appl Mater Interfaces. 2016;8(24):15422-15429.

[25]

Yao G, Zhang X, Yan Y, et al. Facile synthesis of hierarchical Na2Fe(SO4)2@rGO/C as high-voltage cathode for energy density-enhanced sodium-ion batteries. J Energy Chem. 2020;50:387-394.

[26]

Barpanda P, Lu J, Ye T, et al. A layer-structured Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries. RSC Adv. 2013;3(12):3857-3860.

[27]

Kim H, Park CS, Choi JW, Jung Y. Defect-controlled formation of triclinic Na2CoP2O7 for 4 V sodium-ion batteries. Angew Chem Int Ed. 2016;55(23):6662-6666.

[28]

Kee Y, Dimov N, Staikov A, et al. Insight into the limited electrochemical activity of NaVP2O7. RSC Adv. 2015;5(80):64991-64996.

[29]

Kovrugin VM, Chotard JN, Fauth F, Masquelier C. Na7V3(P2O7)4 as a high voltage electrode material for Na-ion batteries: crystal structure and mechanism of Na+extraction/insertion byoperando X-ray diffraction. J Mater Chem A. 2020;8(40):21110-21121.

[30]

Yan G, Dugas R, Tarascon JM. The Na3V2(PO4)2F3/carbon Na-ion battery: its performance understanding as deduced from differential voltage analysis. J Electrochem Soc. 2018;165(2): a220-a227.

[31]

Deng C, Zhang S, Wu Y. Hydrothermal-assisted synthesis of the Na7V4(P2O7)4(PO4)/C nanorod and its fast sodium intercalation chemistry in aqueous rechargeable sodium batteries. Nanoscale. 2015;7(2):487-491.

[32]

Law M, Ramar V, Balaya P. Na2MnSiO4 as an attractive high capacity cathode material for sodium-ion battery. J Power Sources. 2017;359:277-284.

[33]

Boyadzhieva T, Koleva V, Zhecheva E, Nihtianova D, Mihaylov L, Stoyanova R. Competitive lithium and sodium intercalation into sodium manganese phospho-olivine NaMnPO4 covered with carbon black. RSC Adv. 2015;5(106):87694-87705.

[34]

Li H, Chen X, Jin T, Bao W, Zhang Z, Jiao L. Robust graphene layer modified Na2MnP2O7 as a durable high-rate and high energy cathode for Na-ion batteries. Energy Storage Mater. 2019;16:383-390.

[35]

Ling R, Cai S, Shen K, et al. Dual carbon-confined Na2MnPO4F nanoparticles as a superior cathode for rechargeable sodium-ion battery. Ceram Int. 2019;45(16):19799-19807.

[36]

Kim H, Yoon G, Park I, et al. Anomalous Jahn-Teller behavior in a manganese-based mixed-phosphate cathode for sodium ion batteries. Energy Environ Sci. 2015;8(11):3325-3335.

[37]

Chen H, Hao Q, Zivkovic O, et al. Sidorenkite (Na3MnPO4CO3): a new intercalation cathode material for Na-ion batteries. Chem Mater. 2013;25(14):2777-2786.

[38]

Barpanda P, Oyama G, Nishimura S, Chung SC, Yamada A. A 3.8-V earth-abundant sodium battery electrode. Nat Commun. 2014;5:4358.

[39]

Li S, Guo J, Ye Z, et al. Zero-strain Na2FeSiO4 as novel cathode material for sodium-ion batteries. ACS Appl Mater Interfaces. 2016;8(27):17233-17238.

[40]

Wang D, Wu Y, Lv J, Wang R, Xu S. Carbon encapsulated maricite NaFePO4 nanoparticles as cathode material for sodium-ion batteries. Colloids Surf A. 2019;583:123957.

[41]

Ma X, Wu X, Shen P. Rational design of Na4Fe3(PO4)2(P2O7) nanoparticles embedded in graphene: toward fast sodium storage through the pseudocapacitive effect. ACS Appl Energy Mater. 2018;1(11):6268-6278.

[42]

Jin D, Qiu H, Du F, Wei Y, Meng X. Co-doped Na2FePO4F fluorophosphates as a promising cathode material for rechargeable sodium-ion batteries. Solid State Sci. 2019;93:62-69.

[43]

Xie B, Sakamoto R, Kitajou A, et al. Cathode properties of Na3FePO4CO3 prepared by the mechanical ball milling method for Na-ion batteries. Sci Rep. 2020;10:3278.

[44]

Yang J, Wang H, Hu P, Qi J, Guo L, Wang L. A high-rate and ultralong-life sodium-ion battery based on NaTi2(PO4)3 nanocubes with synergistic coating of carbon and rutile TiO2. Small. 2015;11(31):3744-3749.

