FGF23 and Phosphate Wasting Disorders

Xianglan Huang , Yan Jiang , Weibo Xia

Bone Research ›› 2013, Vol. 1 ›› Issue (1) : 120 -132.

PDF
Bone Research ›› 2013, Vol. 1 ›› Issue (1) : 120 -132. DOI: 10.4248/BR201302002
Article

FGF23 and Phosphate Wasting Disorders

Author information +
History +
PDF

Abstract

A decade ago, only two hormones, parathyroid hormone and 1,25(OH)2D, were widely recognized to directly affect phosphate homeostasis. Since the discovery of fibroblast growth factor 23 (FGF23) in 2000 (1), our understanding of the mechanisms of phosphate homeostasis and of bone mineralization has grown exponentially. FGF23 is the link between intestine, bone, and kidney together in phosphate regulation. However, we still do not know the complex mechanism of phosphate homeostasis and bone mineralization. The physiological role of FGF23 is to regulate serum phosphate. Secreted mainly by osteocytes and osteoblasts in the skeleton (2,3), it modulates kidney handling of phosphate reabsorption and calcitriol production. Genetic and acquired abnormalities in FGF23 structure and metabolism cause conditions of either hyper-FGF23 or hypo-FGF23. Hyper-FGF23 is related to hypophosphatemia, while hypo-FGF23 is related to hyperphosphatemia. Both hyper-FGF23 and hypo-FGF23 are detrimental to humans. In this review, we will discuss the pathophysiology of FGF23 and hyper-FGF23 related renal phosphate wasting disorders (4).

Cite this article

Download citation ▾
Xianglan Huang, Yan Jiang, Weibo Xia. FGF23 and Phosphate Wasting Disorders. Bone Research, 2013, 1(1): 120-132 DOI:10.4248/BR201302002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ADHR Consortium Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet, 2000, 26: 345-348

[2]

Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest, 2004, 113: 561-568

[3]

Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Yu X, Rauch F, Davis SI, Zhang S, Rios H, Drezner MK, Quarles LD, Bonewald LF, White KE. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet, 2006, 38: 1310-1315

[4]

Pettifor JM, Thandrayen K. Hypophosphatemic rickets: unraveling the role of FGF23. Calcif Tissue Int, 2012, 91: 297-306

[5]

Imel EA, Carpenter TO. Rickets: The skeletal disorders of impaired calcium or phosphate availability. Pediatr Endocrinol, 2013, 2: 357-378

[6]

Tenenhouse HS, Beck L. Renal Na(+)-phosphate cotransporter gene expression in X-linked Hyp and Gy mice. Kidney Int, 1996, 49: 1027-1032

[7]

Hruska KA, Rifas L, Cheng SL, Gupta A, Halstead L, Avioli L. X-linked hypophosphatemic rickets and the murine Hyp homologue. Am J Physiol, 1995, 268: F357-F362

[8]

Rector FC Jr. Sodium, bicarbonate, and chloride absorption by the proximal tubule. Am J Physiol, 1983, 244: F461-F471

[9]

Forster IC, Hernando N, Biber J, Murer H. Proximal tubular handling of phosphate: A molecular perspective. Kidney Int, 2006, 70: 1548-1559

[10]

Tenenhouse HS. Phosphate transport: molecular basis, regulation and pathophysiology. J Steroid Biochem Mol Biol, 2007, 103: 572-577

[11]

Miyamoto K, Ito M, Tatsumi S, Kuwahata M, Segawa H. New aspect of renal phosphate reabsorption: the type IIc sodium-dependent phosphate transporter. Am J Nephrol, 2007, 27: 503-515

[12]

Biber J, Hernando N, Traebert M, Volkl H, Murer H. Parathyroid hormone-mediated regulation of renal phosphate reabsorption. Nephrol Dial Transplant, 2000, 15 Suppl 6 29-30

[13]

Quarles LD. Endocrine functions of bone in mineral metabolism regulation. J Clin Invest, 2008, 118: 3820-3828

[14]

Quarles LD. FGF23, PHEX, and MEPE regulation of phosphate homeostasis and skeletal mineralization. Am J Physiol Endocrinol Metab, 2003, 285: E1-E9

[15]

Liu S, Tang W, Zhou J, Stubbs JR, Luo Q, Pi M, Quarles LD. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol, 2006, 17: 1305-1315

[16]

