Bone Remodeling and Energy Metabolism: New Perspectives

Francisco J. A. de Paula , Clifford J. Rosen

Bone Research ›› 2013, Vol. 1 ›› Issue (1) : 72 -84.

PDF
Bone Research ›› 2013, Vol. 1 ›› Issue (1) : 72 -84. DOI: 10.4248/BR201301005
Article

Bone Remodeling and Energy Metabolism: New Perspectives

Author information +
History +
PDF

Abstract

Bone mineral, adipose tissue and energy metabolism are interconnected by a complex and multilevel series of networks. Calcium and phosphorus are utilized for insulin secretion and synthesis of high energy compounds. Adipose tissue store lipids and cholecalciferol, which, in turn, can influence calcium balance and energy expenditure. Hormones long-thought to solely modulate energy and mineral homeostasis may influence adipocytic function. Osteoblasts are a target of insulin action in bone. Moreover, endocrine mediators, such as osteocalcin, are synthesized in the skeleton but regulate carbohydrate disposal and insulin secretion. Finally, osteoblasts and adipocytes originate from the same mesenchymal progenitor. The mutual crosstalk between osteoblasts and adipocytes within the bone marrow microenvironment plays a crucial role in bone remodeling. In the present review we provide an overview of the reciprocal control between bone and energy metabolism and its clinical implications.

Cite this article

Download citation ▾
Francisco J. A. de Paula, Clifford J. Rosen. Bone Remodeling and Energy Metabolism: New Perspectives. Bone Research, 2013, 1(1): 72-84 DOI:10.4248/BR201301005

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jackson RA, Roshania RD, Hawa MI, Sim BM, DiSilvio L. Impact of glucose ingestion on hepatic and peripheral glucose metabolism in man: an analysis based on simultaneous use of the forearm and double isotope techniques. J Clin Endocrinol Metab, 1986, 63: 541-549

[2]

Paula FJ, Pimenta WP, Saad MJ, Paccola GM, Piccinato CE, Foss MC. Sex-related differences in peripheral glucose metabolism in normal subjects. Diabete Metab, 1990, 16: 234-239

[3]

Ferrannini E. Physiology of glucose homeostasis and insulin therapy in type 1 and type 2 diabetes. Endocrinol Metab Clin North Am, 2012, 41: 25-39

[4]

Muñoz R, Carmody JS, Stylopoulos N, Davis P, Kaplan LM. Isolated duodenal exclusion increases energy expenditure and improves glucose homeostasis in diet-induced obese rats. Am J Physiol Regul Integr Comp Physiol, 2012, 303: R985-R993

[5]

Digirolamo DJ, Clemens TL, Kousteni S. The skeleton as an endocrine organ. Nat Rev Rheumatol, 2012, 8: 674-683

[6]

Guntur AR, Rosen CJ. Bone as an endocrine organ. Endocr Pract, 2012, 18: 758-762

[7]

Friedman JM. Leptin at 14 y of age: an ongoing story. Am J Clin Nutr, 2009, 89: 973S-979S

[8]

Zhang Y, Proenca P, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature, 1994, 372: 425-432

[9]

Elefteriou F, Takeda S, Ebihara K, Magre J, Patano N, Kim CA, Ogawa Y, Liu X, Ware SM, Craigen WJ, Robert JJ, Vinson C, Nakao K, Capeau J, Karsenty G. Serum leptin level is a regulator of bone mass. Proc Natl Acad Sci U S A, 2004, 101: 3258-3263

[10]

Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G. Leptin regulates bone formation via the sympathetic nervous system. Cell, 2002, 11: 305-317

[11]

Chan JL, Oral EA. Clinical classification and treatment of congenital and acquired lipodystrophy. Endocr Pract, 2010, 16: 310-323

[12]

Garg A, Agarwal AK. Lipodystrophies: disorders of adipose tissue biology. Biochim Biophys Acta, 2009, 1791: 507-513

[13]

Rowe MW, Bergman RN, Wagenknecht LE, Kolberg JA. Performance of a multi-marker diabetes risk score in the Insulin Resistance Atherosclerosis Study (IRAS), a multi-ethnic US cohort. Diabetes Metab Res Rev, 2012, 28: 519-526

[14]

Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, Rinfret S, Schiffrin EL, Eisenberg MJ. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol, 2010, 56: 1113-1132

