Thrombospondin 1 and 2 regulate mesenchymal progenitor cell fate and matrix organization

Madysen K. Hunter , Sneha Korlakunta , Neda Vishlaghi , Monisha Mittal , Kyle Cragg , Conan Juan , Chase A. Pagani , Yuxiao Sun , Lindsey Lammlin , Karen Kessell , Dylan Feist , Ji Hae Choi , Meng-Lun Hsieh , Jahnu Saikia , Craig L. Duvall , Heeseog Kang , Andrea I. Alford , Kurt D. Hankenson , Robert J. Tower , Tristan Maerz , Benjamin Levi

Bone Research ›› 2026, Vol. 14 ›› Issue (1) : 10

PDF
Bone Research ›› 2026, Vol. 14 ›› Issue (1) :10 DOI: 10.1038/s41413-025-00493-2
Article
research-article

Thrombospondin 1 and 2 regulate mesenchymal progenitor cell fate and matrix organization

Author information +
History +
PDF

Abstract

Thrombospondin 1 and 2 (TSP1 and TSP2) are critical regulators of extracellular matrix (ECM) interactions, influencing cell differentiation and tissue repair. Recent discoveries from our laboratory and others highlight the importance of altered ECM alignment in influencing aberrant mesenchymal progenitor cell (MPC) differentiation and subsequent ectopic bone formation in trauma-induced heterotopic ossification (HO). However, the key regulators of this MPC to ECM interaction have yet to be elucidated. This study uncovers the role of matricellular TSP1 and TSP2 in MPC/ECM interaction as well as HO formation and progression. Using single-cell RNA sequencing, spatial transcriptomics, and in vivo models, we found that TSP1 is upregulated in tissue remodeling macrophages and MPCs at the injury site, while TSP2 is restricted to MPCs surrounding the HO anlagen. TSP1/2 double knockout (DKO) mice exhibited significantly reduced HO volume and disrupted ECM alignment. These findings highlight the crucial roles of TSP1 and TSP2 in musculoskeletal injury repair as well as HO formation and progression, supporting the potential to therapeutically target TSP1 and TSP2 to prevent HO.

Cite this article

Download citation ▾
Madysen K. Hunter, Sneha Korlakunta, Neda Vishlaghi, Monisha Mittal, Kyle Cragg, Conan Juan, Chase A. Pagani, Yuxiao Sun, Lindsey Lammlin, Karen Kessell, Dylan Feist, Ji Hae Choi, Meng-Lun Hsieh, Jahnu Saikia, Craig L. Duvall, Heeseog Kang, Andrea I. Alford, Kurt D. Hankenson, Robert J. Tower, Tristan Maerz, Benjamin Levi. Thrombospondin 1 and 2 regulate mesenchymal progenitor cell fate and matrix organization. Bone Research, 2026, 14(1): 10 DOI:10.1038/s41413-025-00493-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Meyers C, et al.. Heterotopic ossification: a comprehensive review. JBMR Plus, 2019, 3: e10172

[2]

Ranganathan K, et al.. Heterotopic ossification: basic-science principles and clinical correlates. J. Bone Jt. Surg. Am., 2015, 97: 1101-1111

[3]

Kantor SR, Cummins J, Tanzer M. Complications after total hip arthroplasty: heterotopic ossification. Semin. Arthroplast., 2005, 16: 105-113

[4]

Brown KV, et al.. Comparison of development of heterotopic ossification in injured US and UK Armed Services personnel with combat-related amputations: preliminary findings and hypotheses regarding causality. J. Trauma, 2010, 69: S116-S122

[5]

Salisbury EA, et al.. Characterization of brown adipose–like tissue in trauma-induced heterotopic ossification in humans. Am. J. Pathol., 2017, 187: 2071-2079

[6]

Potter BK, Burns TC, Lacap AP, Granville RR, Gajewski DA. Heterotopic ossification following traumatic and combat-related amputations. Prevalence, risk factors, and preliminary results of excision. J. Bone Jt. Surg. Am., 2007, 89: 476-486