Liu S, Gupta A, Quarles LD. Emerging role of fibroblast growth factor 23 in a bone-kidney axis regulating systemic phosphate homeostasis and extracellular matrix mineralization. Curr Opin Nephrol Hypertens, 2007, 16: 329-335

[17]

Tiosano D, Hochberg Z. Hypophosphatemia: the common denominator of all rickets. J Bone Miner Metab, 2009, 27: 392-401

[18]

Prader A, Illig R, Uehlinger E, Stalder G. Rickets following bone tumor. Helv Paediatr Acta, 1959, 14: 554-565

[19]

Meyer RA Jr., Meyer MH, Gray RW. Parabiosis suggests a humoral factor is involved in X-linked hypophosphatemia in mice. J Bone Miner Res, 1989, 4: 493-500

[20]

Nesbitt T, Coffman TM, Griffiths R, Drezner MK. Cross transplantation of kidneys in normal and Hyp mice. Evidence that the Hyp mouse phenotype is unrelated to an intrinsic renal defect. J Clin Invest, 1992, 89: 1453-1459

[21]

Miyauchi A, Fukase M, Tsutsumi M, Fujita T. Hemangio-pericytoma-induced osteomalacia: tumor transplantation in nude mice causes hypophosphatemia and tumor extracts inhibit renal 25-hydroxyvitamin D 1-hydroxylase activity. J Clin Endocrinol Metab, 1988, 67: 46-53

[22]

Econs MJ, Drezner MK. Tumor-induced osteomalacia—unveiling a new hormone. N Engl J Med, 1994, 330: 1679-1681

[23]

Bai XY, Miao D, Goltzman D, Karaplis AC. The autosomal dominant hypophosphatemic rickets R176Q mutation in fibroblast growth factor 23 resists proteolytic cleavage and enhances in vivo biological potency. J Biol Chem, 2003, 278: 9843-9849

[24]

Ubaidus S, Li M, Sultana S, De Freitas PH, Oda K, Maeda T, Takagi R, Amizuka N. FGF23 is mainly synthesized by osteocytes in the regularly distributed osteocytic lacunar canalicular system established after physiological bone remodeling. J Electron Microsc (Tokyo), 2009, 58: 381-392

[25]

Jonsson KB, Zahradnik R, Larsson T, White KE, Sugimoto T, Imanishi Y, Yamamoto T, Hampson G, Koshiyama H, Ljunggren O, Oba K, Yang IM, Miyauchi A, Econs MJ, Lavigne J, Juppner H. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med, 2003, 348: 31656-31663

[26]

Riminucci M, Collins MT, Fedarko NS, Cherman N, Corsi A, White KE, Waguespack S, Gupta A, Hannon T, Econs MJ, Bianco P, Gehron Robey P. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest, 2003, 112: 683-692

[27]

Fukumoto S, Shimizu Y. Fibroblast growth factor 23 as a phosphotropic hormone and beyond. J Bone Miner Metab, 2011, 29: 507-514

[28]

Alon US. Clinical practice. Fibroblast growth factor (FGF)23: a new hormone. Eur J Pediatr, 2011, 170: 545-554

[29]

Gattineni J, Baum M. Genetic disorders of phosphate regulation. Pediatr Nephrol, 2012, 27: 1477-1487

[30]

Carpenter TO. The expanding family of hypophosphatemic syndromes. J Bone Miner Metab, 2012, 30: 1-9

[31]

Baroncelli GI, Toschi B, Bertelloni S. Hypophosphatemic rickets. Curr Opin Endocrinol Diabetes Obes, 2012, 19: 460-467

[32]

Penido MG, Alon US. Phosphate homeostasis and its role in bone health. Pediatr Nephrol, 2012, 27: 2039-2048

[33]

Martin A, David V, Li H, Dai B, Feng JQ, Quarles LD. Over-expression of the DMP1 C-terminal fragment stimulates FGF23 and exacerbates the hypophosphatemic rickets phenotype in Hyp mice. Mol Endocrinol, 2012, 26: 1883-1895

[34]

Onishi T, Umemura S, Shintani S, Ooshima T. Phex mutation causes overexpression of FGF23 in teeth. Arch Oral Biol, 2008, 53: 99-104

[35]