[15]

Zhang HM, Chen LL, Wang L, Xu S, Wang X, Yi LL, Chen D, Wu ZH, Zhang JY, Liao YF, Shang J. Macrophage infiltrates with high levels of Toll-like receptor 4 expression in white adipose tissues of male Chinese. Nutr Metab Cardiovasc Dis, 2009, 19: 736-743

[16]

Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest, 2011, 121: 2094-2101

[17]

Chen Z, Torrens JI, Anand A, Spiegelman BM, Friedman JM. Krox20 stimulates adipogenesis via C/EBPbeta-dependent and -independent mechanisms. Cell Metab, 2005, 1: 93-106

[18]

Haap M, Heller E, Thamer C, Tschritter O, Stefan N, Fritsche A. Association of serum phosphate levels with glucose tolerance, insulin sensitivity and insulin secretion in non-diabetic subjects. Eur J Clin Nutr, 2006, 60: 734-739

[19]

Kautzky-Willer A, Pacini G, Niederle B, Schernthaner G, Prager R. Insulin secretion, insulin sensitivity and hepatic insulin extraction in primary hyperparathyroidism before and after surgery. Clin Endocrinol (Oxf), 1992, 37: 147-155

[20]

Rorsman P, Renstrom E. Insulin granule dynamics in pancreatic beta cells. Diabetologia, 2003, 46: 1029-1045

[21]

Velasco M, Larque C, Gutiérrez-Reyes G, Arredondo R, Sanchez-Soto C, Hiriart M. Metabolic syndrome induces changes in KATP-channels and calcium currents in pancreatic β-cells. Islets, 2012, 4: 302-311

[22]

Marcinkowski W, Zhang G, Smogorzewski M, Massry SG. Elevation of (Ca2+)i of renal proximal tubule cells and downregulation of MRNA of PTH-PTHrP, V1a and AT1 receptors in kidneys of diabetic rats. Kidney Int, 1997, 51: 1950-1955

[23]

Donate-Correa J, Muros-de-Fuentes M, Mora-Fernández C, Navarro-González JF. FGF23/Klotho axis: phosphorus, mineral metabolism and beyond. Cytokine Growth Factor Rev, 2012, 23: 37-46

[24]

Kuro-o MA. Potential link between phosphate and aging—lessons from Klotho-deficient mice. Mech Ageing Dev, 2010, 131: 270-275

[25]

Masoro EJ. Dietary restriction-induced life extension: a broadly based biological phenomenon. Biogerontology, 2006, 7: 153-155

[26]

Kayo T, Allison DB, Weindruch R, Prolla TA. Influences of aging and caloric restriction on the transcriptional profile of skeletal muscle from rhesus monkeys. Proc Natl Acad Sci U S A, 2001, 98: 5093-5098

[27]

Xie W, Tran TL, Finegood DT, van de Werve G. Dietary P(i) deprivation in rats affects liver cAMP, glycogen, key steps of gluconeogenesis and glucose production. Biochem J, 2000, 352: 227-232

[28]

Paula FJ, Plens AE, Foss MC. Effects of hypophosphatemia on glucose tolerance and insulin secretion. Horm Metab Res, 1998, 30: 281-284

[29]

Di Marco GS, Hausberg M, Hillebrand U, Rustemeyer P, Wittkowski W, Lang D, Pavenstädt H. Increased inorganic phosphate induces human endothelial cell apoptosis in vitro. Am J Physiol Renal Physiol, 2008, 294: F1381-1387

[30]

Rucker D, Tonelli M. Cardiovascular risk and management in chronic kidney disease. Nat Rev Nephrol, 2009, 5: 287-296

[31]

Arunabh S, Pollack S, Yeh J, Aloia JF. Body fat content and 25-hydroxyvitamin D levels in healthy women. J. Clin. Endocrinol. Metab, 2003, 88: 157-161

[32]

Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr, 2000, 72: 690-693

[33]

Reinehr T, De Sousa G, Alexy U, Kersting M, Andler W. Vitamin D status and parathyroid hormone in obese children before and after weight loss. Eur J Endocrinol, 2007, 157: 225-232

[34]