[7]

Levi B, et al.. Risk factors for the development of heterotopic ossification in seriously burned adults: a national institute on disability, independent living and rehabilitation research burn model system database analysis. J. Trauma Acute Care Surg., 2015, 79: 870-876

[8]

Huber AK, et al.. Immobilization after injury alters extracellular matrix and stem cell fate. J. Clin. Invest., 2020, 130: 5444-5460

[9]

Pagani CA, et al.. Novel lineage-tracing system to identify site-specific ectopic bone precursor cells. Stem Cell Rep., 2021, 16: 626-640

[10]

Tan K, Lawler J. The interaction of thrombospondins with extracellular matrix proteins. J. Cell Commun. Signal., 2009, 3: 177-187

[11]

Adams JC. Thrombospondins: multifunctional regulators of cell interactions. Annu. Rev. Cell Dev. Biol., 2001, 17: 25-51

[12]

Bornstein P. Matricellular proteins: an overview. J. Cell Commun. Signal, 2009, 3: 163-165

[13]

Manley E, et al.. Thrombospondin-2 deficiency in growing mice alters bone collagen ultrastructure and leads to a brittle bone phenotype. J. Appl. Physiol., 2015, 119: 872-881

[14]

Rodriguez-Manzaneque JC, et al.. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc. Natl. Acad. Sci. USA, 2001, 98: 12485-12490

[15]

Yang H, Zhou T, Sorenson CM, Sheibani N, Liu B. Myeloid-derived TSP1 (Thrombospondin-1) contributes to abdominal aortic aneurysm through suppressing tissue inhibitor of metalloproteinases-1. Arterioscler. Thromb. Vasc. Biol., 2020, 40: e350-e366

[16]

Kumar R, et al.. Interstitial macrophage-derived thrombospondin-1 contributes to hypoxia-induced pulmonary hypertension. Cardiovasc. Res., 2019, 116: 2021-2030

[17]

Gutierrez LS, Gutierrez J. Thrombospondin 1 in metabolic diseases. Front Endocrinol., 2021, 12 638536

[18]

Kale A, Rogers NM, Ghimire K. Thrombospondin-1 CD47 signalling: from mechanisms to medicine. Int. J. Mol. Sci., 2021, 22: 4062

[19]

Junko, M., Ayumu, Y., Erquan, Z., Hirofumi, S. & Kazuo, M. In Pulmonary Hypertension (eds Elwing Jean, M. & Panos Ralph, J.) Ch. 4 (IntechOpen, 2013).

[20]

Alford AI, Golicz AZ, Cathey AL, Reddy AB. Thrombospondin-2 facilitates assembly of a type-I collagen-rich matrix in marrow stromal cells undergoing osteoblastic differentiation. Connect. Tissue Res., 2013, 54: 275-282

[21]

Hankenson, K. D. et al. Increased marrow-derived osteoprogenitor cells and endosteal bone formation in mice lacking thrombospondin 2. J. Bone Miner. Res.15, 851–862 (2000).

[22]

Delany AM, Hankenson KD. Thrombospondin-2 and SPARC/osteonectin are critical regulators of bone remodeling. J. Cell Commun. Signal., 2009, 3: 227-238

[23]

Agarwal S, et al.. Inhibition of Hif1α prevents both trauma-induced and genetic heterotopic ossification. Proc. Natl. Acad. Sci. USA, 2016, 113: E338-E347

[24]

Peterson JR, et al.. Burn injury enhances bone formation in heterotopic ossification model. Ann. Surg., 2014, 259: 993-998

[25]

Agarwal S, et al.. Scleraxis-lineage cells contribute to ectopic bone formation in muscle and tendon. Stem Cells, 2017, 35: 705-710

[26]

Crossley, J. L. et al. Itaconate-producing neutrophils regulate local and systemic inflammation following trauma. JCI Insight8, e169208 (2023).

