Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective

Jan Henkel, Maria A. Woodruff, Devakara R. Epari, Roland Steck, Vaida Glatt, Ian C. Dickinson, Peter F. M. Choong, Michael A. Schuetz, Dietmar W. Hutmacher

Bone Research ›› 2013, Vol. 1 ›› Issue (1) : 216-248.

Bone Research ›› 2013, Vol. 1 ›› Issue (1) : 216-248. DOI: 10.4248/BR201303002
Article

Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective

Author information +
History +

Abstract

The role of Bone Tissue Engineering in the field of Regenerative Medicine has been the topic of substantial research over the past two decades. Technological advances have improved orthopaedic implants and surgical techniques for bone reconstruction. However, improvements in surgical techniques to reconstruct bone have been limited by the paucity of autologous materials available and donor site morbidity. Recent advances in the development of biomaterials have provided attractive alternatives to bone grafting expanding the surgical options for restoring the form and function of injured bone. Specifically, novel bioactive (second generation) biomaterials have been developed that are characterised by controlled action and reaction to the host tissue environment, whilst exhibiting controlled chemical breakdown and resorption with an ultimate replacement by regenerating tissue. Future generations of biomaterials (third generation) are designed to be not only osteoconductive but also osteoinductive, i.e. to stimulate regeneration of host tissues by combining tissue engineering and in situ tissue regeneration methods with a focus on novel applications. These techniques will lead to novel possibilities for tissue regeneration and repair. At present, tissue engineered constructs that may find future use as bone grafts for complex skeletal defects, whether from post-traumatic, degenerative, neoplastic or congenital/developmental “origin” require osseous reconstruction to ensure structural and functional integrity. Engineering functional bone using combinations of cells, scaffolds and bioactive factors is a promising strategy and a particular feature for future development in the area of hybrid materials which are able to exhibit suitable biomimetic and mechanical properties. This review will discuss the state of the art in this field and what we can expect from future generations of bone regeneration concepts.

Keywords

Engineering / Biomedical Engineering / Medical and Health Sciences / Clinical Sciences / Biological Sciences / Biochemistry and Cell Biology

Cite this article

Download citation ▾
Jan Henkel, Maria A. Woodruff, Devakara R. Epari, Roland Steck, Vaida Glatt, Ian C. Dickinson, Peter F. M. Choong, Michael A. Schuetz, Dietmar W. Hutmacher. Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective. Bone Research, 2013, 1(1): 216‒248 https://doi.org/10.4248/BR201303002