Lorenz-Depiereux B, Bastepe M, Benet-Pages A, Amyere M, Wagenstaller J, Muller-Barth U, Badenhoop K, Kaiser SM, Rittmaster RS, Shlossberg AH, Olivares JL, Loris C, Ramos FJ, Glorieux F, Vikkula M, Juppner H, Strom TM. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet, 2006, 38: 1248-1250

[36]

Kuro-o M. Klotho as a regulator of fibroblast growth factor signaling and phosphate/calcium metabolism. Curr Opin Nephrol Hypertens, 2006, 15: 437-441

[37]

Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem, 2006, 281: 6120-6123

[38]

Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature, 2006, 444: 770-774

[39]

Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature, 1997, 390: 45-51

[40]

Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, Sirkis R, Naveh-Many T, Silver J. The parathyroid is a target organ for FGF23 in rats. J Clin Invest, 2007, 117: 4003-4008

[41]

Segawa H, Kawakami E, Kaneko I, Kuwahata M, Ito M, Kusano K, Saito H, Fukushima N, Miyamoto K. Effect of hydrolysis-resistant FGF23-R179Q on dietary phosphate regulation of the renal type-II Na/Pi transporter. Pflugers Arch, 2003, 446: 585-592

[42]

Segawa H, Yamanaka S, Ohno Y, Onitsuka A, Shiozawa K, Aranami F, Furutani J, Tomoe Y, Ito M, Kuwahata M, Imura A, Nabeshima Y, Miyamoto K. Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am J Physiol Renal Physiol, 2007, 292: F769-F779

[43]

Shimada T, Urakawa I, Yamazaki Y, Hasegawa H, Hino R, Yoneya T, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T. FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa. Biochem Biophys Res Commun, 2004, 314: 409-414

[44]

Farrow EG, Davis SI, Summers LJ, White KE. Initial FGF23-mediated signaling occurs in the distal convoluted tubule. J Am Soc Nephrol, 2009, 20: 955-960

[45]

Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B, Razzaque MS, Rosenblatt KP, Baum MG, Kuro-o M, Moe OW. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J, 2010, 24: 3438-3450

[46]

Gattineni J, Bates C, Twombley K, Dwarakanath V, Robinson ML, Goetz R, Mohammadi M, Baum M. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol, 2009, 297: F282-F291

[47]

Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res, 2004, 19: 429-435

[48]

Shalhoub V, Ward SC, Sun B, Stevens J, Renshaw L, Hawkins N, Richards WG. Fibroblast growth factor 23 (FGF23) and alpha-klotho stimulate osteoblastic MC3T3.E1 cell proliferation and inhibit mineralization. Calcif Tissue Int, 2011, 89: 140-150

[49]

Wang H, Yoshiko Y, Yamamoto R, Minamizaki T, Kozai K, Tanne K, Aubin JE, Maeda N. Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J Bone Miner Res, 2008, 23: 939-948

[50]

Lorenz-Depiereux B, Schnabel D, Tiosano D, Hausler G, Strom TM. Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am J Hum Genet, 2010, 86: 267-272

[51]

Levy-Litan V, Hershkovitz E, Avizov L, Leventhal N, Bercovich D, Chalifa-Caspi V, Manor E, Buriakovsky S, Hadad Y, Goding J, Parvari R. Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am J Hum Genet, 2010, 86: 273-278

[52]

Ryan WG, Nibbe AF, Schwartz TB, Ray RD. Fibrous dysplasia of bone with vitamin D resistant rickets: a case study. Metabolism, 1968, 17: 988-998

[53]

Dent CE, Gertner JM. Hypophosphataemic osteomalacia in fibrous dysplasia. Q J Med, 1976, 45: 411-420

[54]

Dachille RD, Goldberg JS, Wexler ID, Shons AR. Fibrous dysplasia-induced hypocalcemia/rickets. J Oral Maxillofac Surg, 1990, 48: 1319-1322

[55]

Zutt M, Strutz F, Happle R, Habenicht EM, Emmert S, Haenssle HA, Kretschmer L, Neumann C. Schimmelpenning-Feuerstein-Mims syndrome with hypophosphatemic rickets. Dermatology, 2003, 207: 72-76

[56]

Hoffman WH, Jueppner HW, Deyoung BR, O'Dorisio MS, Given KS. Elevated fibroblast growth factor-23 in hypophosphatemic linear nevus sebaceous syndrome. Am J Med Genet A, 2005, 134: 233-236

[57]

