Biochar for supercapacitor electrodes: Mechanisms in aqueous electrolytes

Caiyu Ma , Longnian Tang , Haiyun Cheng , Zhuangnan Li , Wenyao Li , Guanjie He

Battery Energy ›› 2024, Vol. 3 ›› Issue (4) : 20230058

PDF
Battery Energy ›› 2024, Vol. 3 ›› Issue (4) : 20230058 DOI: 10.1002/bte2.20230058
RESEARCH ARTICLE

Biochar for supercapacitor electrodes: Mechanisms in aqueous electrolytes

Author information +
History +
PDF

Abstract

The utilization of biomass materials that contain abundant carbon–oxygen/nitrogen functional groups as precursors for the synthesis of carbon materials presents a promising approach for energy storage and conversion applications. Porous carbon materials derived from biomass are commonly employed as electric-double-layer capacitors in aqueous electrolytes. However, there is a lack of detailed discussion and clarification regarding the kinetics analysis and energy storage mechanisms associated with these materials. This study focuses on the modification of starch powders through the KOH activation process, resulting in the production of porous carbon with tunable nitrogen/oxygen functional groups. The kinetics and energy storage mechanism of this particular material in both acid and alkaline aqueous electrolytes are investigated using in situ attenuated total reflectance-infrared in a three-electrode configuration.

Keywords

biomass carbon / electrode / in situ ATR-IR / supercapacitor

Cite this article

Download citation ▾
Caiyu Ma, Longnian Tang, Haiyun Cheng, Zhuangnan Li, Wenyao Li, Guanjie He. Biochar for supercapacitor electrodes: Mechanisms in aqueous electrolytes. Battery Energy, 2024, 3(4): 20230058 DOI:10.1002/bte2.20230058

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhou Q, Li X, Ouyang S. Carbon-neutral organisms as the new concept in environmental sciences and research prospects. J Agro-Environ Sci. 2022;41(1):1-9.

[2]

Gani A. Fossil fuel energy and environmental performance in an extended STIRPAT model. J Clean Prod. 2021;297:126526.

[3]

Lieberei J, Gheewala SH. Resource depletion assessment of renewable electricity generation technologies-comparison of life cycle impact assessment methods with focus on mineral resources. Int J Life Cycle Assess. 2017;22(2):185-198.

[4]

Merin P, Joy PJ, Muralidharan MN, Gopalan EV, Seema A. Biomass-derived activated carbon for high-performance supercapacitor electrode applications. Chem Eng Technol. 2022;45(4):649-657.

[5]

Fic K, Platek A, Piwek J, Frackowiak E. Sustainable materials for electrochemical capacitors. Mater Today. 2018;21(4):437-454.

[6]

Wang Y, Zhang L, Hou H, et al. Recent progress in carbon-based materials for supercapacitor electrodes: a review. J Mater Sci. 2021;56(1):173-200.

[7]

Saini S, Chand P, Joshi A. Biomass derived carbon for supercapacitor applications: review. J Energy Storage. 2021;39:102646.

[8]

Shaker M, Ghazvini AAS, Cao W, Riahifar R, Ge Q. Biomass-derived porous carbons as supercapacitor electrodes—a review. New Carbon Mater. 2021;36(3):546-572.

[9]

Zhu X, Yu S, Xu K, et al. Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chem Eng Sci. 2018;181:36-45.

[10]

Wong MH, Ok YS, Naidu R. Biological—waste as resource, with a focus on food waste. Environ Sci Pollut Res. 2016;23(8):7071-7073.

[11]

Bi Z, Kong Q, Cao Y, et al. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. J Mater Chem A. 2019;7(27):16028-16045.

[12]

Cao X, Li Z, Chen H, et al. Synthesis of biomass porous carbon materials from bean sprouts for hydrogen evolution reaction electrocatalysis and supercapacitor electrode. Int J Hydrogen Energy. 2021;46(36):18887-18897.

[13]

Liu B, Liu Y, Chen H, Yang M, Li H. Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors. J Power Sources. 2017;341:309-317.