References

[1]
MasonC. Regenerative medicine 2.0. Regen Med, 2007, 2: 11-18
[2]
WebsterTJ, AhnES. Nanostructured biomaterials for tissue engineering bone. Adv Biochem Eng Biotechnol, 2007, 103: 275-308
[3]
RhoJY, Kuhn-SpearingL, ZiouposP. Mechanical properties and the hierarchical structure of bone. Med Eng Phys, 1998, 20: 92-102
[4]
KeavenyTM, MorganEF, NieburGL, YehOC. Biomechanics of trabecular bone. Annu Rev Biomed Eng, 2001, 3: 307-333
[5]
BarrèreF, MahmoodTA, De GrootK, van BlitterswijkCA. Advanced biomaterials for skeletal tissue regeneration: Instructive and smart functions. Mat Sci Eng R, 2008, 59: 38-71
[6]
Kaplan FS, Keaveny TM, Boskey A, Einhorn TA, Iannotti JP . Form and function of bone. Am Acad Orthop Surg. 1994;127–184.
[7]
CooperDM, MatyasJR, KatzenbergMA, HallgrimssonB. Comparison of microcomputed tomographic and microradiographic measurements of cortical bone porosity. Calcif Tissue Int, 2004, 74: 437-447
[8]
MarksSCJrStructure and development of the skeleton, 2002Academic Press3-15
[9]
DiGirolamoDJ, ClemensTL, KousteniS. The skeleton as an endocrine organ. Nat Rev Rheumatol, 2012, 8: 674-683
[10]
MartinRB. Bone as a ceramic composite material. Mater Sci Forum, 1999, 293: 5-16
[11]
MartinRB. Determinants of the mechanical properties of bones. J Biomech, 1991, 24: 79-88
[12]
KiebzakGM. Age-related bone changes. Exp Gerontol, 1991, 26: 171-187
[13]
Hench LL, Wilson J . An Introduction to Bioceramics. World Scientific, 1993.
[14]
ReillyDT, BursteinAH, FrankelVH. The elastic modulus for bone. J Biomech, 1974, 7: 271-275
[15]
ChoiK, KuhnJL, CiarelliMJ, GoldsteinSA. The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. J Biomech, 1990, 23: 1103-1113
[16]
RhoJY, TsuiTY, PharrGM. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials, 1997, 18: 1325-1330
[17]
JagodzinskiM, KrettekC. Effect of mechanical stability on fracture healing—an update. Injury, 2007, 38: S3-S10
[18]
PiolettiDP. Biomechanics and tissue engineering. Osteoporos Int, 2011, 22: 2027-2031
[19]
Klein-NulendJ, BacabacRG, MullenderMG. Mechanobiology of bone tissue. Pathol Biol (Paris), 2005, 53: 576-580
[20]
EpariDR, TaylorWR, HellerMO, DudaGN. Mechanical conditions in the initial phase of bone healing. Clin Biomech (Bristol, Avon), 2006, 21: 646-655
[21]
MarsellR, EinhornTA. The biology of fracture healing. Injury, 2011, 42: 551-555
[22]
DimitriouR, JonesE, McGonagleD, GiannoudisPV. Bone regeneration: current concepts and future directions. BMC Med, 2011, 9: 66
[23]
EinhornTA. Enhancement of fracture healing. Instr Course Lect, 1996, 45: 401-416
[24]
CaloriGM, AlbisettiW, AgusA, IoriS, TagliabueL. Risk factors contributing to fracture non-unions. Injury, 2007, 38: S11-S18
[25]
SananA, HainesSJ. Repairing holes in the head: a history of cranioplasty. Neurosurgery, 1997, 40: 588-603
[26]
CourvilleCB. Cranioplasty in prehistoric times. Bull Los Angel Neuro Soc, 1959, 24: 1-8
[27]
FlatiG. Chirurgia nella preistoria. Parte I. Provincia Med Aquila, 2004, 2: 8-11
[28]
DonatiD, ZolezziC, TombaP, ViganòA. Bone grafting: historical and conceptual review, starting with an old manuscript by Vittorio Putti. Acta Orthop, 2007, 78: 19-25
[29]
HaesekerB. Mr. Job van Meekeren (1611–1666) and surgery of the hand. Plast Reconstr Surg, 1988, 82: 539-546
[30]
MeekerenJJObservationes Medico-Chirugicae, 1682AmsterdamEx Officina Henrici & Vidnae Theodori Boom
[31]
TarsolyE. [Filling of bone cavities with egg shell-plaster mixture]. [Article in German] Acta Chir Acad Sci Hung, 1963, 4: 63-72
[32]
GluckTBerl Klein Wochenschr, 189179
[33]
WalterPJ Chir und Augen-Heilkunde, 1821571
[34]
MacEwenW. Observations concerning transplantation of bone illustrated by a case of inter-human osseous transplantation, whereby over two-thirds of the shaft of a humerus was restored. Proc Roy Soc Lond, 1881, 32: 232-247
[35]
Ollier LL . Traite experimental et clinique de la regeneration des os et de la production artificielle du tissu osseux. V. Masson Vol. I and Vol. II. 1867.
[36]
BarthA. Histologische Untersuchung über Knochen implantationen. Beitr Pathol Anat Allg Pathol, 1895, 17: 65-142
[37]
BushLF. The use of homogenous bone grafts; a preliminary report on the bone bank. J Bone Joint Surg Am, 1947, 29: 620-628
[38]
ChalmersJ. Transplantation immunity in bone homografting. J Bone Joint Surg Br, 1959, 41-B: 160-179
[39]
EnnekingWF. Immunologic aspects of bone transplantation. South Med J, 1962, 55: 894-900
[40]
MaatzR. [The animal bone chip in the bone bank]. [Article in German] Dtsch Med J, 1957, 8: 190-194
[41]
Katthagen BD . Knochenregeneration mit Knochenersatzmaterialien: Eine tierexperimentelle studie. Hefte Unfallheilk. 1986.
[42]
HinsenkampM, MuylleL, EastlundT, FehilyD, NoëlL, StrongDM. Adverse reactions and events related to musculoskeletal allografts: reviewed by the World Health Organisation Project NOTIFY. Int Orthop, 2012, 36: 633-641
[43]
Matti H . Ueber die freie Transplantation von Knochenspongiosa. Langenbecks Arch Clin Chir. 1932:168–236.
[44]
SchweibererL. [Experimental studies on bone transplantation with unchanged and denaturated bone substance. A contribution on causal osteogenesis]. [Article in German]. Hefte Unfallheilkd, 1970, 103: 1-70
[45]
DinopoulosH, DimitriouR, GiannoudisPV. Bone graft substitutes: What are the options?. Surgeon, 2012, 10: 230-239
