APEX1, a transcriptional hub for endochondral ossification and fracture repair

José Valdés-Fernández , Miguel Echanove-González de Anleo , Juan Antonio Romero-Torrecilla , Tania López-Martínez , Purificación Ripalda-Cemboráin , María Erendira Calleja-Cervantes , Asier Ullate-Agote , Elena Iglesias , Belén Prados-Pinto , José Luis de la Pompa , Felipe Prósper , Emma Muiños-López , Froilán Granero-Moltó

Bone Research ›› 2026, Vol. 14 ›› Issue (1) : 7

PDF
Bone Research ›› 2026, Vol. 14 ›› Issue (1) :7 DOI: 10.1038/s41413-025-00486-1
Article
research-article

APEX1, a transcriptional hub for endochondral ossification and fracture repair

Author information +
History +
PDF

Abstract

After injury, bone tissue initiates a reparative response to restore its structure and function. The failure to initiate or delay this response could result in fracture nonunion. The molecular mechanisms underlying the occurrence of fracture nonunion are not yet established. We propose that hypoxia-triggered signaling pathways, mediated by reactive oxygen species (ROS) homeostasis, control Bmp2 expression and fracture healing initiation. The excessive ROS leads to oxidative stress and, ultimately, fracture nonunion. In this study, we silenced Apex1, the final ROS signaling transducer that mediates the activation of key transcription factors by their cysteines oxidoreduction, evaluating its role during endochondral ossification and fracture repair. Silencing Apex1 in limb bud mesenchyme results in transient metaphyseal dysplasia derived from impaired chondrocyte differentiation. During bone regeneration, Apex1 silencing induces a fracture nonunion phenotype, characterized by delayed fracture repair initiation, impaired periosteal response, and reduced chondrocyte and osteoblast differentiation. This compromised chondrocyte differentiation hampers callus vascularization and healing progression. Our findings highlight a critical mechanism where hypoxia-driven ROS signaling in mesenchymal progenitors through APEX1 is essential for fracture healing initiation.

Cite this article

Download citation ▾
José Valdés-Fernández, Miguel Echanove-González de Anleo, Juan Antonio Romero-Torrecilla, Tania López-Martínez, Purificación Ripalda-Cemboráin, María Erendira Calleja-Cervantes, Asier Ullate-Agote, Elena Iglesias, Belén Prados-Pinto, José Luis de la Pompa, Felipe Prósper, Emma Muiños-López, Froilán Granero-Moltó. APEX1, a transcriptional hub for endochondral ossification and fracture repair. Bone Research, 2026, 14(1): 7 DOI:10.1038/s41413-025-00486-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bahney CS, et al.. Cellular biology of fracture healing. J. Orthop. Res., 2019, 37: 35-50

[2]

Thomas, J. D. & Kehoe, J. L. Bone Nonunion. StatPearls (2023).

[3]

Mills LA, Aitken SA, Simpson AHRW. The risk of non-union per fracture: current myths and revised figures from a population of over 4 million adults. Acta Orthop., 2017, 88: 434-439

[4]

Zura, R., Mehta, S., Della Rocca, G. J. & Steen, R. G. Biological risk factors for nonunion of bone fracture. JBJS Rev.4, e5 (2016).

[5]

Wu AM, et al.. Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet Healthy Longev., 2021, 2: e580-e592

[6]

Panagiotis M. Classification of non-union. Injury, 2005, 36: S30-S37

[7]

Solomin LN, et al.. Universal long bone nonunion classification. Strateg. Trauma Limb Reconstr., 2023, 18: 169-173

[8]

Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nat. Rev. Rheumatol., 2014, 11: 45-54

[9]

Cho TJ, Gerstenfeld LC, Einhorn TA. Differential temporal expression of members of the transforming growth factor β superfamily during murine fracture healing. J. Bone Miner. Res., 2002, 17: 513-520

[10]

Wang Q, Huang C, Xue M, Zhang X. Expression of endogenous BMP-2 in periosteal progenitor cells is essential for bone healing. Bone, 2011, 48: 524-532