Bellia A, Marinoni G, D'Adamo M, Guglielmi V, Lombardo M, Donadel G, Gentileschi P, Lauro D, Federici M, Lauro R, Sbraccia P. Parathyroid Hormone and Insulin Resistance in Distinct Phenotypes of Severe Obesity: A Cross-Sectional Analysis in Middle-Aged Men and Premenopausal Women. J Clin Endocrinol Metab, 2012, 97: 724-732

[35]

Narvaez CJ, Matthews D, Broun E, Chan M, Welsh J. Lean phenotype and resistance to diet-induced obesity in vitamin D receptor knockout mice correlates with induction of uncoupling protein-1 in white adipose tissue. Endocrinology, 2009, 150: 651-666

[36]

Wong KE, Szeto FL, Zhang W, Ye H, Kong J, Zhang Z, Sun XJ, Li YC. Involvement of the vitamin D receptor in energy metabolism regulation of uncoupling proteins. Am J Physiol Endocrinol Metab, 2009, 296: E820-E828

[37]

Streicher C, Zeitz U, Andrukhova O, Rupprecht A, Pohl E, Larsson TE, Windisch W, Lanske B, Erben RG. Long-term Fgf23 deficiency does not influence aging, glucose homeostasis, or fat metabolism in mice with a nonfunctioning vitamin D receptor. Endocrinology, 2012, 153: 1795-1805

[38]

De Paula FJ, Dick-de-Paula I, Bornstein S, Rostama B, Le P, Lotinun S, Baron R, Rosen CJ. VDR haploinsufficiency impacts body composition and skeletal acquisition in a gender-specific manner. Calcif Tissue Int, 2011, 89: 179-191

[39]

Wong KE, Kong J, Zhang W, Szeto FL, Ye H, Deb DK, Brady MJ, Li YC. Targeted expression of human vitamin D receptor in adipocytes decreases energy expenditure and induces obesity in mice. J Biol Chem, 2011, 286: 33804-33810

[40]

Zemel MB. Role of calcium and dairy products in energy partitioning and weight management. Am. J. Clin. Nutr, 2004, 79: 907S-912S

[41]

Kelishadi R, Zemel MB, Hashemipour M, Hosseini M, Mohammadifard N, Poursafa P. Can a dairy-rich diet be effective in long-term weight control of young children? J Am Coll Nutr, 2009, 28: 601-610

[42]

Zemel MB, Kim JH, Woychik RP, Michaud EJ, Kadwell SH, Patel IR, Wilkison WO. Agouti regulation of intracellular calcium: role in the insulin resistance of viable yellow mice. Proc Natl Acad Sci USA, 1995, 92: 4733-4737

[43]

Shi H, Norman AW, Okamura WH, Sen A, Zemel MB. 1alpha,25-dihydroxyvitamin D3 inhibits uncoupling protein 2 expression in human adipocytes. FASEB J, 2002, 16: 1808-1810

[44]

Xue B, Greenberg AG, Kraemer FB, Zemel MB. Mechanism of intracellular calcium inhibition of lipolysis in human adipocytes. FASEB J, 2001, 15: 2527-2529

[45]

Bell NH, Epstein S, Greene A, Shary J, Oexmann MJ, Shaw S. Evidence for alteration of the vitamin D-endocrine system in obese subjects. J Clin Invest, 1985, 76: 370-373

[46]

Grethen E, McClintock R, Gupta CE, Jones R, Cacucci BM, Diaz D, Fulford AD, Perkins SM, Considine RV, Peacock M. Vitamin D and hyperparathyroidism in obesity. J Clin Endocrinol Metab, 2011, 96: 1320-1326

[47]

Grethen E, Hill KM, Jones R, Cacucci BM, Gupta CE, Acton A, Considine RV, Peacock M. Serum leptin, parathyroid hormone, 1,25-dihydroxyvitamin D, fibroblast growth factor 23, bone alkaline phosphatase, and sclerostin relationships in obesity. J Clin Endocrinol Metab, 2012, 97: 1655-1662

[48]

Adam MA, Untch BR, Danko ME, Stinnett S, Dixit D, Koh J, Marks JR, Olson JA Jr. Severe obesity is associated with symptomatic presentation, higher parathyroid hormone levels, and increased gland weight in primary hyperparathyroidism. J Clin Endocrinol Metab, 2010, 95: 4917-4924

[49]

