microRNA Expression in Rat Apical Periodontitis Bone Lesion

Bo Gao , Liwei Zheng

Bone Research ›› 2013, Vol. 1 ›› Issue (1) : 170 -185.

PDF
Bone Research ›› 2013, Vol. 1 ›› Issue (1) : 170 -185. DOI: 10.4248/BR201302006
Article

microRNA Expression in Rat Apical Periodontitis Bone Lesion

Author information +
History +
PDF

Abstract

Apical periodontitis, dominated by dense inflammatory infiltrates and increased osteoclast activities, can lead to alveolar bone destruction and tooth loss. It is believed that miRNA participates in regulating various biological processes, osteoclastogenesis included. This study aims to investigate the differential expression of miRNAs in rat apical periodontitis and explore their functional target genes. Microarray analysis was used to identify differentially expressed miRNAs in apical periodontitis. Bioinformatics technique was applied for predicting the target genes of differentially expressed miRNAs and their biological functions. The result provided us with an insight into the potential biological effects of the differentially expressed miRNAs and showed particular enrichment of target genes involved in the MAPK signaling pathways. These findings may highlight the intricate and specific roles of miRNA in inflammation and osteoclastogenesis, both of which are key aspects of apical periodontitis, thus contributing to the future investigation into the etiology, underlying mechanism and treatment of apical periodontitis.

Cite this article

Download citation ▾
Bo Gao, Liwei Zheng. microRNA Expression in Rat Apical Periodontitis Bone Lesion. Bone Research, 2013, 1(1): 170-185 DOI:10.4248/BR201302006

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Del Fattore A, Teti A, Rucci N. Osteoclast receptors and signaling. Arch Biochem Biophys, 2008, 473: 147-160

[2]

Ross FP, Teitelbaum SL. alphavbeta3 and macrophage colony-stimulating factor: partners in osteoclast biology. Immunol Rev, 2005, 208: 88-105

[3]

Miyazaki T, Tanaka S, Sanjay A, Baron R. The role of c-Src kinase in the regulation of osteoclast function. Mod Rheumatol, 2006, 16: 68-74

[4]

Edwards CM, Mundy GR. Eph receptors and ephrin signaling pathways: a role in bone homeostasis. Int J Med Sci, 2008, 5: 263-272

[5]

Sims NA, Gooi JH. Bone remodeling: Multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol, 2008, 19: 444-451

[6]

Duan L, Ren Y. Role of notch signaling in osteoimmunology—from the standpoint of osteoclast differentiation. Eur J Orthod, 2013, 35: 175-182

[7]

Kim TH, Choi SJ, Lee YH, Song GG, Ji JD. Combined therapeutic application of mTOR inhibitor and vitamin D(3) for inflammatory bone destruction of rheumatoid arthritis. Med Hypotheses, 2012, 79: 757-760

[8]

Sato K, Takayanagi H. Osteoclasts, rheumatoid arthritis, and osteoimmunology. Curr Opin Rheumatol, 2006, 18: 419-426

[9]

Belibasakis GN, Rechenberg DK, Zehnder M. The receptor activator of NF-kappaB ligand-osteoprotegerin system in pulpal and periapical disease. Int Endod J, 2013, 46: 99-111

[10]

da Silva RA, Ferreira PD, De Rossi A, Nelson-Filho P, Silva LA. Toll-like receptor 2 knockout mice showed increased periapical lesion size and osteoclast number. J Endod, 2012, 38: 803-813

[11]

Marton IJ, Kiss C. Protective and destructive immune reactions in apical periodontitis. Oral Microbiol Immunol, 2000, 15: 139-150

[12]

Tani-Ishii N, Wang CY, Stashenko P. Immunolocalization of bone-resorptive cytokines in rat pulp and periapical lesions following surgical pulp exposure. Oral Microbiol Immunol, 1995, 10: 213-219

[13]

Artese L, Piattelli A, Quaranta M, Colasante A, Musani P. Immunoreactivity for interleukin 1-beta and tumor necrosis factor-alpha and ultrastructural features of monocytes/macrophages in periapical granulomas. J Endod, 1991, 17: 483-487

[14]

Ataoglu T, Ungor M, Serpek B, Haliloglu S, Ataoglu H, Ari H. Interleukin-1beta and tumour necrosis factor-alpha levels in periapical exudates. Int Endod J, 2002, 35: 181-185

[15]

Nair PN. Pathogenesis of apical periodontitis and the causes of endodontic failures. Crit Rev Oral Biol Med, 2004, 15: 348-381

[16]

Reichert S, Machulla HK, Klapproth J, Zimmermann U, Reichert Y, Glaser C, Schaller HG, Schulz S. Interferon-gamma and interleukin-12 gene polymorphisms and their relation to aggressive and chronic periodontitis and key periodontal pathogens. J Periodontol, 2008, 79: 1434-1443

[17]

Pizzo G, Guiglia R, Lo Russo L, Campisi G. Dentistry and internal medicine: from the focal infection theory to the periodontal medicine concept. Eur J Intern Med, 2010, 21: 496-502

[18]

