Bibliometric and LDA analysis of extracellular vesicles in osteoarthritis

Hongyu Xie , Lin Zhao , Lunwei Kang , Weikun Meng , Jianshu Tan , Ga Liao

Bone Research ›› 2025, Vol. 13 ›› Issue (1) : 105

PDF
Bone Research ›› 2025, Vol. 13 ›› Issue (1) :105 DOI: 10.1038/s41413-025-00484-3
Article
research-article

Bibliometric and LDA analysis of extracellular vesicles in osteoarthritis

Author information +
History +
PDF

Abstract

Osteoarthritis (OA) is a common degenerative joint disease with complex risk factors, and its underlying mechanism remains unclear. The disease has a subtle onset and mild early symptoms, and its progression is irreversible. Current treatments do not offer a complete cure. Therefore, developing new therapies, early prevention strategies, and reliable biomarkers is essential to reduce the disease burden and improve the quality of life for OA patients. Extracellular vesicles, with their natural biocompatibility and low immunogenicity, have shown great potential in drug delivery and acellular therapies. To provide a complete understanding of the current research and future prospects of extracellular vesicles in OA, this study used bibliometric analysis and Latent Dirichlet Allocation (LDA) methods to systematically evaluate international collaborations, research hotspots, and emerging trends in the field. Our aim is to offer a scientific basis and reference for innovative OA treatment strategies and the clinical application of extracellular vesicles.

Cite this article

Download citation ▾
Hongyu Xie, Lin Zhao, Lunwei Kang, Weikun Meng, Jianshu Tan, Ga Liao. Bibliometric and LDA analysis of extracellular vesicles in osteoarthritis. Bone Research, 2025, 13(1): 105 DOI:10.1038/s41413-025-00484-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet, 2019, 393: 1745-1759.

[2]

Steinmetz JD, et al. . Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol., 2023, 5: e508-e522.

[3]

Li C, Zheng Z. Males and females have distinct molecular events in the articular cartilage during knee osteoarthritis. Int. J. Mol. Sci., 2021, 22: 7876

[4]

Allen KD, Thoma LM, Golightly YM. Epidemiology of osteoarthritis. Osteoarthr. Cartil., 2022, 30: 184-195.

[5]

Waarsing JH, Bierma-Zeinstra SMA, Weinans H. Distinct subtypes of knee osteoarthritis: data from the Osteoarthritis Initiative. Rheumatology, 2015, 54: 1650-1658.

[6]

Thorlund JB, et al. . Similar effects of exercise therapy, nonsteroidal anti-inflammatory drugs, and opioids for knee osteoarthritis pain: a systematic review with network meta-analysis. J. Orthop. Sports Phys. Ther., 2022, 52: 207-216.

[7]

Magni A, et al. . Management of osteoarthritis: expert opinion on NSAIDs. Pain. Ther., 2021, 10: 783-808.

[8]

Billesberger LM, Fisher KM, Qadri YJ, Boortz-Marx RL. Procedural treatments for knee osteoarthritis: a review of current injectable therapies. Pain. Res. Manag., 2020, 2020: 1-11.

[9]

Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science, 2020, 367eaau6977

[10]

Tricarico C, Clancy J, D’Souza-Schorey C. Biology and biogenesis of shed microvesicles. Small GTPases, 2017, 8: 220-232.

[11]

Crescitelli R, et al. . Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J. Extracell. Vesicles, 2013, 2: 20677.

[12]

Jeppesen DK, Zhang Q, Franklin JL, Coffey RJ. Extracellular vesicles and nanoparticles: emerging complexities. Trends Cell Biol., 2023, 33: 667-681.

[13]

Liu Z, et al. . Breakthrough of extracellular vesicles in pathogenesis, diagnosis and treatment of osteoarthritis. Bioact. Mater., 2023, 22: 423-452. DOI:

[14]

Tao S-C, et al. . Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics, 2017, 7: 180-195.