[27]

Kang H, et al.. The HIF-1α/PLOD2 axis integrates extracellular matrix organization and cell metabolism leading to aberrant musculoskeletal repair. Bone Res., 2024, 12: 17

[28]

Lee S, et al.. NGF-TrkA signaling dictates neural ingrowth and aberrant osteochondral differentiation after soft tissue trauma. Nat. Commun., 2021, 12 4939

[29]

Pagani CA, et al.. Discoidin domain receptor 2 regulates aberrant mesenchymal lineage cell fate and matrix organization. Sci. Adv., 2022, 8 eabq6152

[30]

Patel, N. K. et al. Macrophage TGF-β signaling is critical for wound healing with heterotopic ossification after trauma. JCI Insight7, e144925 (2022).

[31]

Sorkin M, et al.. Regulation of heterotopic ossification by monocytes in a mouse model of aberrant wound healing. Nat. Commun., 2020, 11 722

[32]

Vishlaghi N, et al.. Vegfc-expressing cells form heterotopic bone after musculoskeletal injury. Cell Rep., 2024, 43 114049

[33]

Torossian, F. et al. Macrophage-derived oncostatin M contributes to human and mouse neurogenic heterotopic ossifications. JCI Insight2, e96034 (2017).

[34]

Li, C. et al. Single cell transcriptomics based-MacSpectrum reveals novel macrophage activation signatures in diseases. JCI Insight5, e126453 (2019).

[35]

Sanin DE, et al.. A common framework of monocyte-derived macrophage activation. Sci. Immunol., 2022, 7 eabl7482

[36]

Zondervan RL, Jenkins DC, Reicha JD, Hankenson KD. Thrombospondin-2 spatiotemporal expression in skeletal fractures. J. Orthop. Res., 2020, 39: 30-41

[37]

Xiao X, et al.. Spatial transcriptomic interrogation of the murine bone marrow signaling landscape. Bone Res., 2023, 11: 59

[38]

Kendal AR, et al.. Multi-omic single cell analysis resolves novel stromal cell populations in healthy and diseased human tendon. Sci. Rep., 2020, 10 13939

[39]

Harvey T, Flamenco S, Fan CM. A Tppp3+ Pdgfra+ tendon stem cell population contributes to regeneration and reveals a shared role for PDGF signalling in regeneration and fibrosis. Nat. Cell Biol., 2019, 21: 1490-1503

[40]

Ebersberger S, et al.. FUBP1 is a general splicing factor facilitating 3′ splice site recognition and splicing of long introns. Mol. Cell, 2023, 83: 2653-2672.e2615

[41]

Faqeer A, et al.. Cleaved SPP1-rich extracellular vesicles from osteoclasts promote bone regeneration via TGFβ1/SMAD3 signaling. Biomaterials, 2023, 303 122367

[42]

Ouyang JF, et al.. Systems level identification of a matrisome-associated macrophage polarisation state in multi-organ fibrosis. eLife, 2023, 12 e85530

[43]

Ichikawa S, et al.. Human ALOX12, but not ALOX15, is associated with BMD in white men and women. J. Bone Miner. Res., 2006, 21: 556-564

[44]

Zheng Z, et al.. The biological role of arachidonic acid 12-lipoxygenase (ALOX12) in various human diseases. Biomed. Pharmacother., 2020, 129 110354

[45]

Xing X, et al.. Matrix stiffness-mediated effects on macrophages polarization and their LOXL2 expression. FEBS J., 2021, 288: 3465-3477

[46]

Gilkes DM, Bajpai S, Chaturvedi P, Wirtz D, Semenza GL. Withdrawal: hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J. Biol. Chem., 2023, 299 105144

[47]

Chu, T. L. et al. MMP14 cleaves PTH1R in the chondrocyte-derived osteoblast lineage, curbing signaling intensity for proper bone anabolism. Elife12, e82142 (2023).

[48]

Novoseletskaya ES, Evdokimov PV, Efimenko AY. Extracellular matrix-induced signaling pathways in mesenchymal stem/stromal cells. Cell Commun. Signal., 2023, 21 244

[49]

Zhang, K., Li, M., Yin, L., Fu, G. & Liu, Z. Role of thrombospondin‑1 and thrombospondin‑2 in cardiovascular diseases (Review). Int. J. Mol. Med.45, 1275–1293 (2020).