[45]

Chen CY, Matsumoto K, Nohira T, Hagiwara R. Improved electrochemical performance of NaVOPO4 positive electrodes at elevated temperature in an ionic liquid electrolyte. J Electrochem Soc. 2015;162(10): a2093-a2098.

[46]

Zhu C, Kopold P, van Aken PA, Maier J, Yu Y. High power-high energy sodium battery based on threefold interpenetrating network. Adv Mater. 2016;28(12):2409-2416.

[47]

Park YU, Seo DH, Kwon HS, et al. A new high-energy cathode for a Na-ion battery with ultrahigh stability. J Am Chem Soc. 2013;135(37):13870-13878.

[48]

Ding J, Lin YC, Liu J, et al. KVOPO4: a new high capacity multielectron Na-ion battery cathode. Adv Energy Mater. 2018;8(21):1800221.

[49]

Ni Y, He G. Stable cycling of β-VOPO4/NaVOPO4 cathodes for sodium-ion batteries. Electrochim Acta. 2018;292:47-54.

[50]

Aparicio PA, Dawson JA, Islam MS, de Leeuw NH. Computational study of NaVOPO4 polymorphs as cathode materials for Na-ion batteries: diffusion, electronic properties, and Cation-Dopin. behavior. J Phys Chem C. 2018;122(45):25829-25836.

[51]

Fang Y, Liu Q, Xiao L, et al. A fully sodiated NaVOPO4 with layered structure for high-voltage and long-lifespan sodium-ion batteries. Chem. 2018;4(5):1167-1180.

[52]

Liang Z, Liu R, Xiang Y, et al. Electrochemical investigation of multi-electron reactions in NaVOPO4 cathode for sodium-ion batteries. Electrochim Acta. 2020;351:136454.

[53]

Yu H, Ruan X, Wang J, et al. From solid-solution MXene to Cr-substituted Na3V2(PO4)3: breaking the symmetry of sodium ions for high-voltage and ultrahigh-rate cathode performance. ACS Nano. 2022;16(12):21174-21185.

[54]

Xu G, Sun G. Mg2+-doped Na3V2(PO4)3/C decorated with graphene sheets: an ultrafast Na-storage cathode for advanced energy storage. Ceram Int. 2016;42(13):14774-14781.

[55]

Ou X, Liang X, Yang C, et al. Mn doped NaV3(PO4)3/C anode with high-rate and long cycle-life for sodium ion batteries. Energy Storage Mater. 2018;12:153-160.

[56]

Liu Y, Zhou YR, Zhang JX, et al. Monoclinic phase Na3Fe2(PO4)3: synthesis, structure, and electrochemical performance as cathode material in sodium-ion batteries. ACS Sustain Chem Eng. 2016;5(2):1306-1314.

[57]

Rajagopalan R, Chen B, Zhang Z, et al. Improved reversibility of Fe3+/Fe4+ redox couple in sodium super ion conductor type Na3Fe2 (PO4)3 for sodium-ion batteries. Adv Mater. 2017;29(12):1605694.

[58]

Jayanthi K, Lochab S, Barpanda P, Navrotsky A. Calorimetric study of mixed phosphates Na4M3(PO4)2P2O7 (M =MN2+, Fe2+, CO2+, Ni2+) to evaluate the electrochemical trends. J Phys Chem C. 2023;127(24):11700-11706.

[59]

Liang L, Li X, Zhao F, et al. Construction and operating mechanism of high-rate Mo-doped Na3V2(PO4)3@C nanowires toward practicable wide-temperature-tolerance Na-ion and hybrid Li/Na-ion batteries. Adv Energy Mater. 2021;11(21):2100287.

[60]

Zhou Y, Xu G, Lin J, et al. Reversible multi-electron redox chemistry in a NASICON-type cathode toward high-energy-density and long-life sodium-ion full batteries. Adv Mater. 2023;35(44):2304428.

[61]

Zhao QY, Li JY, Chen MJ, et al. Bimetal substitution enabled energetic polyanion cathode for sodium-ion batteries. Nano Lett. 2022;22(23):9685-9692.

[62]

Li H, Guan C, Xu M, et al. Organic/inorganic anions coupling enabled reversible high-valent redox in vanadium-based polyanionic compound. Energy Storage Mater. 2022;47:526-533.

[63]

Zhou W, Xue L, X, et al. NaxMV(PO4)3 (M =Mn, Fe, Ni) structure and properties for sodium extraction. Nano Lett. 2016;16(12):7836-7841.

[64]

Gao H, Seymour ID, Xin S, Xue L, Henkelman G, Goodenough JB. Na3MnZr(PO4)3: a high-voltage cathode for sodium batteries. J Am Chem Soc. 2018;140(51):18192-18199.