Zoellner H. Dental infection and vascular disease. Semin Thromb Hemost, 2011, 37: 181-192

[19]

Lian JB, Stein GS, van Wijnen AJ, Stein JL, Hassan MQ, Gaur T, Zhang Y. MicroRNA control of bone formation and homeostasis. Nat Rev Endocrinol, 2012, 8: 212-227

[20]

Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116: 281-297

[21]

He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet, 2004, 5: 522-531

[22]

Martin R, Smibert P, Yalcin A, Tyler DM, Schafer U, Tuschl T, Lai EC. A Drosophila pasha mutant distinguishes the canonical microRNA and mirtron pathways. Mol Cell Biol, 2009, 29: 861-870

[23]

Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136: 215-233

[24]

Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, Johnston WK, Russ C, Luo S, Babiarz JE, Blelloch R, Schroth GP, Nusbaum C, Bartel DP. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev, 2010, 24: 992-1009

[25]

Sugatani T, Vacher J, Hruska KA. A microRNA expression signature of osteoclastogenesis. Blood, 2011, 117: 3648-3657

[26]

Xia Z, Chen C, Chen P, Xie H, Luo X. MicroRNAs and their roles in osteoclast differentiation. Front Med, 2011, 5: 414-419

[27]

Pauley KM, Cha S. miRNA-146a in rheumatoid arthritis: a new therapeutic strategy. Immunotherapy, 2011, 3: 829-831

[28]

Shibuya H, Nakasa T, Adachi N, Nagata Y, Ishikawa M, Deie M, Suzuki O, Ochi M . Overexpression of microRNA-223 in rheumatoid arthritis synovium controls osteoclast differentiation. Mod Rheumatol. 2012 Aug 19. [Epub ahead of print]

[29]

Zhang J, Zhao H, Chen J, Xia B, Jin Y, Wei W, Shen J, Huang Y. Interferon-beta-induced miR-155 inhibits osteoclast differentiation by targeting SOCS1 and MITF. FEBS Lett, 2012, 586: 3255-3262

[30]

Cheng P, Chen C, He HB, Hu R, Zhou HD, Xie H, Zhu W, Dai RC, Wu XP, Liao EY, Luo XH. miR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B. J Bone Miner Res, 2013, 28: 1180-1190

[31]

Mizoguchi F, Izu Y, Hayata T, Hemmi H, Nakashima K, Nakamura T, Kato S, Miyasaka N, Ezura Y, Noda M. Osteoclast-specific Dicer gene deficiency suppresses osteoclastic bone resorption. J Cell Biochem, 2010, 109: 866-875

[32]

Sugatani T, Hruska KA. Impaired micro-RNA pathways diminish osteoclast differentiation and function. J Biol Chem, 2009, 284: 4667-4678

[33]

Jackson RJ, Standart N. How do microRNAs regulate gene expression? Sci STKE, 2007, 2007: re1

[34]

Hon LS, Zhang Z. The roles of binding site arrangement and combinatorial targeting in microRNA repression of gene expression. Genome Biol, 2007, 8: R166

[35]

Stashenko P, Teles R, D'Souza R. Periapical inflammatory responses and their modulation. Crit Rev Oral Biol Med, 1998, 9: 498-521

[36]

Sasaki H, Balto K, Kawashima N, Eastcott J, Hoshino K, Akira S, Stashenko P. Gamma interferon (IFN-gamma) and IFN-gamma-inducing cytokines interleukin-12 (IL-12) and IL-18 do not augment infection-stimulated bone resorption in vivo. Clin Diagn Lab Immunol, 2004, 11: 106-110

[37]

Way KJ, Dinh H, Keene MR, White KE, Clanchy FI, Lusby P, Roiniotis J, Cook AD, Cassady AI, Curtis DJ, Hamilton JA. The generation and properties of human macrophage populations from hemopoietic stem cells. J Leukoc Biol, 2009, 85: 766-778

[38]

Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol, 2006, 177: 7303-7311

[39]

Teitelbaum SL. Osteoclasts: what do they do and how do they do it? Am J Pathol, 2007, 170: 427-435

[40]

Wang J, Jiang Y, Chen W, Zhu C, Liang J. Bacterial flora and extraradicular biofilm associated with the apical segment of teeth with post-treatment apical periodontitis. J Endod, 2012, 38: 954-959

[41]

Furer V, Greenberg JD, Attur M, Abramson SB, Pillinger MH. The role of microRNA in rheumatoid arthritis and other autoimmune diseases. Clin Immunol, 2010, 136: 1-15

[42]

Nakasa T, Nagata Y, Yamasaki K, Ochi M. A mini-review: microRNA in arthritis. Physiol Genomics, 2011, 43: 566-570

[43]

Lee YH, Na HS, Jeong SY, Jeong SH, Park HR, Chung J. Comparison of inflammatory microRNA expression in healthy and periodontitis tissues. Biocell, 2011, 35: 43-49

[44]

Xie YF, Shu R, Jiang SY, Liu DL, Zhang XL. Comparison of microRNA profiles of human periodontal diseased and healthy gingival tissues. Int J Oral Sci, 2011, 3: 125-134