Srinivas UM, Tourani KL. Epidermal nevus syndrome with hypophosphatemic renal rickets with hypercalciuria: a bone marrow diagnosis. Int J Hematol, 2008, 88: 125-126

[58]

Bianchine JW, Stambler AA, Harrison HE. Familial hypophosphatemic rickets showing autosomal dominant inheritance. Birth Defects Orig Artic Ser, 1971, 7: 287-295

[59]

Pettifor JM. What's new in hypophosphataemic rickets? Eur J Pediatr, 2008, 167: 493-499

[60]

Xia W, Meng X, Jiang Y, Li M, Xing X, Pang L, Wang O, Pei Y, Yu LY, Sun Y, Hu Y, Zhou X. Three novel mutations of the PHEX gene in three Chinese families with X-linked dominant hypophosphatemic rickets. Calcif Tissue Int, 2007, 81: 415-420

[61]

Francis F., Hennig S., Korn B., Reinhardt R., de Jong P., Poustka A., Lehrach H., Rowe P.S.N, Goulding J.N., Summerfield T., Mountford R., Read A.P., Popowska E., Pronicka E., Davies K.E., O'Riordan J.L.H., Econs M.J., Nesbitt T., Drezner M.K., Oudet C., Pannetier S., Hanauer A., Strom T.M., Meindl A., Lorenz B., Cagnoli B., Mohnike K.L., Murken J., Meitinger T.. A gene (PEX) with homologies to endopeptidases is mutated in patients with X–linked hypophosphatemic rickets. Nature Genetics, 1995, 11 2 130-136

[62]

Beck L, Soumounou Y, Martel J, Krishnamurthy G, Gauthier C, Goodyer CG, Tenenhouse HS. Pex/PEX tissue distribution and evidence for a deletion in the 3′ region of the Pex gene in X-linked hypophosphatemic mice. J Clin Invest, 1997, 99: 1200-1209

[63]

Xia WB, Jiang Y, Li M, Xing XP, Wang O, Hu YY, Zhang HB, Liu HC, Meng XW, Zhou XY. Levels and dynamic changes of serum fibroblast growth factor 23 in hypophosphatemic rickets/osteomalacia. Chin Med J (Engl), 2010, 123: 1158-1162

[64]

Liu S, Zhou J, Tang W, Jiang X, Rowe DW, Quarles LD. Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab, 2006, 291: E38-E49

[65]

Liu S, Guo R, Simpson LG, Xiao ZS, Burnham CE, Quarles LD. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J Biol Chem, 2003, 278: 37419-37426

[66]

David V, Martin A, Hedge AM, Drezner MK, Rowe PS. ASARM peptides: PHEX-dependent and -independent regulation of serum phosphate. Am J Physiol Renal Physiol, 2011, 300: F783-F791

[67]

Econs MJ, McEnery PT. Autosomal dominant hypophosphatemic rickets/osteomalacia: clinical characterization of a novel renal phosphate-wasting disorder. J Clin Endocrinol Metab, 1997, 82: 674-681

[68]

Imel EA, Peacock M, Gray AK, Padgett LR, Hui SL, Econs MJ. Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy humans. J Clin Endocrinol Metab, 2011, 96: 3541-3549

[69]

Kruse K, Woelfel D, Strom TM. Loss of renal phosphate wasting in a child with autosomal dominant hypophosphatemic rickets caused by a FGF23 mutation. Horm Res, 2001, 55: 305-308

[70]

White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int, 2001, 60: 2079-2086

[71]

Sun Y, Wang O, Xia W, Jiang Y, Li M, Xing X, Hu Y, Liu H, Meng X, Zhou X. FGF23 analysis of a Chinese family with autosomal dominant hypophosphatemic rickets. J Bone Miner Metab, 2012, 30: 78-84

[72]

Imel EA, Econs MJ. Fibroblast growth factor 23: roles in health and disease. J Am Soc Nephrol, 2005, 16: 2565-2575

[73]

Perry W, Stamp TC. Hereditary hypophosphataemic rickets with autosomal recessive inheritance and severe osteosclerosis. A report of two cases. J Bone Joint Surg Br, 1978, 60-B: 430-434

[74]

Scriver CR, Reade T, Halal F, Costa T, Cole DE. Autosomal hypophosphataemic bone disease responds to 1,25-(OH)2D3. Arch Dis Child, 1981, 56: 203-207

[75]