[65]

Zhang J, Liu Y, Zhao X, et al. A novel NASICON-type Na4MnCr(PO4)3 demonstrating the energy density record of phosphate cathodes for sodium-ion batteries. Adv Mater. 2020;32(11):1906348.

[66]

Wang Q, Ling C, Li J, Gao H, Wang Z, Jin H. Experimental and theoretical investigation of Na4MnAl(PO4)3 cathode material for sodium-ion batteries. Chem Eng J. 2021;425:130680.

[67]

Ghosh S, Barman N, Senguttuvan P. Impact of Mg2+ and Al3+ substitutions on the structural and electrochemical properties of NASICON-NaxVMN0.75M0.25(PO4)3 (M =Mg and Al) cathodes for sodium-ion batteries. Small. 2020;16(45):2003973.

[68]

Yang W, Liu Q, Zhao Y, et al. Progress on Fe-based polyanionic oxide cathodes materials toward grid-scale energy storage for sodium-ion batteries. Small Methods. 2022;6(9):2200555.

[69]

Lee E, Brown DE, Alp EE, et al. New insights into the performance degradation of Fe-based layered oxides in Sodium-Ion batteries: instability of Fe3+/Fe4+ redox in α-NaFeO2. Chem Mater. 2015;27(19):6755-6764.

[70]

Guan WH, Lin QY, Lan ZY, et al. Approaching the theoretical capacity limit of Na2FeSiO4-based cathodes with fully reversible two-electron redox reaction for sodium-ion battery. Mater Today Nano. 2020;12:100098.

[71]

Watcharatharapong T, T-Thienprasert J, Chakraborty S, Ahuja R. Defect formations and pH-dependent kinetics in kröhnkite Na2Fe(SO4)2·2H2O based cathode for sodium-ion batteries: resembling synthesis conditions through chemical potential landscape. Nano Energy. 2019;55:123-134.

[72]

Chen Y, Dong C, Chen L, et al. “One stone two birds”design for hollow spherical Na4Fe3(PO4)2P2O7/C cathode enabled high-performance sodium-ion batteries from iron rust. EcoMat. 2023;5(10):e12393.

[73]

Yuan T, Wang Y, Zhang J, et al. 3D graphene decorated Na4Fe3(PO4)2(P2O7) microspheres as low-cost and high-performance cathode materials for sodium-ion batteries. Nano Energy. 2019;56:160-168.

[74]

Gao J, Chen H, Mei Y, et al. Robust iron-based cathode for ultralong-lasting Na-ion battery with a wide operation-temperature. Nano Energy. 2023;115:108747.

[75]

Li X, Zhang Y, Zhang B, Qin K, Liu H, Ma ZF. Mn-doped Na4Fe3(PO4)2(P2O7) facilitating Na+ migration at low temperature as a high performance cathode material of sodium ion batteries. J Power Sources. 2022;521:230922.

[76]

Gezović A, Vujković MJ, Milović M, Grudić V, Dominko R, Mentus S. Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook. Energy Storage Mater. 2021;37:243-273.

[77]

Yang G, Song H, Wu M, Wang C. Porous NaTi2(PO4)3nanocubes: a high-rate nonaqueous sodium anode material with more than 10000 cycle life. J Mater Chem A. 2015;3(36):18718-18726.

[78]

Roh HK, Kim MS, Chung KY, et al. A chemically bonded NaTi2(PO4)3/rGO microsphere composite as a high-rate insertion anode for sodium-ion capacitors. J Mater Chem A. 2017;5(33):17506-17516.

[79]

Lei P, Liu K, Wan X, Luo D, Xiang X. Ultrafast Na intercalation chemistry of Na2Ti3/2MN1/2(PO4)3 nanodots planted in a carbon matrix as a low cost anode for aqueous sodium-ion batteries. Chem Commun. 2019;55(4):509-512.

[80]

Yang C, Sun X, Zhang YR, Liu Y, Zhang QA, Yuan CZ. Facile synthesis of hierarchical NaTi2(PO4)3/Ti3C2 nanocomposites with superior sodium storage performance. Mater Lett. 2019;236:408-411.

[81]

Yang Q, Li Z, Tian H, Su Z. Synthesis and characterization of NASICON-structured NaTi2(PO4)3/C as an anode material for hybrid Li/Na-ion batteries. Ceram Int. 2019;45(5):6291-6295.

[82]

Song J, Park S, Gim J, et al. High rate performance of a NaTi2(PO4)3/rGO composite electrode via pyro synthesis for sodium ion batteries. J Mater Chem A. 2016;4(20):7815-7822.

[83]

Zheng W, Lei P, Luo D, Huang Y, Tian G, Xiang X. Understanding the effect of structural compositions on electrochemical properties of titanium-based polyanionic compounds for superior sodium storage. Solid State Ionics. 2020;345:115194.

RIGHTS & PERMISSIONS

2024 The Authors. Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

213

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/