[45]

Teitelbaum SL. Bone resorption by osteoclasts. Science, 2000, 289: 1504-1508

[46]

Tsurukai T, Udagawa N, Matsuzaki K, Takahashi N, Suda T. Roles of macrophage-colony stimulating factor and osteoclast differentiation factor in osteoclastogenesis. J Bone Miner Metab, 2000, 18: 177-184

[47]

Shiotani A, Takami M, Itoh K, Shibasaki Y, Sasaki T. Regulation of osteoclast differentiation and function by receptor activator of NFkB ligand and osteoprotegerin. Anat Rec, 2002, 268: 137-146

[48]

Czupalla C, Mansukoski H, Pursche T, Krause E, Hoflack B. Comparative study of protein and mRNA expression during osteoclastogenesis. Proteomics, 2005, 5: 3868-3875

[49]

Herrera BS, Martins-Porto R, Maia-Dantas A, Campi P, Spolidorio LC, Costa SK, van Dyke TE, Gyurko R, Muscara MN. iNOS-derived nitric oxide stimulates osteoclast activity and alveolar bone loss in ligature-induced periodontitis in rats. J Periodontol, 2011, 82: 1608-1615

[50]

Kim YS, Kang SJ, Kim JW, Cho HR, Moon SB, Kim KY, Lee HS, Han CH, Ku SK, Lee YJ. Effects of Polycan, a beta-glucan, on experimental periodontitis and alveolar bone loss in Sprague-Dawley rats. J Periodontal Res, 2012, 47: 800-810

[51]

Brandi ML, Hukkanen M, Umeda T, Moradi-Bidhendi N, Bianchi S, Gross SS, Polak JM, MacIntyre I. Bidirectional regulation of osteoclast function by nitric oxide synthase isoforms. Proc Natl Acad Sci U S A, 1995, 92: 2954-2958

[52]

Spies CM, Straub RH, Buttgereit F. Energy metabolism and rheumatic diseases: from cell to organism. Arthritis Res Ther, 2012, 14: 216

[53]

Sanchez-Pernaute O, Filkova M, Gabucio A, Klein M, Maciejewska-Rodrigues H, Ospelt C, Brentano F, Michel BA, Gay RE, Herrero-Beaumont G, Gay S, Neidhart M, Juengel A . Citrullination enhances the proinflammatory response to fibrin in rheumatoid arthritis synovial fibroblasts. Ann Rheum Dis. 2012 Dec 12. [Epub ahead of print]

[54]

Walsh NC, Crotti TN, Goldring SR, Gravallese EM. Rheumatic diseases: the effects of inflammation on bone. Immunol Rev, 2005, 208: 228-251

[55]

Braun T, Schett G. Pathways for bone loss in inflammatory disease. Curr Osteoporos Rep, 2012, 10: 101-108

[56]

Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, Miyata T, Anderson DM, Suda T. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med, 1999, 190: 1741-1754

[57]

Hume DA, MacDonald KP. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood, 2012, 119: 1810-1820

[58]

Merkel KD, Erdmann JM, McHugh KP, Abu-Amer Y, Ross FP, Teitelbaum SL. Tumor necrosis factor-alpha mediates orthopedic implant osteolysis. Am J Pathol, 1999, 154: 203-210

[59]

Okahashi N, Inaba H, Nakagawa I, Yamamura T, Kuboniwa M, Nakayama K, Hamada S, Amano A. Porphyromonas gingivalis induces receptor activator of NF-kappaB ligand expression in osteoblasts through the activator protein 1 pathway. Infect Immun, 2004, 72: 1706-1714

[60]

Yen ML, Hsu PN, Liao HJ, Lee BH, Tsai HF. TRAF-6 dependent signaling pathway is essential for TNF-related apoptosis-inducing ligand (TRAIL) induces osteoclast differentiation. PLoS One, 2012, 7: e38048

[61]

Asagiri M, Takayanagi H. The molecular understanding of osteoclast differentiation. Bone, 2007, 40: 251-264

[62]

Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O'Brien CA. Matrix-embedded cells control osteoclast formation. Nat Med, 2011, 17: 1235-1241

[63]

Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW Jr., Ahmed-Ansari A, Sell KW, Pollard JW, Stanley ER. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci U S A, 1990, 87: 4828-4832

[64]

Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD, Nishikawa S. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature, 1990, 345: 442-444

[65]

Bluml S, Bonelli M, Niederreiter B, Puchner A, Mayr G, Hayer S, Koenders MI, van den Berg WB, Smolen J, Redlich K. Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum, 2011, 63: 1281-1288

[66]

Nakasa T, Shibuya H, Nagata Y, Niimoto T, Ochi M. The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis. Arthritis Rheum, 2011, 63: 1582-1590

[67]

Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, Bozzoni I. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell, 2005, 123: 819-831

[68]

Stoecklin-Wasmer C, Guarnieri P, Celenti R, Demmer RT, Keb-schull M, Papapanou PN. MicroRNAs and their target genes in gingival tissues. J Dent Res, 2012, 91: 934-940

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/