[50]

Röszer, T. In The M2 Macrophage (ed. Röszer, T.) 133–151 (Springer International Publishing, 2020).

[51]

Olmsted-Davis, E., Mejia, J., Salisbury, E., Gugala, Z. & Davis, A. R. A population of M2 macrophages associated with bone formation. Front. Immunol.12, 686769 (2021).

[52]

Pignolo RJ, et al.. Heterozygous inactivation of Gnas in adipose-derived mesenchymal progenitor cells enhances osteoblast differentiation and promotes heterotopic ossification. J. Bone Miner. Res., 2011, 26: 2647-2655

[53]

Yang L, Tsang KY, Tang HC, Chan D, Cheah KS. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc. Natl. Acad. Sci. USA, 2014, 111: 12097-12102

[54]

Debaize L, Troadec M-B. The master regulator FUBP1: its emerging role in normal cell function and malignant development. Cell. Mol. Life Sci., 2019, 76: 259-281

[55]

Avigan MI, Strober B, Levens D. A far upstream element stimulates c-myc expression in undifferentiated leukemia cells. J. Biol. Chem., 1990, 265: 18538-18545

[56]

Piek E, et al.. Osteo-transcriptomics of human mesenchymal stem cells: accelerated gene expression and osteoblast differentiation induced by vitamin D reveals c-MYC as an enhancer of BMP2-induced osteogenesis. Bone, 2010, 46: 613-627

[57]

Sweetwyne MT, Murphy-Ullrich JE. Thrombospondin1 in tissue repair and fibrosis: TGF-β-dependent and independent mechanisms. Matrix Biol., 2012, 31: 178-186

[58]

Agah A, Kyriakides TR, Lawler J, Bornstein P. The lack of thrombospondin-1 (TSP1) dictates the course of wound healing in double-TSP1/TSP2-null mice. Am. J. Pathol., 2002, 161: 831-839

[59]

Kyriakides TR, Zhu Y-H, Yang Z, Huynh G, Bornstein P. Altered extracellular matrix remodeling and angiogenesis in sponge granulomas of thrombospondin 2-null mice. Am. J. Pathol., 2001, 159: 1255-1262

[60]

Bornstein P, Armstrong LC, Hankenson KD, Kyriakides TR, Yang Z. Thrombospondin 2, a matricellular protein with diverse functions. Matrix Biol., 2000, 19: 557-568

[61]

Alford AI, Hankenson KD. Thrombospondins modulate cell function and tissue structure in the skeleton. Semin. Cell Dev. Biol., 2024, 155: 58-65

[62]

Hankenson KD, Sweetwyne MT, Shitaye H, Posey KL. Thrombospondins and novel TSR-containing proteins, R-spondins, regulate bone formation and remodeling. Curr. Osteoporos. Rep., 2010, 8: 68-76

[63]

Lin X, Patil S, Gao YG, Qian A. The bone extracellular matrix in bone formation and regeneration. Front. Pharm., 2020, 11: 757

[64]

Qin Q, et al.. Neuron-to-vessel signaling is a required feature of aberrant stem cell commitment after soft tissue trauma. Bone Res., 2022, 10: 43

[65]

Kamentsky L, et al.. Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics, 2011, 27: 1179-1180

[66]

Boudaoud A, et al.. FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images. Nat. Protoc., 2014, 9: 457-463

[67]

Cao J, et al.. The single-cell transcriptional landscape of mammalian organogenesis. Nature, 2019, 566: 496-502

[68]

Hao Y, et al.. Integrated analysis of multimodal single-cell data. Cell, 2021, 184: 3573-3587.e3529

Funding

U.S. Department of Defense (United States Department of Defense)(HT9425-23-1-0327)

Burroughs Wellcome Fund (BWF)

RIGHTS & PERMISSIONS

The Author(s)

PDF

39

Accesses

0

Citation

Detail

Sections
Recommended

/