[46]
De LongWGJr., EinhornTA, KovalK, McKeeM, SmithW, SandersR, WatsonT. Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J Bone Joint Surg Am, 2007, 89: 649-658
[47]
SchiekerM, HeissC, MutschlerW. [Bone substitutes]. [Article in German]. Unfallchirurg, 2008, 111: 613-619
[48]
MyeroffC, ArchdeaconM. Autogenous bone graft: donor sites and techniques. J Bone Joint Surg Am, 2011, 93: 2227-2236
[49]
StaffordPR, NorrisBL. Reamer-irrigator-aspirator bone graft and bi Masquelet technique for segmental bone defect nonunions: a review of 25 cases. Injury, 2010, 41: S72-S77
[50]
WeilandAJ, PhillipsTW, RandolphMA. Bone grafts: a radiologic, histologic, and biomechanical model comparing autografts, allografts, and free vascularized bone grafts. Plast Reconstr Surg, 1984, 74: 368-379
[51]
PedersonWC, PersonDW. Long bone reconstruction with vascularized bone grafts. Orthop Clin North Am, 2007, 38: 23-35
[52]
AronsonJ. Limb-lengthening, skeletal reconstruction, and bone transport with the Ilizarov method. J Bone Joint Surg Am, 1997, 79: 1243-1258
[53]
SailhanF. Bone lengthening (distraction osteogenesis): a literature review. Osteoporos Int, 2011, 22: 2011-2015
[54]
SpiegelbergB, ParrattT, DheerendraSK, KhanWS, JenningsR, MarshDR. Ilizarov principles of deformity correction. Ann R Coll Surg Engl, 2010, 92: 101-105
[55]
PaleyD, MaarDC. Ilizarov bone transport treatment for tibial defects. J Orthop Trauma, 2000, 14: 76-85
[56]
DendrinosGK, KontosS, LyritsisE. Use of the Ilizarov technique for treatment of non-union of the tibia associated with infection. J Bone Joint Surg Am, 1995, 77: 835-846
[57]
SmithJO, AarvoldA, TaytonER, DunlopDG, OreffoRO. Skeletal tissue regeneration: current approaches, challenges, and novel reconstructive strategies for an aging population. Tissue Eng Part B Rev, 2011, 17: 307-320
[58]
KlaueK, KnotheU, MasqueletA. Effet biologique des membranes à corps etranger induites in situ sur la consolidation des greffes d'os spongieux. Rev Chir Orthop Suppl, 1995, 70: 109-110
[59]
GiannoudisPV, FaourO, GoffT, KanakarisN, DimitriouR. Masquelet technique for the treatment of bone defects: tips-tricks and future directions. Injury, 2011, 42: 591-598
[60]
MasqueletAC, BegueT. The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am, 2010, 41: 27-37
[61]
PelissierP, MasqueletAC, BareilleR, PelissierSM, AmedeeJ. Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res, 2004, 22: 73-79
[62]
PélissierP, LefevreY, DelmondS, VillarsF, Vilamitjana-AmedeeJ. [Influences of induced membranes on heterotopic bone formation within an osteoinductive complex. Experimental study in rabbits]. [Article in French]. Ann Chir Plast Esthet, 2009, 54: 16-20
[63]
DepuySynthes. Reamer/Irrigator/Aspirator (RIA). <http://www.synthes.com/sites/NA/Products/Trauma/IntramedullaryNailingSystems/Pages/Reamer_Irrigator_Aspirator_RIA.aspx>. 2013.
[64]
McCall TA, Brokaw DS, Jelen BA, Scheid DK, Scharfenberger AV, Maar DC, Green JM, Shipps MR, Stone MB, Musapatika D, Weber TG . Treatment of large segmental bone defects with reamer-irrigator-aspirator bone graft: technique and case series. Orthop Clin North Am. 2010;4163–4173.
[65]
HusebyeEE, LybergT, MadsenJE, EriksenM, RøiseO. The influence of a one-step reamer-irrigator-aspirator technique on the intramedullary pressure in the pig femur. Injury, 2006, 37: 935-940
[66]
BelthurMV, ConwayJD, JindalG, RanadeA, HerzenbergJE. Bone graft harvest using a new intramedullary system. Clin Orthop Relat Res, 2008, 466: 2973-2980
[67]
NewmanJT, StahelPF, SmithWR, ResendeGV, HakDJ, MorganSJ. A new minimally invasive technique for large volume bone graft harvest for treatment of fracture nonunions. Orthopedics, 2008, 31: 257-261
[68]
DimitriouR, MataliotakisGI, AngoulesAG, KanakarisNK, GiannoudisPV. Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury, 2011, 42: S3-S15
[69]
ZalavrasCG, SinghA, PatzakisMJ. Novel technique for medullary canal débridement in tibia and femur osteomyelitis. Clin Orthop Relat Res, 2007, 461: 31-34
[70]
PorterRM, LiuF, PilapilC, BetzOB, VrahasMS, HarrisMB, EvansCH. Osteogenic potential of reamer irrigator aspirator (RIA) aspirate collected from patients undergoing hip arthroplasty. J Orthop Res, 2009, 27: 42-49
[71]
KanakarisNK, MorellD, GudipatiS, BrittenS, GiannoudisPV. Reaming Irrigator Aspirator system: early experience of its multipurpose use. Injury, 2011, 42: S28-S34
[72]
CoxG, JonesE, McGonagleD, GiannoudisPV. Reamer-irrigator-aspirator indications and clinical results: a systematic review. Int Orthop, 2011, 35: 951-956
[73]
HuffmanLK, HarrisJG, SukM. Using the bi-masquelet technique and reamer-irrigator-aspirator for post-traumatic foot reconstruction. Foot Ankle Int, 2009, 30: 895-899
[74]
SchlickeweiW, SchlickeweiC. The Use of Bone Substitutes in the Treatment of Bone Defects-the Clinical View and History. Macromol Symp, 2007, 253: 10-23
[75]
LangerR, VacantiJP. Tissue engineering. Science, 1993, 260: 920-926
[76]
KolkA, HandschelJ, DrescherW, RothamelD, KlossF, BlessmannM, HeilandM, WolffKD, SmeetsR. Current trends and future perspectives of bone substitute materials — from space holders to innovative biomaterials. J Craniomaxillofac Surg, 2012, 40: 706-718
[77]
GiannoudisPV, EinhornTA, MarshD. Fracture healing: the diamond concept. Injury, 2007, 38: S3-S6
[78]
