Osteoclasts: New Insights

Feng Xu , Steven L. Teitelbaum

Bone Research ›› 2013, Vol. 1 ›› Issue (1) : 11 -26.

PDF
Bone Research ›› 2013, Vol. 1 ›› Issue (1) : 11 -26. DOI: 10.4248/BR201301003
Article

Osteoclasts: New Insights

Author information +
History +
PDF

Abstract

Osteoclasts, the bone-resorbing cells, play a pivotal role in skeletal development and adult bone remodeling. They also participate in the pathogenesis of various bone disorders. Osteoclasts differentiate from cells of the monocyte/macrophage lineage upon stimulation of two essential factors, the monocyte/macrophage colony stimulating factor (M-CSF) and receptor activation of NF-κB ligand (RANKL). M-CSF binds to its receptor c-Fms to activate distinct signaling pathways to stimulate the proliferation and survival of osteoclast precursors and the mature cell. RANKL, however, is the primary osteoclast differentiation factor, and promotes osteoclast differentiation mainly through controlling gene expression by activating its receptor, RANK. Osteoclast function depends on polarization of the cell, induced by integrin αvβ3, to form the resorptive machinery characterized by the attachment to the bone matrix and the formation of the bone-apposed ruffled border. Recent studies have provided new insights into the mechanism of osteoclast differentiation and bone resorption. In particular, c-Fms and RANK signaling have been shown to regulate bone resorption by cross-talking with those activated by integrin αvβ3. This review discusses new advances in the understanding of the mechanisms of osteoclast differentiation and function.

Cite this article

Download citation ▾
Feng Xu, Steven L. Teitelbaum. Osteoclasts: New Insights. Bone Research, 2013, 1(1): 11-26 DOI:10.4248/BR201301003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Karsenty G, Oury F. Biology without walls: the novel endocrinology of bone. Annual review of physiology, 2012, 74: 87-105

[2]

Parfitt AM. Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. Journal of cellular biochemistry, 1994, 55: 273-286

[3]

Feng X, McDonald JM. Disorders of bone remodeling. Annual review of pathology, 2011, 6: 121-145

[4]

Hauge EM, Qvesel D, Eriksen EF, Mosekilde L, Melsen F. Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res, 2001, 16: 1575-1582

[5]

Parfitt AM. The bone remodeling compartment: a circulatory function for bone lining cells. J Bone Miner Res, 2001, 16: 1583-1585

[6]

Bonewald LF. The amazing osteocyte. J Bone Miner Res, 2011, 26: 229-238

[7]

Teitelbaum SL. Bone resorption by osteoclasts. Science, 2000, 289: 1504-1508

[8]

Ducy P, Schinke T, Karsenty G. The osteoblast: a sophisticated fibroblast under central surveillance. Science, 2000, 289: 501-504

[9]

Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest, 2005, 115: 3318-3325

[10]

Khosla S, Melton LJ 3rd, Riggs BL. The unitary model for estrogen deficiency and the pathogenesis of osteoporosis: is a revision needed? J Bone Miner Res, 2011, 26: 441-451

[11]

Schett G, Teitelbaum SL. Osteoclasts and Arthritis. J Bone Miner Res, 2009, 24: 1142-1146

[12]

Schett G, Gravallese E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nature reviews Rheumatology, 2012, 8: 656-664

[13]

Weilbaecher KN, Guise TA, McCauley LK. Cancer to bone: a fatal attraction. Nature reviews Cancer, 2011, 11: 411-425

[14]

Teitelbaum SL. Osteoclasts, integrins, and osteoporosis. Journal of bone and mineral metabolism, 2000, 18: 344-349

[15]

Kristensen HB, Andersen TL, Marcussen N, Rolighed L, Delaisse JM. Increased presence of capillaries next to remodeling sites in adult human cancellous bone. J Bone Miner Res, 2013, 28: 574-578

[16]

Parfitt AM. Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone, 2002, 30: 5-7

[17]

Martin TJ, Seeman E. New mechanisms and targets in the treatment of bone fragility. Clinical science, 2007, 112: 77-91

[18]

Raisz LG. Hormonal regulation of bone growth and remodelling. Ciba Foundation symposium, 1988, 136: 226-238

[19]

Mohan S, Baylink DJ. Insulin-like growth factor system components and the coupling of bone formation to resorption. Hormone research, 1996, 45 Suppl 1 59-62

[20]

Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med, 2009, 15: 757-765

[21]

Xian L, Wu X, Pang L, Lou M, Rosen CJ, Qiu T, Crane J, Frassica F, Zhang L, Rodriguez JP, Xiaofeng Jia, Shoshana Yakar, Shouhong Xuan, Argiris Efstratiadis, Mei Wan, Xu Cao. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med, 2012, 18: 1095-1101

[22]

Falany ML, Thames AM 3rd, McDonald JM, Blair HC, McKenna MA, Moore RE, Young MK, Williams JP. Osteoclasts secrete the chemotactic cytokine mim-1. iochem Biophys Res Commun, 2001, 281: 180-185

[23]