Gattineni J, Baum M. Regulation of phosphate transport by fibroblast growth factor 23 (FGF23): implications for disorders of phosphate metabolism. Pediatr Nephrol, 2010, 25: 591-601

[76]

Farrow EG, White KE. Recent advances in renal phosphate handling. Nat Rev Nephrol, 2010, 6: 207-217

[77]

Saito T, Shimizu Y, Hori M, Taguchi M, Igarashi T, Fukumoto S, Fujitab T. A patient with hypophosphatemic rickets and ossification of posterior longitudinal ligament caused by a novel homozygous mutation in ENPP1 gene. Bone, 2011, 49: 913-916

[78]

Rafaelsen SH, Raeder H, Fagerheim AK, Knappskog P, Carpenter TO, Johansson S, Bjerknes R. Exome sequencing reveals FAM20c mutations associated with fibroblast growth factor 23-related hypophosphatemia, dental anomalies, and ectopic calcification. J Bone Miner Res, 2013, 28: 1378-1385

[79]

Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL. A clinician's guide to X-linked hypophosphatemia. J Bone Miner Res, 2011, 26: 1381-1388

[80]

Quinlan C, Guegan K, Offiah A, Neill RO, Hiorns MP, Ellard S, Bockenhauer D, Hoff WV, Waters AM. Growth in PHEX-associated X-linked hypophosphatemic rickets: the importance of early treatment. Pediatr Nephrol, 2012, 27: 581-588

[81]

Makitie O. Early Treatment Improves Growth and Biochemical and Radiographic Outcome in X-Linked Hypophosphatemic Rickets. Journal of Clinical Endocrinology & Metabolism, 2003, 88: 3591-3597

[82]

Zivicnjak M, Schnabel D, Staude H, Even G, Marx M, Beetz R, Holder M, Billing H, Fischer DC, Rabl W, Schumacher M, Hiort O, Haffner D Hypophosphatemic Rickets Study Group of the Arbeitsgemeinschaft fur Padiatrische E, Gesellschaft fur Padiatrische N Three-year growth hormone treatment in short children with X-linked hypophosphatemic rickets: effects on linear growth and body disproportion. J Clin Endocrinol Metab, 2011, 96: E2097-E2105

[83]

Liu ES, Carpenter TO, Gundberg CM, Simpson CA, Insogna KL. Calcitonin administration in X-linked hypophosphatemia. N Engl J Med, 2011, 364: 1678-1680

[84]

Aono Y, Hasegawa H, Yamazaki Y, Shimada T, Fujita T, Yamashita T, Fukumoto S. Anti-FGF-23 neutralizing antibodies ameliorate muscle weakness and decreased spontaneous movement of Hyp mice. J Bone Miner Res, 2011, 26: 803-810

[85]

Shimada T, Fukumoto S. FGF23 as a novel therapeutic target. Adv Exp Med Biol, 2012, 728: 158-170

[86]

Wyman AL, Paradinas FJ, Daly JR. Hypophosphataemic osteomalacia associated with a malignant tumour of the tibia: report of a case. J Clin Pathol, 1977, 30: 328-335

[87]

Rico H, Fernandez-Miranda E, Sanz J, Gomez-Castresana F, Escriba A, Hernandez ER, Krsnik I. Oncogenous osteomalacia: a new case secondary to a malignant tumor. Bone, 1986, 7: 325-329

[88]

Harvey JN, Gray C, Belchetz PE. Oncogenous osteomalacia and malignancy. Clin Endocrinol (Oxf), 1992, 37: 379-382

[89]

Ogose A, Hotta T, Emura I, Hatano H, Inoue Y, Umezu H, Endo N. Recurrent malignant variant of phosphaturic mesenchymal tumor with oncogenic osteomalacia. Skeletal Radiol, 2001, 30: 99-103

[90]

Uramoto N, Furukawa M, Yoshizaki T. Malignant phosphaturic mesenchymal tumor, mixed connective tissue variant of the tongue. Auris Nasus Larynx, 2009, 36: 104-105

[91]

Cai Q, Hodgson SF, Kao PC, Lennon VA, Klee GG, Zinsmiester AR, Kumar R. Brief report: inhibition of renal phosphate transport by a tumor product in a patient with oncogenic osteomalacia. N Engl J Med, 1994, 330: 1645-1649

[92]