GiannoudisPV, EinhornTA, SchmidmaierG, MarshD. The diamond concept—open questions. Injury, 2008, 39: S5-S8
[79]
HutmacherDW, SchantzJT, LamCX, TanKC, LimTC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med, 2007, 1: 245-260
[80]
WoodruffMA, LangeC, ReichertJ, BernerA, ChenF, FratzlP, SchantzJT, HutmacherDW. Bone tissue engineering: from bench to bedside. Materials Today, 2012, 15: 430-434
[81]
LaurencinC, KhanY, El-AminSF. Bone graft substitutes. Expert Rev Med Devices, 2006, 3: 49-57
[82]
DinopoulosHT, GiannoudisPV. Safety and efficacy of use of demineralised bone matrix in orthopaedic and trauma surgery. Expert Opin Drug Saf, 2006, 5: 847-866
[83]
KatzJM, NatarajC, JawR, DeiglE, BursacP. Demineralized bone matrix as an osteoinductive biomaterial and in vitro predictors of its biological potential. J Biomed Mater Res B Appl Biomater, 2009, 89: 127-134
[84]
BostromMP, SeigermanDA. The clinical use of allografts, demineralized bone matrices, synthetic bone graft substitutes and osteoinductive growth factors: a survey study. HSS J, 2005, 1: 9-18
[85]
TadicD, EppleM. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials, 2004, 25: 987-994
[86]
DamienE, RevellPA. Coralline hydroxyapatite bone graft substitute: A review of experimental studies and biomedical applications. J Appl Biomater Biomech, 2004, 2: 65-73
[87]
EwersR. Maxilla sinus grafting with marine algae derived bone forming material: a clinical report of long-term results. J Oral Maxillofac Surg, 2005, 63: 1712-1723
[88]
BainoF, Vitale-BrovaroneC. Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. J Biomed Mater Res A, 2011, 97: 514-535
[89]
HammoucheS, KhanW, DrouinH, ProcterH, McNicholasM. Calcium salts bone regeneration scaffolds: a review article. Curr Stem Cell Res Ther, 2012, 7: 336-346
[90]
LiuB, LunDX. Current application of beta-tricalcium phosphate composites in orthopaedics. Orthop Surg, 2012, 4: 139-144
[91]
SunF, ZhouH, LeeJ. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater, 2011, 7: 3813-3828
[92]
HutmacherDW, CoolS. Concepts of scaffold-based tissue engineering—the rationale to use solid free-form fabrication techniques. J Cell Mol Med, 2007, 11: 654-669
[93]
SwethaM, SahithiK, MoorthiA, SrinivasanN, RamasamyK, SelvamuruganN. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol, 2010, 47: 1-4
[94]
BoseS, TarafderS. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater, 2012, 8: 1401-1421
[95]
WoodruffMA, HutmacherDW. The return of a forgotten polymer-Polycaprolactone in the 21st century. Prog Polym Sci, 2010, 35: 1217-1256
[96]
PuppiD, ChielliniF, PirasAM, ChielliniE. Polymeric materials for bone and cartilage repair. Prog Polym Sci, 2010, 35: 403-440
[97]
HutmacherDW. Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000, 21: 2529-2543
[98]
TannerKE. Bioactive composites for bone tissue engineering. Proc Inst Mech Eng H, 2010, 224: 1359-1372
[99]
MiyazakiT. Design of bone-integrating organic-inorganic composite suitable for bone repair. Front Biosci (Elite Ed), 2013, 5: 333-340
[100]
DimitriouR, TsiridisE, GiannoudisPV. Current concepts of molecular aspects of bone healing. Injury, 2005, 36: 1392-1404
[101]
SalgadoAJ, CoutinhoOP, ReisRL. Bone tissue engineering: state of the art and future trends. Macromol Biosci, 2004, 4: 743-765
[102]
ReichertJ. C., CipitriaA., EpariD. R., SaifzadehS., KrishnakanthP., BernerA., WoodruffM. A., SchellH., MehtaM., SchuetzM. A., DudaG. N., HutmacherD. W.. A Tissue Engineering Solution for Segmental Defect Regeneration in Load-Bearing Long Bones. Science Translational Medicine, 2012, 4141141ra93-141ra93
[103]
ChatterjeaA, MeijerG, van BlitterswijkC, De BoerJ. Clinical application of human mesenchymal stromal cells for bone tissue engineering. Stem Cells Int, 2010, 2010: 215625
[104]
BakshD, SongL, TuanRS. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med, 2004, 8: 301-316
[105]
HuiJH, OuyangHW, HutmacherDW, GohJC, LeeEH. Mesenchymal stem cells in musculoskeletal tissue engineering: a review of recent advances in National University of Singapore. Ann Acad Med Singapore, 2005, 34: 206-212
[106]
XiaoY, MareddyS, CrawfordR. Clonal characterization of bone marrow derived stem cells and their application for bone regeneration. Int J Oral Sci, 2010, 2: 127-135
[107]
KagamiH, AgataH, TojoA. Bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for bone tissue engineering: basic science to clinical translation. Int J Biochem Cell Biol, 2011, 43: 286-289
[108]
ColnotC, ZhangX, Knothe TateML. Current insights on the regenerative potential of the periosteum: molecular, cellular, and endogenous engineering approaches. J Orthop Res, 2012, 30: 1869-1878
[109]
HutmacherDW, SittingerM. Periosteal cells in bone tissue engineering. Tissue Eng, 2003, 9: S45-S64
[110]
JayakumarP, Di SilvioL. Osteoblasts in bone tissue engineering. Proc Inst Mech Eng H, 2010, 224: 1415-1440
[111]
LongoUG, LoppiniM, BertonA, La VerdeL, KhanWS, DenaroV. Stem cells from umbilical cord and placenta for musculoskeletal tissue engineering. Curr Stem Cell Res Ther, 2012, 7: 272-281
[112]
MizunoH. Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review. J Nippon Med Sch, 2009, 76: 56-66
[113]
AminiAR, LaurencinCT, NukavarapuSP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng, 2012, 40: 363-408
[114]