[11]

Tsuji K, et al.. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat. Genet., 2006, 38: 1424-9

[12]

Yu YY, Lieu S, Lu C, Colnot C. Bone morphogenetic protein 2 stimulates endochondral ossification by regulating periosteal cell fate during bone repair. Bone, 2010, 47: 65-73

[13]

Colnot C, Thompson Z, Miclau T, Werb Z, Helms JA. Altered fracture repair in the absence of MMP9. Development, 2003, 130: 4123-33

[14]

Behonick DJ, et al.. Role of matrix metalloproteinase 13 in both endochondral and intramembranous ossification during skeletal regeneration. PLoS One, 2007, 2: e1150

[15]

Valdés-Fernández, J. et al. Molecular and cellular mechanisms of delayed fracture healing in Mmp10 (Stromelysin 2) knockout mice. J. Bone Miner. Res.36, 2203−2213 (2021).

[16]

Kosaki N, et al.. Impaired bone fracture healing in matrix metalloproteinase-13 deficient mice. Biochem. Biophys. Res. Commun., 2007, 354: 846-851

[17]

Muinos-López E, et al.. Hypoxia and reactive oxygen species homeostasis in mesenchymal progenitor cells define a molecular mechanism for fracture nonunion. Stem Cells, 2016, 34: 2342-2353

[18]

Kubo Y, et al.. Role of Nrf2 in fracture healing: clinical aspects of oxidative stress. Calcif. Tissue Int., 2019, 105: 341-352

[19]

Huang X, Shu H, Ren C, Zhu J. SIRT3 improves bone regeneration and rescues diabetic fracture healing by regulating oxidative stress. Biochem. Biophys. Res. Commun., 2022, 604: 109-115

[20]

Cash TP, Pan Y, Simon MC. Reactive oxygen species and cellular oxygen sensing. Free Radic. Biol. Med., 2007, 43: 1219-1225

[21]

Guzy RD, Schumacker PT. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp. Physiol., 2006, 91: 807-819

[22]

Kiley PJ, Storz G. Exploiting thiol modifications. PLoS Biol., 2004, 2: e400

[23]

Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes. J. Inflamm. Res, 2020, 13: 1057-1073

[24]

Gromer S, Urig S, Becker K. The thioredoxin system—from science to clinic. Med. Res. Rev., 2004, 24: 40-89

[25]

Karreth F, Hoebertz A, Scheuch H, Eferl R, Wagner EF. The AP1 transcription factor Fra2 is required for efficient cartilage development. Development, 2004, 131: 5717-5725

[26]

Wang, Y. et al. The hypoxia-inducible factor α pathway couples angiogenesis to osteogenesis during skeletal development. Online117, (2007).

[27]

Schipani E, et al.. Hypoxia in cartilage: HIF-1α is essential for chondrocyte growth arrest and survival. Genes Dev., 2001, 15: 2865-2876

[28]

Novack DV. Role of NF-κB in the skeleton. Cell Res., 2010, 21: 169-182

[29]

Hirota K, et al.. Ap-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc. Natl. Acad. Sci. USA, 1997, 94: 3633-3638

[30]

Xanthoudakis S, Miao G, Wang F, Pan YC, Curran T. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J., 1992, 11: 3323-3335

[31]

Xanthoudakis S, Miao GG, Curran T. The redox and DNA-repair activities of Ref-1 are encoded by nonoverlapping domains. Proc. Natl. Acad. Sci. USA, 1994, 91: 23-27

[32]

Skarnes WC, et al.. A conditional knockout resource for the genome-wide study of mouse gene function. Nature, 2011, 474: 337-344

[33]

Logan M, et al.. Expression of Cre recombinase in the developing mouse limb bud driven by aPrxl enhancer. Genesis, 2002, 33: 77-80

[34]

Cohen MM. Some chondrodysplasias with short limbs: molecular perspectives. Am. J. Med. Genet., 2002, 112: 304-313

[35]

Romeo SG, et al.. Endothelial proteolytic activity and interaction with non-resorbing osteoclasts mediate bone elongation. Nat. Cell Biol., 2019, 21: 430-441