Yamazaki Y, Okazaki R, Shibata M, Hasegawa Y, Satoh K, Tajima T, Takeuchi Y, Fujita T, Nakahara K, Yamashita T, Fukumoto S. Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab, 2002, 87: 4957-4960

[93]

Takeuchi Y, Suzuki H, Ogura S, Imai R, Yamazaki Y, Yamashita T, Miyamoto Y, Okazaki H, Nakamura K, Nakahara K, Fukumoto S, Fujita T. Venous sampling for fibroblast growth factor-23 confirms preoperative diagnosis of tumor-induced osteomalacia. J Clin Endocrinol Metab, 2004, 89: 3979-3982

[94]

Jiang Y, Xia WB, Xing XP, Silva BC, Li M, Wang O, Zhang HB, Li F, Jing HL, Zhong DR, Jin J, Gao P, Zhou L, Qi F, Yu W, Bilezikian JP, Meng XW. Tumor-induced osteomalacia: an important cause of adult-onset hypophosphatemic osteomalacia in China: Report of 39 cases and review of the literature. J Bone Miner Res, 2012, 27: 1967-1975

[95]

White KE, Jonsson KB, Carn G, Hampson G, Spector TD, Mannstadt M, Lorenz-Depiereux B, Miyauchi A, Yang IM, Ljunggren O, Meitinger T, Strom TM, Juppner H, Econs MJ. The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting. J Clin Endocrinol Metab, 2001, 86: 497-500

[96]

Farrow EG, White KE. Tumor-induced osteomalacia. Expert Rev Endocrinol Metab, 2009, 4: 435-442

[97]

Hesse E, Moessinger E, Rosenthal H, Laenger F, Brabant G, Petrich T, Gratz KF, Bastian L. Oncogenic osteomalacia: exact tumor localization by co-registration of positron emission and computed tomography. J Bone Miner Res, 2007, 22: 158-162

[98]

Clunie GP, Fox PE, Stamp TC. Four cases of acquired hypophosphataemic (‘oncogenic’) osteomalacia. Problems of diagnosis, treatment and long-term management. Rheumatology (Oxford), 2000, 39: 1415-1421

[99]

Khosravi A, Cutler CM, Kelly MH, Chang R, Royal RE, Sherry RM, Wodajo FM, Fedarko NS, Collins MT. Determination of the elimination half-life of fibroblast growth factor-23. Journal of Clinical Endocrinology & Metabolism, 2007, 92: 2374-2377

[100]

Spiegel AM, Shenker A, Weinstein LS. Receptor-effector coupling by G proteins: implications for normal and abnormal signal transduction. Endocr Rev, 1992, 13: 536-565

[101]

Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med, 1991, 325: 1688-1695

[102]

Schwindinger WF, Francomano CA, Levine MA. Identification of a mutation in the gene encoding the alpha subunit of the stimulatory G protein of adenylyl cyclase in McCune-Albright syndrome. Proc Natl Acad Sci U S A, 1992, 89: 5152-5156

[103]

Lee PA, van Dop C, Migeon CJ. McCune-Albright syndrome. Long-term follow-up. JAMA, 1986, 256: 2980-2984

[104]

Collins MT, Chebli C, Jones J, Kushner H, Consugar M, Rinaldo P, Wientroub S, Bianco P, Robey PG. Renal phosphate wasting in fibrous dysplasia of bone is part of a generalized renal tubular dysfunction similar to that seen in tumor-induced osteomalacia. J Bone Miner Res, 2001, 16: 806-813

[105]

Yamamoto T, Miyamoto KI, Ozono K, Taketani Y, Katai K, Miyauchi A, Shima M, Yoshikawa H, Yoh K, Takeda E, Okada S. Hypophosphatemic rickets accompanying McCune-Albright syndrome: evidence that a humoral factor causes hypophosphatemia. J Bone Miner Metab, 2001, 19: 287-295

[106]

Chadha M, Singh AP, Singh AP. Hypophosphataemic osteomalacia in neurofibromatosis. Acta Orthop Belg, 2009, 75: 847-850

[107]

Lambert J, Lips P. Adult hypophosphataemic osteomalacia with Fanconi syndrome presenting in a patient with neurofibromatosis. Neth J Med, 1989, 35: 309-316

[108]

Konishi K, Nakamura M, Yamakawa H, Suzuki H, Saruta T, Hanaoka H, Davatchi F. Hypophosphatemic osteomalacia in von Recklinghausen neurofibromatosis. Am J Med Sci, 1991, 301: 322-328