SzpalskiC, BarbaroM, SagebinF, WarrenSM. Bone tissue engineering: current strategies and techniques—part II: Cell types. Tissue Eng Part B Rev, 2012, 18: 258-269
[115]
ColnotC. Cell sources for bone tissue engineering: insights from basic science. Tissue Eng Part B Rev, 2011, 17: 449-457
[116]
MasonC, DunnillP. Assessing the value of autologous and allogeneic cells for regenerative medicine. Regen Med, 2009, 4: 835-853
[117]
NandiSK, RoyS, MukherjeeP, KunduB, DeDK, BasuD. Orthopaedic applications of bone graft & graft substitutes: a review. Indian J Med Res, 2010, 132: 15-30
[118]
GroeneveldEH, van den BerghJP, HolzmannP, ten BruggenkateCM, TuinzingDB, BurgerEH. Mineralization processes in demineralized bone matrix grafts in human maxillary sinus floor elevations. J Biomed Mater Res, 1999, 48: 393-402
[119]
StarkGB, HorchR, TanczosEBiological Matrices and Tissue Reconstruction, 1998BerlinSpringer197-206
[120]
BostmanO, HirvensaloE, MakinenJ, RokkanenP. Foreign-body reactions to fracture fixation implants of biodegradable synthetic polymers. J Bone Joint Surg Br, 1990, 72: 592-596
[121]
BergsmaEJ, RozemaFR, BosRR, De BruijnWC. Foreign body reactions to resorbable poly(L-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures. J Oral Maxillofac Surg, 1993, 51: 666-670
[122]
BergsmaJE, De BruijnWC, RozemaFR, BosRR, BoeringG. Late degradation tissue response to poly(L-lactide) bone plates and screws. Biomaterials, 1995, 16: 25-31
[123]
VelardF, BrauxJ, AmedeeJ, LaquerriereP. Inflammatory cell response to calcium phosphate biomaterial particles: an overview. Acta Biomater, 2013, 9: 4956-4963
[124]
HollingerJO, ChaudhariA. Bone regeneration materials for the mandibular and craniofacial complex. Cells Mater, 1992, 2: 143-151
[125]
BabisGC, SoucacosPN. Bone scaffolds: the role of mechanical stability and instrumentation. Injury, 2005, 36Suppl 4S38-S44
[126]
PoncheA, BigerelleM, AnselmeK. Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 1: physico-chemical effects. Proc Inst Mech Eng H, 2010, 224: 1471-1486
[127]
BoyanBD, HummertTW, DeanDD, SchwartzZ. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials, 1996, 17: 137-146
[128]
KaplanFS, HayesWC, KeavenyTM, BoskeyA, EinhornTA, IannottiJP, SimonSR. Formation and Function of Bone.. Orthopedic Basic Science, 1994Rosemont, IllinoisAmerican Academy of Orthopedic Surgeons127-184
[129]
WebsterTJ, ErgunC, DoremusRH, SiegelRW, BiziosR. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res, 2000, 51: 475-483
[130]
WebsterTJ, SchadlerLS, SiegelRW, BiziosR. Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue Eng, 2001, 7: 291-301
[131]
WebsterTJ, SiegelRW, BiziosR. Osteoblast adhesion on nano-phase ceramics. Biomaterials, 1999, 20: 1221-1227
[132]
PuckettS, ParetaR, WebsterTJ. Nano rough micron patterned titanium for directing osteoblast morphology and adhesion. Int J Nanomedicine, 2008, 3: 229-241
[133]
Vlacic-ZischkeJ, HamletSM, FriisT, TonettiMS, IvanovskiS. The influence of surface microroughness and hydrophilicity of titanium on the up-regulation of TGFbeta/BMP signalling in osteoblasts. Biomaterials, 2011, 32: 665-671
[134]
ChanO, CoathupMJ, NesbittA, HoCY, HingKA, BucklandT, CampionC, BlunnGW. The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute biomaterials. Acta Biomater, 2012, 8: 2788-2794
[135]
ScottTG, BlackburnG, AshleyM, BayerIS, GhoshA, BirisAS, BiswasA. Advances in bionanomaterials for bone tissue engineering. J Nanosci Nanotechnol, 2013, 13: 1-22
[136]
McMahonRE, WangL, SkorackiR, MathurAB. Development of nanomaterials for bone repair and regeneration. J Biomed Mater Res B Appl Biomater, 2013, 101: 387-397
[137]
EgliRJ, LuginbuehlR. Tissue engineering — nanomaterials in the musculoskeletal system. Swiss Med Wkly, 2012, 142: w13647
[138]
SaizE, ZimmermannEA, LeeJS, WegstUG, TomsiaAP. Perspectives on the role of nanotechnology in bone tissue engineering. Dent Mater, 2013, 29: 103-115
[139]
YuanH, KurashinaK, De BruijnJD, LiY, De GrootK, ZhangX. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials, 1999, 20: 1799-1806
[140]
DaviesJE. In vitro modeling of the bone/implant interface. Anat Rec, 1996, 245: 426-445
[141]
AlbrektssonT, JohanssonC. Osteoinduction, osteoconduction and osseointegration. Eur Spine J, 2001, 10Suppl 2S96-S101
[142]
HabibovicP, De GrootK. Osteoinductive biomaterials—properties and relevance in bone repair. J Tissue Eng Regen Med, 2007, 1: 25-32
[143]
GeesinkRG, De GrootK, KleinCP. Bonding of bone to apatite-coated implants. J Bone Joint Surg Br, 1993, 70: 17-22
[144]
KayJFBiological profile of calcium phosphate coatings, 199389-106
[145]
HanawaT, KamiuraY, YamamotoS, KohgoT, AmemiyaA, UkaiH, MurakamiK, AsaokaK. Early bone formation around calcium-ion-implanted titanium inserted into rat tibia. J Biomed Mater Res, 1997, 36: 131-136
[146]
Le HuecJC, ClémentD, BrouillaudB, BartheN, DupuyB, FoliguetB, Basse-CathalinatB. Evolution of the local calcium content around irradiated beta-tricalcium phosphate ceramic implants: in vivo study in the rabbit. Biomaterials, 1998, 19: 733-738
[147]
LeGerosRZ. Calcium phosphate-based osteoinductive materials. Chem Rev, 2008, 108: 4742-4753
[148]
VaquetteC, IvanovskiS, HamletSM, HutmacherDW. Effect of culture conditions and calcium phosphate coating on ectopic bone formation. Biomaterials, 2013, 34: 5538-5551
[149]