Martin T, Gooi JH, Sims NA. Molecular mechanisms in coupling of bone formation to resorption. Crit Rev Eukaryot Gene Expr, 2009, 19: 73-88

[24]

Andersen TL, Sondergaard TE, Skorzynska KE, Dagnaes-Hansen F, Plesner TL, Hauge EM, Plesner T, Delaisse JM. A physical mechanism for coupling bone resorption and formation in adult human bone. Am J Pathol, 2009, 174: 239-247

[25]

Tonna EA, Cronkite EP. Use of tritiated thymidine for the study of the origin of the osteoclast. Nature, 1961, 190: 459-460

[26]

Gothlin G, Ericsson JL. The osteoclast: review of ultrastructure, origin, and structure-function relationship. Clinical orthopaedics and related research, 1976, 120: 201-231

[27]

Walker DG. Osteopetrosis cured by temporary parabiosis. Science, 1973, 180: 875

[28]

Kahn AJ, Simmons DJ. Investigation of cell lineage in bone using a chimaera of chick and quial embryonic tissue. Nature, 1975, 258: 325-327

[29]

Walker DG. Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells. Science, 1975, 190: 784-785

[30]

Walker DG. Spleen cells transmit osteopetrosis in mice. Science, 1975, 190: 785-787

[31]

Scheven BA, Visser JW, Nijweide PJ. In vitro osteoclast generation from different bone marrow fractions, including a highly enriched haematopoietic stem cell population. Nature, 1986, 321: 79-81

[32]

Takahashi N, Akatsu T, Udagawa N, Sasaki T, Yamaguchi A, Moseley JM, Martin TJ, Suda T. Osteoblastic cells are involved in osteoclast formation. Endocrinology, 1988, 123: 2600-2602

[33]

Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T. Osteoclast differentiation factor is a ligand for osteoprotegerin/steoclastogenesis-nhibitory factor and is identical to TRANCE/ANKL. Proc Natl Acad Sci U S A, 1998, 95: 3597-3602

[34]

Matsuzaki K, Udagawa N, Takahashi N, Yamaguchi K, Yasuda H, Shima N, Morinaga T, Toyama Y, Yabe Y, Higashio K, Suda T. Osteoclast differentiation factor (ODF) induces osteoclast-like cell formation in human peripheral blood mononuclear cell cultures. Biochem Biophys Res Commun, 1998, 246: 199-204

[35]

Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF, Shizuru JA, Weissman IL. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol, 2003, 21: 759-806

[36]

Metcalf D. Hematopoietic cytokines. Blood, 2008, 111 2 485-491

[37]

Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, Miyata T, Anderson DM, Suda T. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med, 1999, 190: 1741-1754

[38]

Metcalf D. Studies on colony formation in vitro by mouse bone marrow cells. II. Action of colony stimulating factor. J Cell Physiol, 1970, 76: 89-99

[39]

Stanley ER, Berg KL, Einstein DB, Lee PS, Pixley FJ, Wang Y, Yeung YG. Biology and action of colony—stimulating factor-1. Mol Reprod Dev, 1997, 46: 4-10

[40]

Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW Jr., Ahmed-Ansari A, Sell KW, Pollard JW, Stanley ER. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci U S A, 1990, 87: 4828-4832

[41]

Marks SC Jr., Wojtowicz A, Szperl M, Urbanowska E, MacKay CA, Wiktor-Jedrzejczak W, Stanley ER, Aukerman SL. Administration of colony stimulating factor-1 corrects some macrophage, dental, and skeletal defects in an osteopetrotic mutation (toothless, tl) in the rat. Bone, 1992, 13: 89-93

[42]

Schrader JW, Moyer C, Ziltener HJ, Reinisch CL. Release of the cytokines colony-stimulating factor-1, granulocyte-macrophage colony-stimulating factor, and IL-6 by cloned murine vascular smooth muscle cells. J Immunol, 1991, 146: 3799-3808

[43]

Clinton SK, Underwood R, Hayes L, Sherman ML, Kufe DW, Libby P. Macrophage colony-stimulating factor gene expression in vascular cells and in experimental and human atherosclerosis. Am J Pathol, 1992, 140: 301-316

[44]

Tsukui T, Kikuchi K, Mabuchi A, Sudo T, Sakamoto T, Sato N, Tsuneoka K, Shikita M, Aida T, Asano G. Production of macrophage colony-stimulating factor by adult murine parenchymal liver cells (hepatocytes). J Leukoc Biol, 1992, 52: 83-89

[45]

Fibbe WE, Van Damme J, Billiau A, Duinkerken N, Lurvink E, Ralph P, Altrock BW, Kaushansky K, Willemze R, Falkenburg JH. Human fibroblasts produce granulocyte-CSF, macrophage-CSF, and granulocyte-macrophage-CSF following stimulation by interleukin-1 and poly(rI).poly(rC). Blood, 1988, 72: 860-866

[46]

