Development of an in situ polymerized artificial layer for dendrite-free and stable lithium metal batteries

Junquan Lai , Rui Tan , Huai Jiang , Xinjing Huang , Zhongliang Tian , Bo Hong , Mengran Wang , Jie Li

Battery Energy ›› 2024, Vol. 3 ›› Issue (4) : 20230070

PDF
Battery Energy ›› 2024, Vol. 3 ›› Issue (4) : 20230070 DOI: 10.1002/bte2.20230070
RAPID COMMUNICATION

Development of an in situ polymerized artificial layer for dendrite-free and stable lithium metal batteries

Author information +
History +
PDF

Abstract

Severe lithium dendrite issues bring a significant challenge for the practical application of Li metal anodes. In this study, a scalable spray-coating method is used to in situ construct an organic/inorganic composite interfacial layer including Li-Zn alloy and lithium polyacrylate on the surface of lithium metal. The Li-Zn alloy exhibits favorable lithiophilic and high Li+ diffusion coefficient, whereas highly elastic lithium polyacrylate is a Li+ conductor and provides excellent mechanical properties. Finally, the ZA-Li||ZA-Li cell shows stable cycling for over 1800 h with 1mAcm−2 at 2 h per cycle, which demonstrates a pronounced inhibition of lithium dendrite growth. Based on the above merits, this work would open a new avenue to develop advanced artificial interfacial layer with multiple capabilities for high-performance lithium metal batteries.

Keywords

alloy / interfacial layer / lithium metal anode / metallic dendrite / organic/inorganic solid interface

Cite this article

Download citation ▾
Junquan Lai, Rui Tan, Huai Jiang, Xinjing Huang, Zhongliang Tian, Bo Hong, Mengran Wang, Jie Li. Development of an in situ polymerized artificial layer for dendrite-free and stable lithium metal batteries. Battery Energy, 2024, 3(4): 20230070 DOI:10.1002/bte2.20230070

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wood KN, Noked M, Dasgupta NP. Lithium metal anodes: toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior. ACS Energy Lett. 2017;2:664-672.

[2]

Zhang SS. Problem, status, and possible solutions for lithium metal anode of rechargeable batteries. ACS Appl Energy Mater. 2018;1:910-920.

[3]

Kornilov D, Penki TR, Cheglakov A, Aurbach D. Li/graphene oxide primary battery system and mechanism. Battery Energy. 2022;1:20210002.

[4]

Kim S-H, Choe U-J, Kim N-Y, Lee S-Y. Fibrous skeleton-framed, flexible high-energy-density quasi-solid-state lithium metal batteries. Battery Energy. 2022;1:20210012.

[5]

Gao P, Zhang C, Wen G. Equivalent circuit model analysis on electrochemical impedance spectroscopy of lithium metal batteries. J Power Sources. 2015;294:67-74.

[6]

Tasaki K, Goldberg A, Lian JJ, Walker M, Timmons A, Harris SJ. Solubility of lithium salts formed on the lithium-ion battery negative electrode surface in organic solvents. J Electrochem Soc. 2009;156:A1019-A1027.

[7]

Bieker G, Winter M, Bieker P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys Chem Chem Phys. 2015;17:8670-8679.

[8]

Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017;12:194-206.

[9]

Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017;117:10403-10473.

[10]

Li Y, Sun Y, Pei A, et al. Robust pinhole-free Li3N solid electrolyte grown from molten lithium. ACS Cent Sci. 2018;4:97-104.

[11]

Zhang YJ, Wang W, Tang H, et al. An ex-situ nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries. J Power Sources. 2015;277:304-311.

[12]

Yuan Y, Wu F, Chen G, Bai Y, Wu C. Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode. J Energy Chem. 2019;37:197-203.

[13]

Zhang XQ, Chen X, Cheng XB, et al. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew Chem Int Ed. 2018;57:5301-5305.

[14]

Chen J, Fan X, Li Q, et al. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat Energy. 2020;5:386-397.

[15]

Qiu Z, Shen S, Liu P, et al. Plasma enhanced lithium coupled with cobalt fibers arrays for advanced energy storage. Adv Funct Mater. 2023;33:2214987.