Cheng SP, Doherty GM, Chang YC, Liu CL. Leptin: the link between overweight and primary hyperparathyroidism? Med Hypotheses, 2011, 76: 94-96

[50]

Paula FJ, Rosen CJ. Obesity, diabetes mellitus and last but not least, osteoporosis. Arq Bras Endocrinol Metabol, 2010, 54: 150-157

[51]

Taylor WH, Khaleeli AA. Coincident diabetes mellitus and primary hyperparathyroidism. Diabetes Metab Res Rev, 2001, 17: 175-180

[52]

Khaleeli AA, Johnson JN, Taylor WH. Prevalence of glucose intolerance in primary hyperparathyroidism and the benefit of parathyroidectomy. Diabetes Metab Res Rev, 2007, 23: 43-48

[53]

Wolf M. Forging forward with 10 burning questions on FGF23 in kidney disease. J Am Soc Nephrol, 2010, 21: 1427-1435

[54]

Juppner H. Phosphate and FGF-23. Kidney Int, 2011, 121: S24-S27

[55]

Quarles LD. Endocrine functions of bone in mineral metabolism regulation. J Clin Invest, 2008, 118: 3820-3828

[56]

Bergwitz C, Jüppner H. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med, 2010, 61: 91-104

[57]

Wolf M. Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int, 2012, 82: 737-747

[58]

Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest, 2004, 113: 561-568

[59]

Tsujikawa H, Kurotaki Y, Fujimori T, Fukuda K, Nabeshima Y. Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol Endocrinol, 2003, 17: 2393-2403

[60]

Mirza MA, Alsioö J, Hammarstedt A, Erben RG, Michaëlsson K, Tivesten A, Marsell R, Orwoll E, Karlsson MK, Ljunggren O, Mellström D, Lind L, Ohlsson C, Larsson TE. Circulating fibroblast growth factor-23 is associated with fat mass and dyslipidemia in two independent cohorts of elderly individuals. Arterioscler Thromb Vasc Biol, 2011, 31: 219-227

[61]

Burke SK, Dillon MA, Hemken DE, Rezabek MS, Balwit JM. Meta-analysis of the effect of sevelamer on phosphorus, calcium, PTH, and serum lipids in dialysis patients. Adv Ren Replace Ther, 2003, 10: 133-145

[62]

Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA, 2001, 98: 6500-6505

[63]

Tsuji K, Maeda T, Kawane T, Matsunuma A, Horiuchi N. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1α,25-dihydroxyvitamin D3 synthesis in leptin-deficient mice. J Bone Miner Res, 2010, 25: 1711-1723

[64]

Reid IR. Fat and bone. Arch Biochem Biophys, 2010, 503: 20-27

[65]

Dimitri P, Wales J, Bishop N. Fat and bone in children-differential effects of obesity on bone size and mass according to fracture history. J Bone Miner Res, 2010, 25: 527-536

[66]

Goulding A, Grant AM, Williams SM. Bone and body composition of children and adolescents with repeated forearm fractures. J Bone Miner Res, 2005, 20: 2090-2096

[67]

Loder R, Aronson D, Greenfield M. The epidemiology of bilateral slipped capital femoral epiphysis. A study of children in Michigan. J Bone Joint Surg, 1993, 75: 1141-1147

[68]

Davids JR, Huskamp M, Bagley AM. A dynamic biomechanical analysis of the etiology of adolescent tibia vara. J Pediatr Orthop, 1996, 16: 461-468

[69]

Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ. Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. J Pediatr, 2001, 139: 509-515

[70]

Skaggs DL, Loro ML, Pitukcheewanont P, Tolo V, Gilsanz V. Increased body weight and decreased radial cross-sectional dimensions in girls with forearm fractures. J Bone Miner Res, 2001, 16: 1337-1342

[71]

Manias K, McCabe D, Bishop N. Fractures and recurrent fractures in children; varying effects of environmental factors as well as bone size and mass. Bone, 2006, 39: 652-657

[72]

Clark EM, Ness AR, Tobias JH. Avon Longitudinal Study of Parents and Children Study Team. Adipose tissue stimulates bone growth in prepubertal children. J Clin Endocrin Metab, 2006, 91: 2534-2541

[73]

Dimitri P, Bishop N, Walsh JS, Eastell R. Obesity is a risk factor for fracture in children but is protective against fracture in adults: A paradox. Bone, 2012, 50: 457-466