Takahashi M, Hong YM, Yasuda S, Takano M, Kawai K, Nakai S, Hirai Y. Macrophage colony-stimulating factor is produced by human T lymphoblastoid cell line, CEM-ON: identification by amino-terminal amino acid sequence analysis. Biochem Biophys Res Commun, 1988, 152: 1401-1409

[47]

Naparstek E, Donnelly T, Shadduck RK, Waheed A, Wagner K, Kase Kr, Greenberger JS. Persistent production of colony-timulating factor (CSF-1) by cloned bone marrow stromal cell line D2XRII after X-irradiation. J Cell Physiol, 1986, 126: 407-413

[48]

Elford PR, Felix R, Cecchini M, Trechsel U, Fleisch H. Murine osteoblastlike cells and the osteogenic cell MC3T3-E1 release a macrophage colony-stimulating activity in culture. Calcif Tissue Int, 1987, 41: 151-156

[49]

Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocrine reviews, 1999, 20: 345-357

[50]

Jensen PR, Andersen TL, Søe K, Hauge EM, Bollerslev J, Amling M, Barvencik F, Delaissé JM. Premature loss of bone remodeling compartment canopies is associated with deficient bone formation: a study of healthy individuals and patients with Cushing's syndrome. J Bone Miner Res, 2012, 27: 770-780

[51]

Seeman E. Bone modeling and remodeling. Crit Rev Eukaryot Gene Expr, 2009, 19: 219-233

[52]

Zhao S, Zhang YK, Harris S, Ahuja SS, Bonewald LF. MLO-Y4 osteocyte-like cells support osteoclast formation and activation. J Bone Miner Res, 2002, 17: 2068-2079

[53]

Sherr CJ. Colony-stimulating factor-1 receptor. Blood, 1990, 75: 1-12

[54]

Hamilton JA. CSF-1 signal transduction. J Leukoc Biol, 1997, 62: 45-55

[55]

Joos H, Trouliaris S, Helftenbein G, Niemann H, Tamura T. Tyrosine phosphorylation of the juxtamembrane domain of the v-Fms oncogene product is required for its association with a 55-kDa protein. J Biol Chem, 1996, 271: 24476-24481

[56]

Hamilton JA. CSF-I signal transduction: what is of functional significance? Immunol Today, 1997, 18: 313-317

[57]

Feng X, Takeshita S, Namba N, Wei S, Teitelbaum SL, Ross FP. Tyrosines 559 and 807 in the cytoplasmic tail of the macrophage colony-stimulating factor receptor play distinct roles in osteoclast differentiation and function. Endocrinology, 2002, 143: 4868-4874

[58]

Takeshita S, Faccio R, Chappel J, Zheng L, Feng X, Weber JD, Teitelbaum SL, Ross FP. c-Fms tyrosine 559 is a major mediator of M-CSF-induced proliferation of primary macrophages. J Biol Chem, 2007, 282: 18980-18990

[59]

Yu W, Chen J, Xiong Y, Pixley FJ, Dai XM, Yeung YG, Stanley ER. CSF-1 receptor structure/function in MacCsf1r-/-macrophages: regulation of proliferation, differentiation, and morphology. J Leukoc Biol, 2008, 84: 852-863

[60]

Yu W, Chen J, Xiong Y, Pixley FJ, Yeung YG, Stanley ER. Macrophage proliferation is regulated through CSF-1 receptor tyrosines 544, 559, and 807. J Biol Chem, 2012, 287: 13694-13704

[61]

Bourette RP, Rohrschneider LR. Early events in M-CSF receptor signaling. Growth factors, 2000, 17: 155-166

[62]

Alonso G, Koegl M, Mazurenko N, Courtneidge SA. Sequence requirements for binding of Src family tyrosine kinases to activated growth factor receptors. J Biol Chem, 1995, 270: 9840-9848

[63]

Lee AW, States DJ. Both src-dependent and -independent mechanisms mediate phosphatidylinositol 3-kinase regulation of colony-stimulating factor 1-activated mitogen-activated protein kinases in myeloid progenitors. Mol Cell Biol, 2000, 20: 6779-6798

[64]

Xiong Y, Song D, Cai Y, Yu W, Yeung YG, Stanley ER. A CSF-1 receptor phosphotyrosine 559 signaling pathway regulates receptor ubiquitination and tyrosine phosphorylation. J Biol Chem, 2011, 286: 952-960

[65]

Bourette RP, Myles GM, Choi JL, Rohrschneider LR. Sequential activation of phoshatidylinositol 3-kinase and phospholipase C-gamma2 by the M-CSF receptor is necessary for differentiation signaling. The EMBO journal, 1997, 16: 5880-5893

[66]

Mancini A, Niedenthal R, Joos H, Koch A, Trouliaris S, Niemann H, Tamura T. Identification of a second Grb2 binding site in the v-Fms tyrosine kinase. Oncogene, 1997, 15: 1565-1572

[67]

Xaus J, Comalada M, Valledor AF, Cardó M, Herrero C, Soler C, Lloberas J, Celada A. Molecular mechanisms involved in macrophage survival, proliferation, activation or apoptosis. Immunobiology, 2001, 204: 543-550

[68]

Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E, Halenbeck R, Wu G, Zhou A, Behrens D, Hollenbaugh D, Linnemann T, Qin M, Wong J, Chu K, Doberstein SK, Williams LT. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science, 2008, 320: 807-811

[69]

Wei S, Nandi S, Chitu V, Yeung YG, Yu W, Huang M, Williams LT, Lin H, Stanley ER. Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. J Leukoc Biol, 2010, 88: 495-505

[70]

Hwang SJ, Choi B, Kang SS, Chang JH, Kim YG, Chung YH, Sohn DH, So MW, Lee CK, Robinson WH, Chang EJ. Interleukin-34 produced by human fibroblast-like synovial cells in rheumatoid arthritis supports osteoclastogenesis. Arthritis Res Ther, 2012, 14: R14

[71]

Taylor RM, Kashima TG, Knowles HJ, Athanasou NA. VEGF, FLT3 ligand, PlGF and HGF can substitute for M-CSF to induce human osteoclast formation: implications for giant cell tumour pathobiology. Laboratory investigation; a journal of technical methods and pathology, 2012, 92: 1398-1406

[72]

Motokawa M, Tsuka N, Kaku M, Kawata T, Fujita T, Ohtani J, Matsuda Y, Terao A, Tanne K. Effects of vascular endothelial growth factor-C and -D on osteoclast differentiation and function in human peripheral blood mononuclear cells. Arch Oral Biol, 2013, 58: 35-41

[73]

Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 1998, 93: 165-176

[74]

Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature, 1997, 390: 175-179

[75]

Wong BR, Rho J, Arron J, Robinson E, Orlinick J, Chao M, Kalachikov S, Cayani E, Bartlett FS 3rd, Frankel WN, Lee SY, Choi Y. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem, 1997, 272: 25190-25194

[76]

Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS. osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev, 1998, 12: 1260-1268

[77]

Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell, 1997, 89: 309-319

[78]

Wong BR, Josien R, Lee SY, Sauter B, Li HL, Steinman RM, Choi Y. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J Exp Med, 1997, 186: 2075-2080

[79]

Josien R, Wong BR, Li HL, Steinman RM, Choi Y. TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J Immunol, 1999, 162: 2562-2568

[80]

Josien R, Li HL, Ingulli E, Sarma S, Wong BR, Vologodskaia M, Steinman RM, Choi Y. TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo. J Exp Med, 2000, 191: 495-502

[81]

Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature, 1999, 397: 315-323

[82]

Bachmann MF, Wong BR, Josien R, Steinman RM, Oxenius A, Choi Y. TRANCE, a tumor necrosis factor family member critical for CD40 ligand-independent T helper cell activation. J Exp Med, 1999, 189: 1025-1031

[83]

Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J. RANK is essential for osteoclast and lymph node development. Genes Dev, 1999, 13: 2412-2424

[84]

Kim D, Mebius RE, MacMicking JD, Jung S, Cupedo T, Castellanos Y, Rho J, Wong BR, Josien R, Kim N, Rennert PD, Choi Y. Regulation of peripheral lymph node genesis by the tumor necrosis factor family member TRANCE. J Exp Med, 2000, 192: 1467-1478

[85]

Akiyama T, Shimo Y, Yanai H, Qin J, Ohshima D, Maruyama Y, Asaumi Y, Kitazawa J, Takayanagi H, Penninger JM, Matsumoto M, Nitta T, Takahama Y, Inoue J. The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity, 2008, 29: 423-437

[86]

Hikosaka Y, Nitta T, Ohigashi I, Yano K, Ishimaru N, Hayashi Y, Matsumoto M, Matsuo K, Penninger JM, Takayanagi H, Yokota Y, Yamada H, Yoshikai Y, Inoue J, Akiyama T, Takahama Y. The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity, 2008, 29: 438-450

[87]

Fata JE, Kong YY, Li J, Sasaki T, Irie-Sasaki J, Moorehead RA, Elliott R, Scully S, Voura EB, Lacey DL, Boyle WJ, Khokha R, Penninger JM. The osteoclast differentiation factor osteoprotegerin-igand is essential for mammary gland development. Cell, 2000, 103: 41-50

[88]

Hanada R, Leibbrandt A, Hanada T, Kitaoka S, Furuyashiki T, Fujihara H, Trichereau J, Paolino M, Qadri F, Plehm R, Klaere S, Komnenovic V, Mimata H, Yoshimatsu H, Takahashi N, von Haeseler A, Bader M, Kilic SS, Ueta Y, Pifl C, Narumiya S, Penninger JM. Central control of fever and female body temperature by RANKL/RANK. Nature, 2009, 462: 505-509

[89]

Quinn JM, Elliott J, Gillespie MT, Martin TJ. A combination of osteoclast differentiation factor and macrophage-colony stimulating factor is sufficient for both human and mouse osteoclast formation in vitro. Endocrinology, 1998, 139: 4424-4427

[90]

