Analysis of chromatin bersin Hela cells with electron tomography

Xiaomin Li, Hongli Feng, Jianguo Zhang, Lei Sun, Ping Zhu

PDF(301 KB)
PDF(301 KB)
Biophysics Reports ›› 2015, Vol. 1 ›› Issue (1) : 51-60. DOI: 10.1007/x41048-015-0009-9
RESEARCH ARTICLE

Analysis of chromatin bersin Hela cells with electron tomography

  • Xiaomin Li, Hongli Feng, Jianguo Zhang, Lei Sun, Ping Zhu
Author information +
History +

Keywords

Chromatin fiber, Hela cell / Electron tomography / Chemical fixation / High-pressure freezing / Cryoultramicrotomy / DualBeam-FIB

Cite this article

Download citation ▾
. Analysis of chromatin bersin Hela cells with electron tomography. Biophysics Reports, 2015, 1(1): 51‒60 https://doi.org/10.1007/x41048-015-0009-9

References

Athey BD, Smith MF, Rankert DA, William SP, Langmore JP (1990) The diameters of frozen-hydrated chromatin fibers increase with DNA linker length: evidence in support of variable diameter models for chromatin. J Cell Biol 111:795-806
Bednar J, Horowitz RA, Dubochet J, Woodcock CL (1995) Chromatin conformation and salt-induced compaction: three-dimensional structural information from cryoelectron microscopy. J Cell Biol 131:1365-1376
Daban JR (2011) Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure. Micron 42:733-750
Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 A resolution. J Mol Biol 319:1097-1113
Davies HG, Murray AB, Walmsley ME (1974) Electron-microscope observations on the organization of the nucleus in chicken erythrocytes and a superunit thread hypothesis for chromosome structure. J Cell Sci 16:261-299
Derenzini M, Olins AL, Olins DE (2014) Chromatin structure in situ: the contribution of DNA ultrastructural cytochemistry. Eur J Histochem 58:2307
Eltsov M, Maclellan KM, Maeshima K, Frangakis AS, Dubochet J (2008) Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ. Proc Natl Acad Sci USA 105:19732-19737
Eltsov M, Sosnovski S, Olins AL, Olins DE (2014) ELCS in ice: cryoelectron microscopy of nuclear envelope-limited chromatin sheets. Chromosoma 123:303-312
Everid AC, Small JV, Davies HG (1970) Electron-microscope observation on the structure of condensed chromatin: evidence for orderly arrays of unit threads on the surface of chicken erythrocyte nuclei. J Cell Sci 7:35-48
Fakan S, van Driel R (2007) The perichromatin region: a functional compartment in the nucleus that determines large-scale chromatin folding. Semin Cell Dev Biol 18:676-681
Finch JT, Klug A (1976) Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci USA 73:1897-1901
Fussner E, Ching RW, Bazett-Jones DP (2011) Living without 30 nm chromatin fibers. Trends Biochem Sci 36:1-6
Gerchman SE, Ramakrishnan V (1987) Chromatin higher-order structure studied by neutron scattering and scanning transmission electron microscopy. Proc Natl Acad Sci USA 84:7802-780h
Giannasca PJ, Horowitz RA, Woodcock CL (1993) Transitions between in situ and isolated chromatin. J Cell Sci 105:551-561
Grigoryev SA,Woodcock CL (2012) Chromatin organization: the 30 nm fiber. Exp Cell Res 318:1448-1455
Horn PJ, Peterson CL (2002) Chromatin higher order foldingwrapping up transcription. Science 297:1824-1827
Horowitz RA, Agard DA, Sedat JW, Woodcock CL (1994) The threedimensional architecture of chromatin in situ: electron tomography reveals fibers composed of a continuously variable zig-zag nucleosomal ribbon. J Cell Biol 125:1-10
Huynh VA, Robinson PJ, Rhodes D (2005) A method for the in vitro reconstitution of a defined "30 nm" chromatin fibre containing stoichiometric amounts of the linker histone. J Mol Biol 345:957-968
Konig P, Braunfeld MB, Sedat JW, Agard DA (2007) The threedimensional structure of in vitro reconstituted Xenopus laevis chromosomes by EM tomography. Chromosoma 116:349-372
Kruithof M, Chien FT, Routh A, Logie C, Rhodes D, van Noort J (2009) Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber. Nat Struct Mol Biol 16:534-540
Langmore JP, Paulson JR (1983) Low angle X-ray diffraction studies of chromatin structure in vivo and in isolated nuclei and metaphase chromosomes. J Cell Biol 96:1120-1131
Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251-260
Matsuda A, Shao L, Boulanger J, Kervrann C, Canton PM, Kner P, Agard D, Sedat JW (2010) Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFPhistones. PLoS One 5:e12768
McDowall AW, Smith JM, Dubochet J (1986) Cryo-electron microscopy of vitrified chromosomes in situ. EMBO J 5:1395-1402
Rigort A, Bauerlein FJ, Leis A, Gruska M, Hoffmann C, Laugks T, Bohm U, Eibauer M, Gnaegi H, Baumeister W Plitzko JM (2010) Micromachining tools and correlative approaches for cellular cryo-electron tomography J Struct Biol 172:169-179
Robinson PJ, Rhodes D (2006) Structure of the "30 nm" chromatin fibre: a key role for the linker histone. Curr Opin Struct Biol 16:336-343
Robinson PJ, Fairall L, Huynh VA, Rhodes D (2006) EM measuremenu define the dimensions of the '30-nm" chromatin fiber: evidence for a compact, interdigitated structure. Proc Natl Acad Sci USA 103:6506-6511
Rogort A, Bauerlein FJB, Villa E, Eibauer M, Laugks T, Baumeister W Plitzko JM (2012) Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography. Proc Natl Acad Sci USA 109:4449-4454
Schalch T, Duda S, Sargent DF, Richmond TJ (2005) X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436:138-141
Scheffer MP, Eltsov M, Frangakis AS (2011) Evidence for shortrange helical order in the 30-nm chromatin fibers of erythrocyte nuclei. Proc Natl Acad Sci USA 108:16992-16997
Simpson RT, Stafford DW (1983) Structural features of a phased nucleosome core particle. Proc Natl Acad Sci USA 80:51-55
Song F, Chen P, Sun D,Wang M, Dong L, Liang D, Xu RM, Zhu P, Li G (2014) Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science 344:376-380
Widom J, Finch JT, Thomas JO (1985) Higher-order structure of long repeat chromatin. EMBO J 4:3189-3194
William SP, Langmore JP (1991) Small angle X-ray scattering of chromatin. Radius and mass per unit length depend on linker length. Biophys J 59:606-618
William SP, Athey BD, Lj M, Schappe RS, Gough AH, Langmore JP (1986) Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length. Biophys J 49:233-248
Woodcock CL (1994) Chromatin fibers observed in situ in frozen hydrated sections. native fiber diameter is not correlated with nucleosome repeat length. J Cell Biol 125:11-19
Woodcock CL, Frado L-LY, Rattner JB (1984) The higher-order structure of chromatin: evidence for a helical ribbon arrangement. J Cell Biol 99:42-52
PDF(301 KB)

Accesses

Citations

Detail

Sections
Recommended

/