HabibovicP, SeesTM, van den DoelMA, van BlitterswijkCA, De GrootK. Osteoinduction by biomaterials—physicochemical and structural influences. J Biomed Mater Res A, 2006, 77: 747-762
[150]
BarradasAM, YuanH, van BlitterswijkCA, HabibovicP. Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur Cell Mater, 2011, 21: 407-429
[151]
YuanH, De BruijnJD, LiY, FengJ, YangZ, De GrootK, ZhangX. Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous alpha-TCP and beta-TCP. J Mater Sci Mater Med, 2001, 12: 7-13
[152]
ChaiYC, CarlierA, BolanderJ, RobertsSJ, GerisL, SchrootenJ, Van OosterwyckH, LuytenFP. Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. Acta Biomater, 2012, 8: 3876-3887
[153]
AnselmeK, PoncheA, BigerelleM. Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 2: biological aspects. Proc Inst Mech Eng H, 2010, 224: 1487-1507
[154]
LeonCLY. New perspectives in mercury porosimetry. Adv Colloid Interface Sci, 1998, 76: 341-372
[155]
KubokiY, TakitaH, KobayashiD, TsurugaE, InoueM, MurataM, NagaiN, DohiY, OhgushiH. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. J Biomed Mater Res, 1998, 39: 190-199
[156]
StoryBJ, WagnerWR, GaisserDM, CookSD, Rust-DawickiAM. In vivo performance of a modified CSTi dental implant coating. Int J Oral Maxillofac Implants, 1998, 13: 749-757
[157]
KarageorgiouV, KaplanD. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005, 26: 5474-5491
[158]
HulbertSF, YoungFA, MathewsRS, KlawitterJJ, TalbertCD, StellingFH. Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res, 1970, 4: 433-456
[159]
Loh QL, Choong C . Three-dimensional scaffolds for tissue engineering: role of porosity and pore size. Tissue Eng Part B Rev. 2013 May 14. [Epub ahead of print].
[160]
SzpalskiC, WetterauM, BarrJ, WarrenSM. Bone tissue engineering: current strategies and techniques—part I: Scaffolds. Tissue Eng Part B Rev, 2012, 18: 246-257
[161]
BoseS, RoyM, BandyopadhyayA. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol, 2012, 30: 546-554
[162]
PeltolaSM, MelchelsFP, GrijpmaDW, KellomakiM. A review of rapid prototyping techniques for tissue engineering purposes. Ann Med, 2008, 40: 268-280
[163]
HutmacherDW, SittingerM, RisbudMV. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol, 2004, 22: 354-362
[164]
YeongWY, ChuaCK, LeongKF, ChandrasekaranM. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol, 2004, 22: 643-652
[165]
SachlosE, CzernuszkaJT. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater, 2003, 5: 29-39
[166]
MelchelsFPW, DomingosMAN, KleinTJ, MaldaJ, BartoloPJ, HutmacherDW. Additive manufacturing of tissues and organs. Prog Polym Sci, 2012, 37: 1079-1104
[167]
ASTM Standard F2792–10: Standard terminology for additive manufacturing technologies. ASTM International, 2010.
[168]
BallynsJJ, BonassarLJ. Image-guided tissue engineering. J Cell Mol Med, 2009, 13: 1428-1436
[169]
HollisterSJ. Porous scaffold design for tissue engineering. Nat Mater, 2005, 4: 518-524
[170]
DerbyB. Printing and prototyping of tissues and scaffolds. Science, 2012, 338: 921-926
[171]
WendelB, RietzelD, KühnleinF, FeulnerR, HülderG, SchmachtenbergE. Additive Processing of Polymers. Macromol Mater Eng, 2008, 293: 799-809
[172]
WebbPA. A review of rapid prototyping (RP) techniques in the medical and biomedical sector. J Med Eng Technol, 2000, 24: 149-153
[173]
McGurkM, AmisAA, PotamianosP, GoodgerNM. Rapid prototyping techniques for anatomical modelling in medicine. Ann R Coll Surg Engl, 1997, 79: 169-174
[174]
PotamianosP, AmisAA, ForesterAJ, McGurkM, BircherM. Rapid prototyping for orthopaedic surgery. Proc Inst Mech Eng H, 1998, 212: 383-393
[175]
GoiatoMC, SantosMR, PesqueiraAA, MorenoA, dos SantosDM, HaddadMF. Prototyping for surgical and prosthetic treatment. J Craniofac Surg, 2011, 22: 914-917
[176]
DebarreE, HivartP, BaranskiD, DéprezP. Speedy skeletal prototype production to help diagnosis in orthopaedic and trauma surgery. Methodology and examples of clinical applications. Orthop Traumatol Surg Res, 2012, 98: 597-602
[177]
EssesSJ, BermanP, BloomAI, SosnaJ. Clinical applications of physical 3D models derived from MDCT data and created by rapid prototyping. AJR Am J Roentgenol, 2011, 196: W683-W688
[178]
MelchelsFP, FeijenJ, GrijpmaDW. A review on stereolithogra-phy and its applications in biomedical engineering. Biomaterials, 2010, 31: 6121-6130
[179]
MaruoS, IkutaK. Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization. Sensor Actuat A: Phys, 2002, 100: 70-76
[180]
ChehadeMJ, BachorskiA. Development of the Australian core competencies in musculoskeletal basic and clinical science project - phase 1. Med J Aust, 2008, 189: 162-165
[181]
SiegelR, NaishadhamD, JemalA. Cancer statistics, 2012. CA Cancer J Clin, 2012, 62: 10-29
[182]
LysaghtMJ, ReyesJ. The growth of tissue engineering. Tissue Eng, 2001, 7: 485-493
[183]
Wang FS . Support for tissue engineering and regenerative medicine by the National Institutes of Health. Artech House Publishers. 2008:445–462.
[184]
HollisterSJ. Scaffold engineering: a bridge to where?. Biofabrication, 2009, 1: 012001
[185]
ReichertJC, EpariDR, WullschlegerME, SaifzadehS, SteckR, LienauJ, SommervilleS, DickinsonIC, SchützMA, DudaGN, HutmacherDW. Establishment of a preclinical ovine model for tibial segmental bone defect repair by applying bone tissue engineering strategies. Tissue Eng Part B Rev, 2010, 16: 93-104