Lum L, Wong BR, Josien R, Becherer JD, Erdjument-Bromage H, Schlöndorff J, Tempst P, Choi Y, Blobel CP. Evidence for a role of a tumor necrosis factor-alpha (TNF-alpha)-converting enzymelike protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival. J Biol Chem, 1999, 274: 13613-13618

[91]

Wong BR, Besser D, Kim N, Arron JR, Vologodskaia M, Hanafusa H, Choi Y. TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol Cell, 1999, 4: 1041-1049

[92]

Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, McCabe S, Elliott R, Scully S, Van G, Kaufman S, Juan SC, Sun Y, Tarpley J, Martin L, Christensen K, McCabe J, Kostenuik P, Hsu H, Fletcher F, Dunstan CR, Lacey DL, Boyle WJ. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A, 2000, 97: 1566-1571

[93]

Boyle W J, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature, 2003, 423: 337-342

[94]

Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest, 2003, 111: 1221-1230

[95]

Onal M, Xiong J, Chen X, Thostenson JD, Almeida M, Manolagas SC, O'Brien CA. Receptor activator of nuclear factor kappaB ligand (RANKL) protein expression by B lymphocytes contributes to ovariectomy-induced bone loss. J Biol Chem, 2012, 287: 29851-29860

[96]

Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF, Penninger JM, Takayanagi H. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med, 2011, 17: 1231-1234

[97]

Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O'Brien CA. Matrix-embedded cells control osteoclast formation. Nat Med, 2011, 17: 1235-1241

[98]

Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell, 2001, 104: 487-501

[99]

Bodmer JL, Schneider P, Tschopp J. The molecular architecture of the TNF superfamily. Trends Biochem Sci, 2002, 27: 19-26

[100]

Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, Tan HL, Elliott G, Kelley MJ, Sarosi I, Wang L, Xia XZ, Elliott R, Chiu L, Black T, Scully S, Capparelli C, Morony S, Shimamoto G, Bass MB, Boyle WJ. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A, 1999, 96: 3540-3545

[101]

Darnay BG, Haridas V, Ni J, Moore PA, Aggarwal BB. Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappab and c-Jun N-terminal kinase. J Biol Chem, 1998, 273: 20551-20555

[102]

Wong BR, Josien R, Lee SY, Vologodskaia M, Steinman RM, Choi Y. The TRAF family of signal transducers mediates NF-kappaB activation by the TRANCE receptor. J Biol Chem, 1998, 273: 28355-28359

[103]

Kim HH, Lee DE, Shin JN, Lee YS, Jeon YM, Chung CH, Ni J, Kwon BS, Lee ZH. Receptor activator of NF-kappaB recruits multiple TRAF family adaptors and activates c-Jun N-terminal kinase. FEBS Lett, 1999, 443: 297-302

[104]

Darnay BG, Ni J, Moore PA, Aggarwal BB. Activation of NF-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motif. J Biol Chem, 1999, 274: 7724-7731

[105]

Galibert L, Tometsko ME, Anderson DM, Cosman D, Dougall WC. The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-kappaB, a member of the TNFR super-family. J Biol Chem, 1998, 273: 34120-34127

[106]

Armstrong AP, Tometsko ME, Glaccum M, Sutherland CL, Cosman D, Dougall WC. A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function. J Biol Chem, 2002, 277: 44347-44356

[107]

Liu W, Xu D, Yang H, Xu H, Shi Z, Cao X, Takeshita S, Liu J, Teale M, Feng X. Functional identification of three receptor activator of NF-kappa B cytoplasmic motifs mediating osteoclast differentiation and function. J Biol Chem, 2004, 279: 54759-54769

[108]

Ye H, Arron JR, Lamothe B, Cirilli M, Kobayashi T, Shevde NK, Segal D, Dzivenu OK, Vologodskaia M, Yim M, Du K, Singh S, Pike JW, Darnay BG, Choi Y, Wu H. Distinct molecular mechanism for initiating TRAF6 signalling. Nature, 2002, 418: 443-447

[109]

Mizukami J, Takaesu G, Akatsuka H, Sakurai H, Ninomiya-Tsuji J, Matsumoto K, Sakurai N. Receptor activator of NF-kappaB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6. Mol Cell Biol, 2002, 22: 992-1000

[110]

Lee SW, Han SI, Kim HH, Lee ZH. TAK1-dependent activation of AP-1 and c-Jun N-terminal kinase by receptor activator of NF-kappaB. Journal of biochemistry and molecular biology, 2002, 35: 371-376

[111]

Ishida N, Hayashi K, Hoshijima M, Ogawa T, Koga S, Miyatake Y, Kumegawa M, Kimura T, Takeya T. Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator. J Biol Chem, 2002, 277: 41147-41156

[112]

Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell, 2002, 3: 889-901

[113]

Yeh WC, Hakem R, Woo M, Mak TW. Gene targeting in the analysis of mammalian apoptosis and TNF receptor superfamily signaling. Immunol Rev, 1999, 169: 283-302

[114]

Wu H, Arron JR. TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology. Bioessays, 2003, 25: 1096-1105

[115]

Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, Morony S, Capparelli C, Van G, Kaufman S, van der Heiden A, Itie A, Wakeham A, Khoo W, Sasaki T, Cao Z, Penninger JM, Paige CJ, Lacey DL, Dunstan CR, Boyle WJ, Goeddel DV, Mak TW. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev, 1999, 13: 1015-1024

[116]

Naito A, Azuma S, Tanaka S, Miyazaki T, Takaki S, Takatsu K, Nakao K, Nakamura K, Katsuki M, Yamamoto T, Inoue J. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells, 1999, 4: 353-362

[117]

Azuma Y, Kaji K, Katogi R, Takeshita S, Kudo A. Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J Biol Chem, 2000, 275: 4858-4864

[118]

Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Morinaga T, Higashio K, Martin TJ, Suda T. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med, 2000, 191: 275-286

[119]

Xu D, Wang S, Liu W, Liu J, Feng X. A novel receptor activator of NF-kappaB (RANK) cytoplasmic motif plays an essential role in osteoclastogenesis by committing macrophages to the osteoclast lineage. J Biol Chem, 2006, 281: 4678-4690

[120]

Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest, 2000, 106: 1481-1488

[121]

Kim H, Choi HK, Shin JH, Kim KH, Huh JY, Lee SA, Ko CY, Kim HS, Shin HI, Lee HJ, Jeong D, Kim N, Choi Y, Lee SY. Selective inhibition of RANK blocks osteoclast maturation and function and prevents bone loss in mice. J Clin Invest, 2009, 119: 813-825

[122]

Guerrini MM, Sobacchi C, Cassani B, Abinun M, Kilic SS, Pangrazio A, Moratto D, Mazzolari E, Clayton-Smith J, Orchard P, Coxon FP, Helfrich MH, Crockett JC, Mellis D, Vellodi A, Tezcan I, Notarangelo LD, Rogers MJ, Vezzoni P, Villa A, Frattini A. Human osteoclast-poor osteopetrosis with hypogamma-globulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet, 2008, 83: 64-76

[123]

Pacifici R. Cytokines, estrogen, and postmenopausal osteoporosis—the second decade. Endocrinology, 1998, 139: 2659-2661

[124]

Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annual review of immunology, 2009, 27: 519-550

[125]

Ma T, Miyanishi K, Suen A, Epstein NJ, Tomita T, Smith RL, Goodman SB. Human interleukin-1-induced murine osteoclastogenesis is dependent on RANKL, but independent of TNF-alpha. Cytokine, 2004, 26: 138-144

[126]

Wei S, Kitaura H, Zhou P, Ross FP, Teitelbaum SL. IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest, 2005, 115: 282-290

[127]

Li P, Schwarz EM, O'Keefe RJ, Ma L, Boyce BF, Xing L. RANK signaling is not required for TNFalpha-mediated increase in CD11(hi) osteoclast precursors but is essential for mature osteo-clast formation in TNFalpha-mediated inflammatory arthritis. J Bone Miner Res, 2004, 19: 207-213

[128]

Jules J, Shi Z, Liu J, Xu D, Wang S, Feng X. Receptor activator of NF-{kappa}B (RANK) cytoplasmic IVVY535–538 motif plays an essential role in tumor necrosis factor-{alpha} (TNF)-mediated osteoclastogenesis. J Biol Chem, 2010, 285: 37427-37435

[129]

Jules J, Zhang P, Ashley JW, Wei S, Shi Z, Liu J, Michalek SM, Feng X. Molecular basis of requirement of receptor activator of nuclear factor kappaB signaling for interleukin 1-mediated osteoclastogenesis. J Biol Chem, 2012, 287: 15728-15738

[130]

Takahashi N, Mundy GR, Roodman GD. Recombinant human interferon-gamma inhibits formation of human osteoclast-like cells. J Immunol, 1986, 137: 3544-3549

[131]

Lacey DL, Erdmann JM, Teitelbaum SL, Tan HL, Ohara J, Shioi A. Interleukin 4, interferon-gamma, and prostaglandin E impact the osteoclastic cell-forming potential of murine bone marrow macrophages. Endocrinology, 1995, 136: 2367-2376

[132]

Fox SW, Chambers TJ. Interferon-gamma directly inhibits TRANCE-induced osteoclastogenesis. Biochem Biophys Res Commun, 2000, 276: 868-872

[133]

Kamolmatyakul S, Chen W, Li YP. Interferon-gamma down-regulates gene expression of cathepsin K in osteoclasts and inhibits osteoclast formation. J Dent Res, 2001, 80: 351-355

[134]

Huang W, O'Keefe RJ, Schwarz EM. Exposure to receptor-activator of NFkappaB ligand renders pre-osteoclasts resistant to IFN-gamma by inducing terminal differentiation. Arthritis Res Ther, 2003, 5: R49-R59

[135]

Cheng J, Liu J, Shi Z, Jules J, Xu D, Luo S, Wei S, Feng X. Molecular mechanisms of the biphasic effects of interferon-gamma on osteoclastogenesis. J Interferon Cytokine Res, 2012, 32: 34-45