[36]

Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat. Rev. Rheumatol., 2012, 8: 133-143

[37]

Kon T, et al.. Expression of osteoprotegerin, receptor activator of NF-κB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J. Bone Miner. Res., 2001, 16: 1004-1014

[38]

Al-Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J. Dent. Res., 2008, 87: 107-118

[39]

Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA. Fracture healing as a post-natal developmental process: Molecular, spatial, and temporal aspects of its regulation. J. Cell Biochem., 2003, 88: 873-884

[40]

Gerdes J, Schwab U, Lemke H, Stein H. Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J. Cancer., 1983, 31: 13-20

[41]

Uxa S, et al.. Ki-67 gene expression. Cell Death Differ., 2021, 28: 3357-3370

[42]

Klebig C, Korinth D, Meraldi P. Bub1 regulates chromosome segregation in a kinetochore-independent manner. J. Cell Biol., 2009, 185: 841-858

[43]

Goshima G, Iwasaki O, Obuse C, Yanagida M. The role of Ppe1/PP6 phosphatase for equal chromosome segregation in fission yeast kinetochore. EMBO J., 2003, 22: 2752-2763

[44]

Bhakat KK, Mantha AK, Mitra S. Transcriptional regulatory functions of mammalian AP-endonuclease (APE1/Ref-1), an essential multifunctional protein. Antioxid. Redox Signal, 2009, 11: 621-637

[45]

Tell G, Quadrifoglio F, Tiribelli C, Kelley MR. The many functions of APE1/Ref-1: Not only a DNA repair enzyme. Antioxid. Redox Signal, 2009, 11: 601-619

[46]

Schipani E, et al.. Hypoxia in cartilage: HIF-1α is essential for chondrocyte growth arrest and survival. Genes Dev., 2001, 15: 2865

[47]

Hallett SA, Ono W, Ono N. The hypertrophic chondrocyte: to be or not to be. Histol. Histopathol, 2021, 36: 1021-1036

[48]

Long, F., Schipani, E., Asahara, H., Kronenberg, H. & Montminy, M. The CREB family of activators is required for endochondral bone development. Development128, (2001).

[49]

He X, Ohba S, Hojo H, McMahon AP. AP-1 family members act with Sox9 to promote chondrocyte hypertrophy. Development, 2016, 143: 3012-3023

[50]

Ghert, M., Mak, I. W. Y., Turcotte, R. E., Popovic, S. & Singh, G. AP-1 as a regulator of MMP-13 in the stromal cell of giant cell tumor of bone. Biochem. Res. Int.2011, 164197 (2011).

[51]

Chan CM, et al.. Cytokine-induced MMP13 expression in human chondrocytes is dependent on activating transcription factor 3 (ATF3) regulation. J. Biol. Chem., 2017, 292: 1625-1636

[52]

Lin C, McGough R, Aswad B, Block JA, Terek R. Hypoxia induces HIF-1α and VEGF expression in chondrosarcoma cells and chondrocytes. J. Orthop. Res., 2004, 22: 1175-1181

[53]

Chappuis V, et al.. Periosteal BMP2 activity drives bone graft healing. Bone, 2012, 51: 800-809

[54]

Mi M, et al.. Chondrocyte BMP2 signaling plays an essential role in bone fracture healing. Gene, 2013, 512: 211-218

[55]

McBride-Gagyi SH, McKenzie JA, Buettmann EG, Gardner MJ, Silva MJ. Bmp2 conditional knockout in osteoblasts and endothelial cells does not impair bone formation after injury or mechanical loading in adult mice. Bone, 2015, 81: 533-543

[56]

Stickens, D. et al. Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development131, (2004).

[57]

Vu TH, et al.. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell, 1998, 93: 411-422

[58]

Kalev-Altman, R. et al. The gelatinases, matrix metalloproteinases 2 and 9, play individual roles in skeleton development. Matrix Biol.113, (2022).