[74]

Foley S, Quinn S, Jones G. Tracking of bone mass from childhood to adolescence and factors that predict deviation from tracking. Bone, 2009, 44: 752-757

[75]

Nagasaki K, Kikuchi T, Hiura M, Uchiyama M. Obese Japanese children have low bone mineral density after puberty. J Bone Miner Metab, 2004, 22: 376-381

[76]

De Laet C, Kanis JA, Odén A, Johanson H, Johnell O, Delmas P, Eisman JA, Kroger H, Fujiwara S, Garnero P, McCloskey EV, Mellstrom D, Melton LJ 3rd, Meunier PJ, Pols HA, Reeve J, Silman A, Tenenhouse A. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int, 2005, 16: 1330-1338

[77]

Pereira FA, De Castro JA, dos Santos JE, Foss MC, Paula FJ. Impact of marked weight loss induced by bariatric surgery on bone mineral density and remodeling. Braz J Med Biol Res, 2007, 40: 509-517

[78]

Borges NC, Vasconcellos RS, Carciofi AC, Gonçalves KN, Paula FJ, Filho DE, Canola JC. DXA, bioelectrical impedance, ultrasonography and biometry for the estimation of fat and lean mass in cats during weight loss. BMC Vet Res, 2012, 8: 111

[79]

Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S, Pfeilschifter J, Silverman S, Díez-Pérez A, Lindsay R, Saag KG, Netelenbos JC, Gehlbach S, Hooven FH, Flahive J, Adachi JD, Rossini M, Lacroix AZ, Roux C, Sambrook PN, Siris ES Glow Investigators Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med, 2011, 124: 1043-1050

[80]

Holmberg AH, Johnell O, Nilsson PM, Nilsson J, Berglund G, Akesson K. Risk factors for fragility fracture in middle age. A prospective population-based study of 33 000 men and women. Osteoporos Int, 2006, 17: 1065-1077

[81]

Spaine LA, Bollen SR. ‘The bigger they come…’: the relationship between body mass index and severity of ankle fractures. Injury, 1996, 27: 687-689

[82]

Premaor MO, Pilbrow L, Tonkin C, Parker RA, Compston J. Obesity and fractures in postmenopausal women. J Bone Miner Res, 2010, 25: 292-297

[83]

Premaor MO, Ensrud K, Lui L, Parker RA, Cauley J, Hillier TA, Cummings S, Compston JE. Study of Osteoporotic Fractures. Risk factors for nonvertebral fracture in obese older women. J Clin Endocrinol Metab, 2011, 96: 2414-2421

[84]

Yamaguchi T, Kanazawa I, Yamamoto M, Kurioka S, Yamauchi M, Yano S, Sugimoto T. Associations between components of the metabolic syndrome versus bone mineral density and vertebral fractures in patients with type 2 diabetes. Bone, 2009, 45: 174-179

[85]

Russell M, Mendes N, Miller KK, Rosen CJ, Lee H, Klibanski A, Misra M. Visceral fat is a negative predictor of bone density measures in obese adolescent girls. J Clin Endocrinol Metab, 2010, 95: 1247-1255

[86]

Campos RM, Lazaretti-Castro M, Mello MT, Tock L, Silva PL, Corgosinho FC, Carnier J, Piano Ad, Sanches PL, Masquio DC, Tufik S, Dâmaso AR. Influence of visceral and subcutaneous fat in bone mineral density of obese adolescents. Arq Bras Endocrinol Metabol, 2012, 56: 12-18

[87]

Choi HS, Kim KJ, Kim KM, Hur NW, Rhee Y, Han DS, Lee EJ, Lim SK. Relationship between visceral adiposity and bone mineral density in Korean adults. Calcif Tissue Int, 2010, 87: 218-225

[88]

Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ, Gerweck AV, Harrington LM, Breggia A, Rosen CJ, Miller KK. Determinants of bone mineral density in obese premenopausal women. Bone, 2011, 48: 748-754

[89]

Motyl KJ, Dick-de-Paula I, Maloney AE, Lotinun S, Bornstein S, De Paula FJ, Baron R, Houseknecht KL, Rosen CJ. Trabecular bone loss after administration of the second-generation antipsychotic risperidone is independent of weight gain. Bone, 2012, 50: 490-498