[186]
MeslinEM, BlasimmeA, Cambon-ThomsenA. Mapping the translational science policy ‘valley of death’. Clin Transl Med, 2013, 2: 14
[187]
DawsonJI, OreffoRO. Bridging the regeneration gap: stem cells, biomaterials and clinical translation in bone tissue engineering. Arch Biochem Biophys, 2008, 473: 124-131
[188]
YannasIV. Emerging rules for inducing organ regeneration. Biomaterials, 2013, 34: 321-330
[189]
HollisterSJ, MurphyWL. Scaffold translation: barriers between concept and clinic. Tissue Eng Part B Rev, 2011, 17: 459-474
[190]
KneserU, SchaeferDJ, PolykandriotisE, HorchRE. Tissue engineering of bone: the reconstructive surgeon's point of view. J Cell Mol Med, 2006, 10: 7-19
[191]
Logeart-AvramoglouD, AnagnostouF, BiziosR, PetiteH. Engineering bone: challenges and obstacles. J Cell Mol Med, 2005, 9: 72-84
[192]
MuschlerGF, RautVP, PattersonTE, WenkeJC, HollingerJO. The design and use of animal models for translational research in bone tissue engineering and regenerative medicine. Tissue Eng Part B Rev, 2010, 16: 123-145
[193]
SchoonenWG, WesterinkWM, HorbachGJ. High-throughput screening for analysis of in vitro toxicity. EXS, 2009, 99: 401-452
[194]
ColasP. High-throughput screening assays to discover small-molecule inhibitors of protein interactions. Curr Drug Discov Technol, 2008, 5: 190-199
[195]
HornerEA, KirkhamJ, WoodD, CurranS, SmithM, ThomsonB, YangXB. Long bone defect models for tissue engineering applications: criteria for choice. Tissue Eng Part B Rev, 2010, 16: 263-271
[196]
MooneyMP, SiegelMI, WnekG, BowlinG. Animal models for bone tissue engineering.. Encyclopedia of Biomaterials and Biomedical Engineering, 2005New YorkMarcel Dekker1-19
[197]
BumaP, SchreursW, VerdonschotN. Skeletal tissue engineering-from in vitro studies to large animal models. Biomaterials, 2004, 25: 1487-1495
[198]
EinhornTA. Clinically applied models of bone regeneration in tissue engineering research. Clin Orthop Relat Res, 1999, 367: S59-S67
[199]
O'LoughlinPF, MorrS, BogunovicL, KimAD, ParkB, LaneJM. Selection and development of preclinical models in fracture-healing research. J Bone Joint Surg Am, 2008, 90: 79-84
[200]
WoodruffMA, HutmacherDW. The return of a forgotten polymer: Polycaprolactone in the 21st century. Prog Polym Sci, 2010, 35: 1217-1256
[201]
ZeinI, HutmacherDW, TanKC, TeohSH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 2002, 23: 1169-1185
[202]
SawyerAA, SongSJ, SusantoE, ChuanP, LamCX, WoodruffMA, HutmacherDW, CoolSM. The stimulation of healing within a rat calvarial defect by mPCL-TCP/collagen scaffolds loaded with rhBMP-2. Biomaterials, 2009, 30: 2479-2488
[203]
LamCX, TeohSH, HutmacherDW. Comparison of the degradation of polycaprolactone and polycaprolactone-(ß — tricalcium phosphate) scaffolds in alkaline medium. Polym Int, 2007, 56: 718-728
[204]
LamCX, HutmacherDW, SchantzJT, WoodruffMA, TeohSH. Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. J Biomed Mater Res A, 2009, 90: 906-919
[205]
LamCX, SavalaniMM, TeohSH, HutmacherDW. Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. Biomed Mater, 2008, 3: 034108
[206]
EkaputraAK, ZhouY, CoolSM, HutmacherDW. Composite electrospun scaffolds for engineering tubular bone grafts. Tissue Eng Part A, 2009, 15: 3779-3788
[207]
BernerA, BoerckelJD, SaifzadehS, SteckR, RenJ, VaquetteC, ZhangJQ, NerlichM, GuldbergRE, HutmacherDW, WoodruffMA. Biomimetic tubular nanofiber mesh and platelet rich plasma-mediated delivery of BMP-7 for large bone defect regeneration. Cell Tissue Res, 2012, 347: 603-612
[208]
RaiB, LinJL, LimZX, GuldbergRE, HutmacherDW, CoolSM. Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL-TCP scaffolds. Biomaterials, 2010, 31: 7960-7970
[209]
ZhouY, ChenF, HoST, WoodruffMA, LimTM, HutmacherDW. Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts. Biomaterials, 2007, 28: 814-824
[210]
BernerA, ReichertJC, MüllerMB, ZellnerJ, PfeiferC, DienstknechtT, NerlichM, SommervilleS, DickinsonIC, SchützMA, FüchtmeierB. Treatment of long bone defects and non-unions: from research to clinical practice. Cell Tissue Res, 2012, 347: 501-519
[211]
ReichertJC, SaifzadehS, WullschlegerME, EpariDR, SchützMA, DudaGN, SchellH, van GriensvenM, RedlH, HutmacherDW. The challenge of establishing preclinical models for segmental bone defect research. Biomaterials, 2009, 30: 2149-2163
[212]
ReichertJC, WullschlegerME, CipitriaA, LienauJ, ChengTK, SchützMA, DudaGN, NöthU, EulertJ, HutmacherDW. Custom-made composite scaffolds for segmental defect repair in long bones. Int Orthop, 2011, 35: 1229-1236
[213]
ReichertJC, CipitriaA, EpariDR, SaifzadehS, KrishnakanthP, BernerA, WoodruffMA, SchellH, MehtaM, SchuetzMA, DudaGN, HutmacherDW. A Tissue Engineering Solution for Segmental Defect Regeneration in Long Bones. Sci Transl Med, 2012, 4: 141ra93
[214]
ReichertJC, EpariDR, WullschlegerME, SaifzadehS, SteckR, LienauJ, SommervilleS, DickinsonIC, SchützMA, DudaGN, HutmacherDW. Establishment of a preclinical ovine model for tibial segmental bone defect repair by applying bone tissue engineering strategies. Tissue Eng Part B Rev, 2010, 16: 93-104
[215]
BernerA, ReichertJC, WoodruffMA, SaifzadehS, MorrisAJ, EpariDR, NerlichM, SchuetzMA, HutmacherDW. Autologous vs. allogenic mesenchymal progenitor cells for the reconstruction of critical sized segmental tibial bone defects in aged sheep. Acta Biomater, 2013, 9: 7874-7884