[14]

Momodu D, Okafor C, Manyala N, Bello A, ZebazeKana MG, Ntsoenzok E. Transformation of plant biomass waste into resourceful activated carbon nanostructures for mixed-assembly type electrochemical capacitors. Waste Biomass Valorization. 2019;10(6):1741-1753.

[15]

Kumar S, Saeed G, Zhu L, Hui KN, Kim NH, Lee JH. 0 D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem Eng J. 2021;403:126352.

[16]

Patra A, K. N, Jose JR, Sahoo S, Chakraborty B, Rout CS. Understanding the charge storage mechanism of supercapacitors: in situ/operando spectroscopic approaches and theoretical investigations. J Mater Chem A. 2021;9(46):25852-25891.

[17]

Chen J, Lee PS. Electrochemical supercapacitors: from mechanism understanding to multifunctional applications. Adv Energy Mater. 2021;11(6):2003311.

[18]

Kim J, Kim E, Lee U, et al. Nondisruptive in situ Raman analysis for gas evolution in commercial supercapacitor cells. Electrochim Acta. 2016;219:447-452.

[19]

Krittayavathananon A, Pettong T, Kidkhunthod P, Sawangphruk M. Insight into the charge storage mechanism and capacity retention fading of MnCO2O4 used as supercapacitor electrodes. Electrochim Acta. 2017;258:1008-1015.

[20]

Seema R, Mandal S, Singh P, Paul S, Chanda N. Fiber Bragg grating sensors for in-situ temperature measurement on bending a flexible planar supercapacitor. Sens Actuator A. 2020;314:112266.

[21]

Wang H, Köster TKJ, Trease NM, et al. Real-time NMR studies of electrochemical double-layer capacitors. J Am Chem Soc. 2011;133(48):19270-19273.

[22]

Griffin JM, Forse AC, Tsai WY, Taberna PL, Simon P, Grey CP. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. Nat Mater. 2015;14(8):812-819.

[23]

Forse AC, Griffin JM, Merlet C, et al. Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy, nature. Energy. 2017;2(3):7.

[24]

Du YM, Zhang YF, Zhang CH, Liu YP. In situ nanoindentation mechanical property of films by atomic force microscope. Rare Metal Mater Eng. 2015;44(8):1959-1963.

[25]

Chen CG, Song MY, Lu LZ, Yue LJ, Huang T, Yu AS. Application of in situ Raman and Fourier transform infrared spectroelectrochemical methods on the electrode–electrolyte interface for lithium–oxygen batteries. Batteries Supercaps. 2021;4(6):850-859.

[26]

Chen XY, Cheng Y, Matsuba M, et al. In situ monitoring of heterogeneous hydrosilylation reactions using infrared and Raman spectroscopy: normalization using phase-specific internal standards. Appl Spectrosc. 2019;73(11):1299-1307.

[27]

Cave EA, Olson JZ, Schlenker CW. Ion-pairing dynamics revealed by kinetically resolved in situ FTIR spectroelectrochemistry during Lithium-Ion storage. ACS Appl Mater Interfaces. 2021;13(41):48546-48554.

[28]

Mozhzhukhina N, Tesio AY, De Leo LPM, Calvo EJ. In situ infrared spectroscopy study of PYR14TFSI ionic liquid stability for Li-O2 battery. J Electrochem Soc. 2017;164(2): A518-A523.

[29]

Zhao Y, Chen Z. Application of Fourier transform infrared spectroscopy in the study of atmospheric heterogeneous processes. Appl Spectrosc Rev. 2010;45(1):63-91.

[30]

Chen Y, Zou C, Mastalerz M, Hu S, Gasaway C, Tao X. Applications of micro-Fourier transform infrared spectroscopy (FTIR) in the geological sciences—a review. Int J Mol Sci. 2015;16(12):30223-30250.

[31]

Gao F, Tian XD, Lin JS, Dong JC, Lin XM, Li JF. In situ Raman, FTIR, and XRD spectroscopic studies in fuel cells and rechargeable batteries. Nano Research, 2023;16(4):4855-4866.