[90]

Bosma M, Hesselink MK, Sparks LM, Timmers S, Ferraz MJ, Mattijssen F, van Beurden D, Schaart G, de Baets MH, Verheyen FK, Kersten S, Schrauwen P. Perilipin 2 improves insulin sensitivity in skeletal muscle despite elevated intramuscular lipid levels. Diabetes, 2012, 61: 2679-2690

[91]

Brumbaugh DE, Crume TL, Nadeau K, Scherzinger A, Dabelea D. Intramyocellular lipid is associated with visceral adiposity, markers of insulin resistance, and cardiovascular risk in prepubertal children: the EPOCH study. J Clin Endocrinol Metab, 2012, 97: E1099-E1105

[92]

Ryan AS, Buscemi A, Forrester L, Hafer-Macko CE, Ivey FM. Atrophy and intramuscular fat in specific muscles of the thigh: associated weakness and hyperinsulinemia in stroke survivors. Neurorehabil Neural Repair, 2011, 25: 865-872

[93]

Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR. Identification and importance of brown adipose tissue in adult humans. N Engl J Med, 2009, 360: 1509-1517

[94]

van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ. Cold activated brown adipose tissue in healthy men. N Engl J Med, 2009, 360: 1500-1508

[95]

Bredella MA, Fazeli PK, Freedman LM, Calder G, Lee H, Rosen CJ, Klibanski A. Young women with cold-activated brown adipose tissue have higher bone mineral density and lower Pref-1 than women without brown adipose tissue: a study in women with anorexia nervosa, women recovered from anorexia nervosa, and normal-weight women. J Clin Endocrinol Metab, 2012, 97: E584-E590

[96]

Rosen CJ, Bouxsein ML. Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol, 2006, 2: 35-43

[97]

Bredella MA. Perspective: the bone-fat connection. Skeletal Radiol, 2010, 39: 729-773

[98]

Kawai M, De Paula FJ, Rosen CJ. New insights into osteoporosis: the bone-fat connection. J Intern Med, 2012, 272: 317-329

[99]

Ecklund K, Vajapeyam S, Feldman HA, Buzney CD, Mulkern RV, Kleinman PK, Rosen CJ, Gordon CM. Bone marrow changes in adolescent girls with anorexia nervosa. J Bone Miner Res, 2010, 25: 298-304

[100]

Karczewska-Kupczewska M, Straczkowski M, Adamska A, Nikołajuk A, Otziomek E, Górska M, Kowalska I. Insulin sensitivity, metabolic flexibility, and seruma diponectin concentration in women with anorexia nervosa. Metabolism, 2010, 59: 473-477

[101]

Devlin MJ. Why does starvation make bones fat? Am J Hum Biol, 2011, 23: 577-585

[102]

Askmyr M, Sims NA, Martin TJ, Purton LE. What is the true nature of the osteoblastic hematopoietic stem cell niche? Trends Endocrinol Metab, 2009, 20: 303-309

[103]

Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell, 2004, 116: 769-778

[104]

Shen Y, Nilsson SK. Bone, microenvironment and hematopoiesis. Curr Opin Hematol, 2012, 19: 250-255

[105]

Isern J, Méndez-Ferrer S. Stem cell interactions in a bone marrow niche. Curr Osteoporos Rep, 2011, 9: 210-218

[106]

Takubo K, Suda T. Roles of the hypoxia response system in hematopoietic and leukemic stem cells. Int J Hematol, 2012, 95: 478-483

[107]

Franco CB, Paz-Filho G, Gomes PE, Nascimento VB, Kulak CA, Boguszewski CL, Borba VZ. Chronic obstructive pulmonary disease is associated with osteoporosis and low levels of vitamin D. Osteoporos Int, 2009, 20: 1881-1887

[108]

Forni GL, Perrotta S, Giusti A, Quarta G, Pitrolo L, Cappellini MD, D'Ascola DG, Borgna Pignatti C, Rigano P, Filosa A, Iolascon G, Nobili B, Baldini M, Rosa A, Pinto V, Palummeri E. Neridronate improves bone mineral density and reduces back pain in β-thalassaemia patients with osteoporosis: results from a phase 2, randomized, parallel-arm, open-label study. Br J Haematol, 2012, 158: 274-282