[216]
TzioupisC, GiannoudisPV. Prevalence of long-bone non-unions. Injury, 2007, 38: S3-S9
[217]
Court-BrownCM, CaesarB. Epidemiology of adult fractures: A review. Injury, 2006, 37: 691-697
[218]
AudigéL, GriffinD, BhandariM, KellamJ, RüediTP. Path analysis of factors for delayed healing and nonunion in 416 operatively treated tibial shaft fractures. Clin Orthop Relat Res, 2005, 438: 221-232
[219]
SandhuHS, KhanSN. Animal models for preclinical assessment of bone morphogenetic proteins in the spine. Spine (Phila Pa 1976), 2002, 27: S32-S38
[220]
DrespeIH, PolzhoferGK, TurnerAS, GrauerJN. Animal models for spinal fusion. Spine J, 2005, 5: 209S-216S
[221]
HechtBP, FischgrundJS, HerkowitzHN, PenmanL, TothJM, ShirkhodaA. The use of recombinant human bone morphogenetic protein 2 (rhBMP-2) to promote spinal fusion in a nonhuman primate anterior interbody fusion model. Spine (Phila Pa 1976), 1999, 24: 629-636
[222]
CunninghamBW, KanayamaM, ParkerLM, WeisJC, SefterJC, FedderIL, McAfeePC. Osteogenic protein versus autologous interbody arthrodesis in the sheep thoracic spine. A comparative endoscopic study using the Bagby and Kuslich interbody fusion device. Spine (Phila Pa 1976), 1999, 24: 509-518
[223]
OehmeD, GoldschlagerT, RosenfeldJ, DanksA, GhoshP, GibbonA, JenkinG. Lateral surgical approach to lumbar intervertebral discs in an ovine model. Sci World J, 2012, 2012: 873726
[224]
DuboussetJ. Scoliosis and its pathophysiology: do we understand it?. Spine (Phila Pa 1976), 2001, 26: 1001
[225]
DanielssonAJ, NachemsonAL. Back pain and function 22 years after brace treatment for adolescent idiopathic scoliosis: a case-control study-part I. Spine (Phila Pa 1976), 2003, 28: 2078-2085
[226]
ReidJJ, JohnsonJS, WangJC. Challenges to bone formation in spinal fusion. J Biomech, 2011, 44: 213-220
[227]
WhangPG, WangJC. Bone graft substitutes for spinal fusion. Spine J, 2003, 3: 155-165
[228]
MiyazakiM, TsumuraH, WangJC, AlanayA. An update on bone substitutes for spinal fusion. Eur Spine J, 2009, 18: 783-799
[229]
MrozTE, SuenPW, ShamieAN, WhangPG, WangJC. Bone graft substitutes in spinal surgery. Oper Tech Orthop, 2003, 13: 146-151
[230]
KhanSN, LaneJM. Spinal fusion surgery: animal models for tissue-engineered bone constructs. Biomaterials, 2004, 25: 1475-1485
[231]
SubachBR, HaidRW, RodtsGE, KaiserMG. Bone morphogenetic protein in spinal fusion: overview and clinical update. Neurosurg Focus, 2001, 10: E3
[232]
CarlisleE, FischgrundJS. Bone morphogenetic proteins for spinal fusion. Spine J, 2005, 5: 240S-249S
[233]
Yong MR, Saifzadeh S, Askin GN, Labrom RD, Hutmacher DW, Adam CJ . Establishment and characterization of an open mini-thoracotomy surgical approach to an ovine thoracic spine fusion model. Tissue Eng Part C Methods. 2013 Jul 10. [Epub ahead of print].
[234]
SchantzJT, LimTC, NingC, TeohSH, TanKC, WangSC, HutmacherDW. Cranioplasty after trephination using a novel biodegradable burr hole cover: technical case report. Neurosurgery, 2006, 58: ONS-E176
[235]
AstMP, NamD, HaasSB. Patient-specific instrumentation for total knee arthroplasty: a review. Orthop Clin North Am, 2012, 43: e17-e22
[236]
KrishnanSP, DawoodA, RichardsR, HenckelJ, HartAJ. A review of rapid prototyped surgical guides for patient-specific total knee replacement. J Bone Joint Surg Br, 2012, 94: 1457-1461
[237]
SchweizerA. New technologies in planning and performance of osteotonics: example cases in hand surgery. Praxis (Bern 1994), 2013, 102: 579-584
[238]
BenumP, AamodtA. Uncemented custom femoral components in hip arthroplasty. Acta Orthop, 2010, 81: 427-435
[239]
EufingerH, SaylorB. Computer-assisted prefabrication of individual craniofacial implants. AORN J, 2001, 74: 648-654
[240]
Fuster-TorresMA, Albalat-EstelaS, Alcañiz-RayaM, Peñarrocha-DiagoM. CAD/CAM dental systems in implant dentistry: update. Med Oral Patol Oral Cir Bucal, 2009, 14: E141-E145
[241]
Muirhead-AllwoodS, SandifordNA, SkinnerJA, HuaJ, MuirheadW, KabirC, WalkerPS. Uncemented computer-assisted design-computer-assisted manufacture femoral components in revision total hip replacement: a minimum follow-up of ten years. J Bone Joint Surg Br, 2010, 92: 1370-1375
[242]
Muirhead-AllwoodSK, SandifordN, SkinnerJA, HuaJ, KabirC, WalkerPS. Uncemented custom computer-assisted design and manufacture of hydroxyapatite-coated femoral components: survival at 10 to 17 years. J Bone Joint Surg Br, 2010, 92: 1079-1084
[243]
BruneJC, HesselbarthU, SeifertP, NowackD, von VersenR, SmithMD, SeifertD. CT lesion model-based structural allografts: custom fabrication and clinical experience. Transfus Med Hemother, 2012, 39: 395-404
[244]
LantadaAD, MorgadoPL. Rapid prototyping for biomedical engineering: current capabilities and challenges. Annu Rev Biomed Eng, 2012, 14: 73-96
[245]
ProbstFA, HutmacherDW, MüllerDF, MachensHG, SchantzJT. Calvarial reconstruction by customized bioactive implant. Hand-chir Mikrochir Plast Chir, 2010, 42: 369-373
[246]
HolzapfelBM, ChhayaMP, MelchelsFP, HolzapfelNP, ProdingerPM, von Eisenhart-RotheR, van GriensvenM, SchantzJT, RudertM, HutmacherDW. Can bone tissue engineering contribute to therapy concepts after resection of musculoskeletal sarcoma?. Sarcoma, 2013, 2013: 153640

Accesses

Citations

Detail

Sections
Recommended

/