[109]

Retnam VJ, Rangnekar DM, Bhandarkar SD. Neurofibromatosis with hypophosphatemic osteomalacia (Von Recklinghausen-Hernberg-Edgren-Swann syndrome) (a case report). J Assoc Physicians India, 1980, 28: 319-322

[110]

Abdel-Wanis M, Kawahara N. Hypophosphatemic osteomalacia in neurofibromatosis 1: hypotheses for pathogenesis and higher incidence of spinal deformity. Med Hypotheses, 2002, 59: 183-185

[111]

Solomon LM, Esterly NB. Epidermal and other congenital organoid nevi. Curr Probl Pediatr, 1975, 6: 1-56

[112]

Grebe TA, Rimsza ME, Richter SF, Hansen RC, Hoyme HE. Further delineation of the epidermal nevus syndrome: two cases with new findings and literature review. Am J Med Genet, 1993, 47: 24-30

[113]

Aschinberg LC, Solomon LM, Zeis PM, Justice P, Rosenthal IM. Vitamin D-resistant rickets associated with epidermal nevus syndrome: demonstration of a phosphaturic substance in the dermal lesions. J Pediatr, 1977, 91: 56-60

[114]

Carey DE, Drezner MK, Hamdan JA, Mange M, Ahmad MS, Mubarak S, Nyhan WL. Hypophosphatemic rickets/osteomalacia in linear sebaceous nevus syndrome: a variant of tumor-induced osteomalacia. J Pediatr, 1986, 109: 994-1000

[115]

Goldblum JR, Headington JT. Hypophosphatemic vitamin D-resistant rickets and multiple spindle and epithelioid nevi associated with linear nevus sebaceus syndrome. J Am Acad Dermatol, 1993, 29: 109-111

[116]

Skovby F, Svejgaard E, Moller J. Hypophosphatemic rickets in linear sebaceous nevus sequence. J Pediatr, 1987, 111: 855-857

[117]

Eyskens B, Proesmans W, van Damme B, Lateur L, Bouillon R, Hoogmartens M. Tumour-induced rickets: a case report and review of the literature. Eur J Pediatr, 1995, 154: 462-468

[118]

Oranje AP, Przyrembel H, Meradji M, Loonen MC, De Klerk JB. Solomon's epidermal nevus syndrome (type: linear nevus sebaceus) and hypophosphatemic vitamin D-resistant rickets. Arch Dermatol, 1994, 130: 1167-1171

[119]

Narazaki R, Ihara K, Namba N, Matsuzaki H, Ozono K, Hara T. Linear nevus sebaceous syndrome with hypophosphatemic rickets with elevated FGF-23. Pediatr Nephrol, 2012, 27: 861-863

[120]

Sethi SK, Hari P, Bagga A. Elevated FGF-23 and parathormone in linear nevus sebaceous syndrome with resistant rickets. Pediatr Nephrol, 2010, 25: 1577-1578

[121]

White KE, Cabral JM, Davis SI, Fishburn T, Evans WE, Ichikawa S, Fields J, Yu X, Shaw NJ, McLellan NJ, McKeown C, Fitzpatrick D, Yu K, Ornitz DM, Econs MJ. Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. Am J Hum Genet, 2005, 76: 361-367

[122]

Farrow EG, Davis SI, Mooney SD, Beighton P, Mascarenhas L, Gutierrez YR, Pitukcheewanont P, White KE. Extended mutational analyses of FGFR1 in osteoglophonic dysplasia. Am J Med Genet A, 2006, 140: 537-539

[123]

Roberts TS, Stephen L, Beighton P. Osteoglophonic dysplasia: dental and orthodontic implications. Orthod Craniofac Res, 2006, 9: 153-156

[124]

Beighton P, Cremin BJ, Kozlowski K. Osteoglophonic dwarfism. Pediatr Radiol, 1980, 10: 46-50

[125]

Beighton P. Osteoglophonic dysplasia. J Med Genet, 1989, 26: 572-576

[126]

Brownstein CA, Adler F, Nelson-Williams C, Iijima J, Li P, Imura A, Nabeshima Y, Reyes-Mugica M, Carpenter TO, Lifton RP. A translocation causing increased alpha-klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc Natl Acad Sci U S A, 2008, 105: 3455-3460

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/