[32]

Chen DC, Xiong XH, Zhao BT, Mahmoud MA, El-Sayed MA, Liu ML. Probing structural evolution and charge storage mechanism of NiO2Hx electrode materials using in operando resonance Raman spectroscopy, advanced. Science. 2016;3(6):1500433.

[33]

Yang L, Cheng S, Ji X, Jiang Y, Zhou J, Liu M. Investigations into the origin of pseudocapacitive behavior of MN3O4 electrodes using in operando Raman spectroscopy. J Mater Chem A. 2015;3(14):7338-7344.

[34]

Chen D, Ding D, Li X, et al. Probing the charge storage mechanism of a pseudocapacitive MnO2 electrode using in operando Raman spectroscopy. Chem Mater. 2015;27(19):6608-6619.

[35]

Richey FW, Dyatkin B, Gogotsi Y, Elabd YA. Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry. J Am Chem Soc. 2013;135(34):12818-12826.

[36]

Qiu X, Wang N, Wang Z, Wang F, Wang Y. Towards high-performance zinc-based hybrid supercapacitors via macropores-based charge storage in organic electrolytes. Angew Chem Int Ed. 2021;60(17):9610-9617.

[37]

Butsyk O, Olejnik P, Romero E, Plonska-Brzezinska ME. Postsynthetic treatment of carbon nano-onions: surface modification by heteroatoms to enhance their capacitive and electrocatalytic properties. Carbon. 2019;147:90-104.

[38]

Mirzaeian M, Abbas Q, Hunt MRC, Hall P. Pseudocapacitive effect of carbons doped with different functional groups as electrode materials for electrochemical capacitors. Energies. 2020;13(21):5577.

[39]

Yun YS, Cho SY, Shim J, et al. Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv Mater. 2013;25(14):1993-1998.

[40]

Yang J, Zhou X, Wu D, Zhao X, Zhou Z. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv Mater. 2017;29(6):1604108.

[41]

Bai S, Tan G, Li X, et al. Pumpkin-derived porous carbon for supercapacitors with high performance. Chem Asian J. 2016;11(12):1828-1836.

[42]

Byatarayappa G, Guna V, Venkatesh K, Reddy N, Nagaraju N, Nagaraju K. Superior cycle stability performance of a symmetric coin cell fabricated using KOH activated bio-char derived from agricultural waste—Cajanus cajan stems. J Environ Chem Eng. 2021;9(6):106525.

[43]

Chen C, Yu D, Zhao G, et al. Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors. Nano Energy. 2016;27:377-389.

[44]

Fang K, Chen M, Chen J, Tian Q, Wong CP. Cotton stalk-derived carbon fiber@Ni-Al layered double hydroxide nanosheets with improved performances for supercapacitors. Appl Surf Sci. 2019;475:372-379.

[45]

Feng T, Wang S, Hua Y, et al. Synthesis of biomass-derived N, O-codoped hierarchical porous carbon with large surface area for high-performance supercapacitor. J Energy Storage. 2021;44:103286.

[46]

Fu G, Li Q, Ye J, et al. Hierarchical porous carbon with high nitrogen content derived from plant waste (pomelo peel) for supercapacitor. J Mater Sci. 2018;29(9):7707-7717.

[47]

Gong C, Wang X, Ma D, Chen H, Zhang S, Liao Z. Microporous carbon from a biological waste-stiff silkworm for capacitive energy storage. Electrochim Acta. 2016;220:331-339.

[48]

Jiang Y, Chen J, Zeng Q, et al. Facile method to produce sub-1 nm pore-rich carbon from biomass wastes for high performance supercapacitors. J Colloid Interface Sci. 2022;612:213-222.

[49]

Sun K, Leng C, Jiang J, et al. Microporous activated carbons from coconut shells produced by self-activation using the pyrolysis gases produced from them, that have an excellent electric double layer performance. New Carbon Mater. 2017;32(5):451-459.

[50]

Zhang X, Sun B, Fan X, et al. Hierarchical porous carbon derived from coal and biomass for high performance supercapacitors. Fuel. 2022;311:122552.

RIGHTS & PERMISSIONS

2024 The Authors. Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

352

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/