[16]

Long K, Huang S, Wang H, et al. Green mechanochemical Li foil surface reconstruction toward long-life Li-metal pouch cells. Energy Environ Sci. 2024;17:260-273.

[17]

Bai M, Xie K, Hong B, et al. An artificial Li3PO4 solid electrolyte interphase layer to achieve petal-shaped deposition of lithium. Solid State Ionics. 2019;333:101-104.

[18]

Wu M, Wen Z, Jin J, Chowdari BVR. Trimethylsilyl chloride-modified Li anode for enhanced performance of Li–S cells. ACS Appl Mater Interfaces. 2016;8:16386-16395.

[19]

Zhu B, Jin Y, Hu X, et al. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv Mater. 2017;29:1603755.

[20]

Wang J, Zhang Z, Ying H, Han G, Han WQ. In-situ formation of LiF-rich composite interlayer for dendrite-free all-solid-state lithium batteries. Chem Eng J. 2021;411:128534.

[21]

Zhang S, Liang T, Wang D, et al. A stretchable and safe polymer electrolyte with a protecting-layer strategy for solid-state lithium metal batteries. Adv Sci. 2021;8:2003241.

[22]

Zhang C, Zhang L, Ding Y, et al. Progress and prospects of next-generation redox flow batteries. Energy Storage Mater. 2018;15:324-350.

[23]

Naren T, Kuang GC, Jiang R, et al. Reactive polymer as artificial solid electrolyte interface for stable lithium metal batteries. Angew Chem Int Ed. 2023;62:e202305287.

[24]

Li NW, Shi Y, Yin YX, et al. A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew Chem Int Ed. 2018;57:1505-1509.

[25]

Fan X, Chen F, Zhang Y, et al. Constructing a LiPAA interface layer: a new strategy to suppress polysulfide migration and facilitate Li+ transport for high-performance flexible Li–S batteries. Nanotechnology. 2020;31:095401.

[26]

Wang Z, Liu J, Wang M, Shen X, Qian T, Yan C. Toward safer solid-state lithium metal batteries: a review. Nanoscale Adv. 2020;2:1828-1836.

[27]

Liu Y, Xu X, Jiao X, et al. LiXGe containing ion-conductive hybrid skin for high rate lithium metal anode. Chem Eng J. 2019;371:294-300.

[28]

Huang S, Long K, Chen Y, et al. In situ formed tribofilms as efficient organic/inorganic hybrid interlayers for stabilizing lithium metal anodes. Nano Micro Lett. 2023;15:235.

[29]

Huang S, Wu Z, Johannessen B, et al. Interfacial friction enabling ≤20 µm thin free-standing lithium strips for lithium metal batteries. Nat Commun. 2023;14:5678.

[30]

Zhang H, Liao X, Guan Y, et al. Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode. Nat Commun. 2018;9:3729.

[31]

Liang X, Pang Q, Kochetkov IR, et al. A facile surface chemistry route to a stabilized lithium metal anode. Nat Energy. 2017;2:17119.

[32]

Jiang Z, Jin L, Han Z, et al. Facile generation of polymer-alloy hybrid layers for dendrite-free lithium-metal anodes with improved moisture stability. Angew Chem Int Ed. 2019;58:11374-11378.

[33]

Ward AL, Doris SE, Li L, et al. Materials genomics screens for adaptive ion transport behavior by redox-switchable microporous polymer membranes in lithium–sulfur batteries. ACS Cent Sci. 2017;3:399-406.

[34]

Merna J, Vlček P, Volkis V, Michl J. Li+ catalysis and other new methodologies for the radical polymerization of less activated olefins. Chem Rev. 2016;116:771-785.

[35]

Guo R, Gallant BM. Li2O solid electrolyte interphase: probing transport properties at the chemical potential of lithium. Chem Mater. 2020;32:5525-5533.

[36]

Li S, Wang XS, Li QD, et al. A multifunctional artificial protective layer for producing an ultra-stable lithium metal anode in a commercial carbonate electrolyte. J Mater Chem A. 2021;9:7667-7674.

[37]

Yan K, Lee HW, Gao T, et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 2014;14:6016-6022.

RIGHTS & PERMISSIONS

2024 The Authors. Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

167

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/