[59]

Lausch E, et al.. Mutations in MMP9 and MMP13 determine the mode of inheritance and the clinical spectrum of metaphyseal anadysplasia. Am. J. Hum. Genet, 2009, 85: 168-178

[60]

Hallett SA, Ono W, Ono N. Growth plate chondrocytes: skeletal development, growth and beyond. Int. J. Mol. Sci., 2019, 20: 1-17

[61]

Kodama J, Wilkinson KJ, Iwamoto M, Otsuru S, Enomoto-Iwamoto M. The role of hypertrophic chondrocytes in regulation of the cartilage-to-bone transition in fracture healing. Bone Rep., 2022, 17: 101616

[62]

Gerber HP, et al.. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med., 1999, 5: 623-628 1999 5:6

[63]

Wang Y, Wan C, Gilbert SR, Clemens TL. Oxygen sensing and osteogenesis. Ann. N. Y. Acad. Sci., 2007, 1117: 1-11

[64]

D’Ippolito G, Diabira S, Howard GA, Roos BA, Schiller PC. Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone, 2006, 39: 513-522

[65]

Kuwahara, S. T. et al. Sox9+ messenger cells orchestrate large-scale skeletal regeneration in the mammalian rib. Elife8, (2019).

[66]

Schmid GJ, Kobayashi C, Sandell LJ, Ornitz DM. Fibroblast growth factor expression during skeletal fracture healing in mice. Dev. Dyn., 2009, 238: 766

[67]

Krishnan V, Bryant HU, MacDougald OA. Regulation of bone mass by Wnt signaling. J. Clin. Invest., 2006, 116: 1202-1209

[68]

Hosaka Y, et al.. Notch signaling in chondrocytes modulates endochondral ossification and osteoarthritis development. Proc. Natl. Acad. Sci. USA, 2013, 110: 1875-1880

[69]

Liu CF, Samsa WE, Zhou G, Lefebvre V. Transcriptional control of chondrocyte specification and differentiation. Semin. Cell Dev. Biol., 2017, 62: 34

[70]

Wu X, Shi W, Cao X. Multiplicity of BMP signaling in skeletal development. Ann. N. Y. Acad. Sci., 2007, 1116: 29-49

[71]

Kawanami A, Matsushita T, Chan YY, Murakami S. Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum. Biochem. Biophys. Res. Commun., 2009, 386: 477-82

[72]

Henry SP, et al.. Generation of aggrecan-CreERT2 knockin mice for inducible Cre activity in adult cartilage. Genesis, 2009, 47: 805-814

[73]

Madisen L, et al.. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci., 2010, 13: 133-140

[74]

Prados, B. et al. Myocardial Bmp2 gain causes ectopic EMT and promotes cardiomyocyte proliferation and immaturity. Cell Death Dis.9, (2018).

[75]

George, S. H. L. et al. Developmental and adult phenotyping directly from mutant embryonic stem cells. Proc. Natl. Acad. Sci. USA104, (2007).

[76]

Rodríguez CI, et al.. High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat. Genet., 2000, 25: 139-140

Funding

Universidad de Navarra (University of Navarra)(Asociación de Amigos de la Universidad de Navarra)

Fellowship CIMA AC from “Fundación para la Investigación Médica Aplicada”

Sara Borrell grant (CD22/00027) from the Instituto Carlos III and NextGenerationEU

"la Caixa" Foundation (Caixa Foundation)(Ref. HR23-00084)

PID2022-104776RB-100 and CB16/11/00399 (CIBER CV) from MCIN/AEI/10.13039/501100011033

Ministerio de Ciencia, Innovación y Universidades, co-financed by European Regional Development Fund-FEDER “A way to make Europe” (PID2023-153309OB-I00); Ministerio de Ciencia, Innovación y Universidades through Instituto de Salud Carlos III and European Regional Development Funds “A way to make Europe” (PI17/00136, PI20/00076), European Union Horizon 2020 program (grant agreement #874889, HEALIKICK)

RIGHTS & PERMISSIONS

The Author(s)

PDF

36

Accesses

0

Citation

Detail

Sections
Recommended

/