[109]

Baldanzi G, Traina F, Marques Neto JF, Santos AO, Ramos CD, Saad ST. Low bone mass density is associated with hemolysis in Brazilian patients with sickle cell disease. Clinics (Sao Paulo), 2011, 66: 801-805

[110]

Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002, 418: 41-49

[111]

Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med (Maywood), 2001, 226: 507-520

[112]

Shockley KR, Lazarenko OP, Czernik PJ, Rosen CJ, Churchill GA, Lecka-Czernik B. PPARgamma2 nuclear receptor controls multiple regulatory pathways of osteoblast differentiation from marrow mesenchymal stem cells. J Cell Biochem, 2009, 106: 232-246

[113]

Ichida F, Nishimura R, Hata K, Matsubara T, Ikeda F, Hisada K, Yatani H, Cao X, Komori T, Yamaguchi A, Yoneda T. Reciprocal roles of MSX2 in regulation of osteoblast and adipocyte differentiation. J Biol Chem, 2004, 279: 34015-34022

[114]

Kang S, Bennett CN, Gerin I, Rapp LA, Hankenson KD, Macdougald OA. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. J Biol Chem, 2007, 282: 14515-14524

[115]

Lazarenko OP, Rzonca SO, Hogue WR, Swain FL, Suva LJ, Lecka-Czernik B. Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology, 2007, 148: 2669-2680

[116]

Kubota N, Terauchi Y, Miki H, Tamemoto H, Yamauchi T, Komeda K, Satoh S, Nakano R, Ishii C, Sugiyama T, Eto K, Tsubamoto Y, Okuno A, Murakami K, Sekihara H, Hasegawa G, Naito M, Toyoshima Y, Tanaka S, Shiota K, Kitamura T, Fujita T, Ezaki O, Aizawa S, Nagai R, Tobe K, Kimura S, Kadowaki T. PPARgamma mediates high fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell, 1999, 4: 597-609

[117]

Karsenty G, Ferron M. The contribution of bone to whole-organism physiology. Nature, 2012, 481: 314-320

[118]

Bouillon R, Decallonne B. The White adipose tissue connection with calcium and bone homeostasis. J Bone Miner Res, 2010, 25: 1707-1710

[119]

Björnholm M, Münzberg H, Leshan RL, Villanueva EC, Bates SH, Louis GW, Jones JC, Ishida-Takahashi R, Bjørbaek C, Myers MG Jr. Mice lacking inhibitory leptin receptor signals are lean with normal endocrine function. J Clin Invest, 2007, 117: 1354-1360

[120]

Shi Y, Yadav VK, Suda N, Liu XS, Guo XE, Myers MG Jr., Karsenty G. Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proc Natl Acad Sci U S A, 2008, 105: 20529-20533

[121]

Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G. Leptin inhibits boneformation through a hypothalamic relay: a central control of bone mass. Cell, 2000, 100: 197-207

[122]

Goldeladze JO, Drevon CA, Syversen U, Reseland JE. Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis and mineralization: Impact on Differentiation markers, apoptosis and osteoclastic signaling. J Cell Biochem, 2002, 85: 825-836

[123]

Holloway WR, Collier FM, Aitken CJ, Myers DE, Hodge JM, Malakellis M, Gough TJ, Collier GR, Nicholson GC. Leptin inhibits osteoclast generation. J Bone Miner Res, 2002, 17: 200-209

[124]

Burguera B, Hofbauer LC, Thomas T, Gori F, Evans GL, Khosla S, Riggs BL, Turner RT. Leptin reduces ovariectomy-induced bone loss in rats. Endocrinology, 2001, 142: 3546-3553

[125]

Clemens TL, Karsenty G. The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res, 2011, 26: 677-680

[126]

Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G. Endocrine regulation of energy metabolism by the skeleton. Cell, 2007, 130: 456-469

[127]

Hood DA. Mechanisms of exercises-induced mitochondrial biogenesis in skeletal muscle. Applied Physiol Nutr Metab, 2009, 34: 465-472

[128]

Fulzele K, Clemens TL. Novel functions for insulin in bone. Bone, 2012, 50: 452-456

[129]

Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D, Faugere MC, Aja S, Hussain MA, Brüning JC, Clemens TL. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell, 2010, 142: 309-319

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/