[136]

Gong JK, Arnold JS, Cohn SH. Composition of Trabecular and Cortical Bone. Anat Rec, 1964, 149: 325-331

[137]

Boskey AL, Posner AS. Bone structure, composition, and mineralization. Orthop Clin North Am, 1984, 15: 597-612

[138]

Blair HC, Kahn AJ, Crouch EC, Jeffrey JJ, Teitelbaum SL. Isolated osteoclasts resorb the organic and inorganic components of bone. J Cell Biol, 1986, 102: 1164-1172

[139]

Blair HC, Teitelbaum SL, Ghiselli R, Gluck S. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science, 1989, 245: 855-857

[140]

Chatterjee D, Chakraborty M, Leit M, Neff L, Jamsa-Kellokumpu S, Fuchs R, Baron R. Sensitivity to vanadate and isoforms of subunits A and B distinguish the osteoclast proton pump from other vacuolar H+ ATPases. Proc Natl Acad Sci U S A, 1992, 89: 6257-6261

[141]

Silver IA, Murrills RJ, Etherington DJ. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp Cell Res, 1988, 175: 266-276

[142]

Gay CV, Mueller WJ. Carbonic anhydrase and osteoclasts: localization by labeled inhibitor autoradiography. Science, 1974, 183: 432-434

[143]

Blair HC, Teitelbaum SL, Tan HL, Koziol CM, Schlesinger PH. Passive chloride permeability charge coupled to H(+)-ATPase of avian osteoclast ruffled membrane. Am J Physiol, 1991, 260: C1315-1324

[144]

Schlesinger PH, Blair HC, Teitelbaum SL, Edwards JC. Characterization of the osteoclast ruffled border chloride channel and its role in bone resorption. J Biol Chem, 1997, 272: 18636-18643

[145]

Teti A, Blair HC, Schlesinger P, Grano M, Zambonin-Zallone A, Kahn AJ, Teitelbaum SL, Hruska KA. Extracellular protons acidify osteoclasts, reduce cytosolic calcium, and promote expression of cell-matrix attachment structures. J Clin Invest, 1989, 84: 773-780

[146]

Drake FH, Dodds RA, James IE, Connor JR, Debouck C, Richardson S, Lee-Rykaczewski E, Coleman L, Rieman D, Barthlow R, Hastings G, Gowen M. Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J Biol Chem, 1996, 271: 12511-12516

[147]

Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science, 1996, 273: 1236-1238

[148]

Green DM. Stimulus selection in adaptive psychophysical procedures. J Acoust Soc Am, 1990, 87: 2662-2674

[149]

Nesbitt SA, Horton MA. Trafficking of matrix collagens through bone-resorbing osteoclasts. Science, 1997, 276: 266-269

[150]

Salo J, Lehenkari P, Mulari M, Metsikko K, Vaananen HK. Removal of osteoclast bone resorption products by transcytosis. Science, 1997, 276: 270-273

[151]

Abu-Amer Y, Teitelbaum SL, Chappel JC, Schlesinger P, Ross FP. Expression and regulation of RAB3 proteins in osteoclasts and their precursors. J Bone Miner Res, 1999, 14: 1855-1860

[152]

Chieregatti E, Meldolesi J. Regulated exocytosis: new organelles for non-secretory purposes. Nat Rev Mol Cell Biol, 2005, 6: 181-187

[153]

Verhage M, Toonen RF. Regulated exocytosis: merging ideas on fusing membranes. Curr Opin Cell Biol, 2007, 19: 402-408

[154]

Jahn R, Scheller RH. SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol, 2006, 7: 631-643

[155]

Meldolesi J, Chieregatti E. Fusion has found its calcium sensor. Nature cell biology, 2004, 6: 476-478

[156]

Rizo J, Chen X, Arac D. Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. Trends Cell Biol, 2006, 16: 339-350

[157]

Chapman ER. Synaptotagmin: a Ca2+ sensor that triggers exocytosis? Nat Rev Mol Cell Biol, 2002, 3: 498-508

[158]

Andrews NW, Chakrabarti S. There's more to life than neurotransmission: the regulation of exocytosis by synaptotagmin VII. Trends Cell Biol, 2005, 15: 626-631

[159]

Zhao H, Ito Y, Chappel J, Andrews NW, Teitelbaum SL, Ross FP. Synaptotagmin VII regulates bone remodeling by modulating osteoclast and osteoblast secretion. Dev Cell, 2008, 14: 914-925

[160]

DeSelm CJ, Miller BC, Zou W, Beatty WL, van Meel E, Takahata Y, Klumperman J, Tooze SA, Teitelbaum SL, Virgin HW. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev Cell, 2011, 21: 966-974

[161]

Zou W, Teitelbaum SL. Integrins, growth factors, and the osteoclast cytoskeleton. Ann N Y Acad Sci, 2010, 1192: 27-31

[162]

Ross FP, Chappel J, Alvarez JI, Sander D, Butler WT, Farach-Carson MC, Mintz KA, Robey PG, Teitelbaum SL, Cheresh DA. Interactions between the bone matrix proteins osteopontin and bone sialoprotein and the osteoclast integrin alpha v beta 3 potentiate bone resorption. J Biol Chem, 1993, 268: 9901-9907

[163]

Flores ME, Norgard M, Heinegard D, Reinholt FP, Andersson G. RGD-directed attachment of isolated rat osteoclasts to osteopontin, bone sialoprotein, and fibronectin. Exp Cell Res, 1992, 201: 526-530

[164]

Helfrich MH, Nesbitt SA, Dorey EL, Horton MA. Rat osteoclasts adhere to a wide range of RGD (Arg-Gly-Asp) peptide-containing proteins, including the bone sialoproteins and fibronectin, via a beta 3 integrin. J Bone Miner Res, 1992, 7: 335-343

[165]

McHugh KP, Hodivala-Dilke K, Zheng MH, Namba N, Lam J, Novack D, Feng X, Ross FP, Hynes RO, Teitelbaum SL. Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest, 2000, 105: 433-440

[166]

Feng X, Novack DV, Faccio R, Ory DS, Aya K, Boyer MI. A Glanzmann's mutation in beta 3 integrin specifically impairs osteoclast function. J Clin Invest, 2001, 107: 1137-1144

[167]

Zou W, Kitaura H, Reeve J, Long F, Tybulewicz VL, Shattil SJ, Ginsberg MH, Ross FP, Teitelbaum SL. Syk, c-Src, the alphavbeta3 integrin, and ITAM immunoreceptors, in concert, regulate osteoclastic bone resorption. J Cell Biol, 2007, 176: 877-888

[168]

Reeve JL, Zou W, Liu Y, Maltzman JS, Ross FP, Teitelbaum SL. SLP-76 couples Syk to the osteoclast cytoskeleton. J Immunol, 2009, 183: 1804-1812

[169]

Faccio R, Teitelbaum SL, Fujikawa K, Chappel J, Zallone A, Tybulewicz VL, Ross FP, Swat W. Vav3 regulates osteoclast function and bone mass. Nat Med, 2005, 11: 284-290

[170]

Ito Y, Teitelbaum SL, Zou W, Zheng Y, Johnson JF, Chappel J, Ross FP, Zhao H. Cdc42 regulates bone modeling and remodeling in mice by modulating RANKL/M-CSF signaling and osteoclast polarization. J Clin Invest, 2010, 120: 1981-1993

[171]

Croke M, Ross FP, Korhonen M, Williams DA, Zou W, Teitelbaum SL. Rac deletion in osteoclasts causes severe osteopetrosis. J Cell Sci, 2011, 124: 3811-3821

[172]

Faccio R, Takeshita S, Zallone A, Ross FP, Teitelbaum SL. c-Fms and the alphavbeta3 integrin collaborate during osteoclast differentiation. J Clin Invest, 2003, 111: 749-758

[173]

Zou W, Reeve JL, Liu Y, Teitelbaum SL, Ross FP. DAP12 couples c-Fms activation to the osteoclast cytoskeleton by recruitment of Syk. Mol Cell, 2008, 31: 422-431

[174]

Faccio R, Novack DV, Zallone A, Ross FP, Teitelbaum SL. Dynamic changes in the osteoclast cytoskeleton in response to growth factors and cell attachment are controlled by beta3 integrin. J Cell Biol, 2003, 162: 499-509

[175]

Faccio R, Takeshita S, Colaianni G, Chappel J, Zallone A, Teitelbaum SL, Ross FP. M-CSF regulates the cytoskeleton via recruitment of a multimeric signaling complex to c-Fms Tyr-559/697/721. J Biol Chem, 2007, 282: 18991-18999

[176]

Liu W, Wang S, Wei S, Sun L, Feng X. Receptor activator of NF-kappaB (RANK) cytoplasmic motif, 369PFQEP373, plays a predominant role in osteoclast survival in part by activating Akt/PKB and its downstream effector AFX/FOXO4. J Biol Chem, 2005, 280: 43064-43072

[177]

Jimi E, Nakamura I, Ikebe T, Akiyama S, Takahashi N, Suda T. Activation of NF-kappaB is involved in the survival of osteoclasts promoted by interleukin-1. J Biol Chem, 1998, 273: 8799-8805

[178]

Lee SE, Chung W J, Kwak HB, Chung CH, Kwack KB, Lee ZH, Kim HH. Tumor necrosis factor-alpha supports the survival of osteoclasts through the activation of Akt and ERK. J Biol Chem, 2001, 276: 49343-49349

[179]

Taguchi Y, Gohda J, Koga T, Takayanagi H, Inoue J. A unique domain in RANK is required for Gab2 and PLCgamma2 binding to establish osteoclastogenic signals. Genes Cells, 2009, 14: 1331-1345

[180]

Izawa T, Zou W, Chappel JC, Ashley JW, Feng X, Teitelbaum SL. c-Src links a RANK/alphavbeta3 integrin complex to the osteoclast cytoskeleton. Mol Cell Biol, 2012, 32: 2943-2953

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/