[15]

Yao Z, et al. . Down-regulated GAS6 impairs synovial macrophage efferocytosis and promotes obesity-associated osteoarthritis. eLife, 2023, 12e83069

[16]

Yoo K, et al. . Transforming growth factor‑β family and stem cell‑derived exosome therapeutic treatment in osteoarthritis (Review). Int. J. Mol. Med., 2022, 49: 62

[17]

Ni Z, et al. . The exosome-like vesicles from osteoarthritic chondrocyte enhanced mature IL-1β production of macrophages and aggravated synovitis in osteoarthritis. Cell Death Dis., 2019, 10522

[18]

Bolandnazar NS, et al. . Safety and efficacy of placental mesenchymal stromal cells-derived extracellular vesicles in knee osteoarthritis: a randomized, triple-blind, placebo-controlled clinical trial. BMC Musculoskelet. Disord., 2024, 25856

[19]

Benedikter BJ, et al. . Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. Sci. Rep., 2017, 715297

[20]

Mol EA, Goumans M-J, Doevendans PA, Sluijter JPG, Vader P. Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation. Nanomedicine, 2017, 13: 2061-2065.

[21]

Talebjedi B, Tasnim N, Hoorfar M, Mastromonaco GF, De Almeida Monteiro Melo Ferraz M. Exploiting microfluidics for extracellular vesicle isolation and characterization: potential use for standardized embryo quality assessment. Front. Vet. Sci., 2020, 7: 620809

[22]

Tang X, et al. . The prevalence of symptomatic knee osteoarthritis in China: results from the china health and retirement longitudinal study. Arthritis Rheumatol., 2016, 68: 648-653.

[23]

Cosenza S, Ruiz M, Toupet K, Jorgensen C, Noël D. Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci. Rep., 2017, 716214

[24]

Zhang S, et al. . MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials, 2018, 156: 16-27.

[25]

Wu J, et al. . miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis. Biomaterials, 2019, 206: 87-100.

[26]

Zhang S, et al. . Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthr. Cartil., 2016, 24: 2135-2140.

[27]

Mao G, et al. . Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Res Ther., 2018, 9: 247

[28]

Théry C, et al. . Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicle, 2018, 7: 1535750.

[29]

Ni Z, et al. . Exosomes: roles and therapeutic potential in osteoarthritis. Bone Res., 2020, 8: 25

[30]

Li Y, Tan J, Miao Y, Zhang Q. MicroRNA in extracellular vesicles regulates inflammation through macrophages under hypoxia. Cell Death Discov., 2021, 7: 285

[31]

Duan L, Liang Y, Xu X, Xiao Y, Wang D. Recent progress on the role of miR-140 in cartilage matrix remodelling and its implications for osteoarthritis treatment. Arthritis Res. Ther., 2020, 22: 194

[32]

Cheng J, Li M, Bai R. The Wnt signaling cascade in the pathogenesis of osteoarthritis and related promising treatment strategies. Front. Physiol., 2022, 13: 954454

[33]

Li D, et al. . Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat. Commun., 2016, 710872

[34]

Duan L, et al. . Noncoding RNAs in subchondral bone osteoclast function and their therapeutic potential for osteoarthritis. Arthritis Res Ther., 2020, 22: 279

[35]

Wan J, et al. . Injectable photocrosslinking spherical hydrogel-encapsulated targeting peptide-modified engineered exosomes for osteoarthritis therapy. J. Nanobiotechnol, 2023, 21: 284.

[36]

Yang L, Li W, Zhao Y, Wang Y, Shang L. Stem cell recruitment polypeptide hydrogel microcarriers with exosome delivery for osteoarthritis treatment. J. Nanobiotechnol, 2024, 22: 512.

[37]

Liu W, et al. . Dual-engineered cartilage-targeting extracellular vesicles derived from mesenchymal stem cells enhance osteoarthritis treatment via miR-223/NLRP3/pyroptosis axis: Toward a precision therapy. Bioact. Mater., 2023, 30: 169-183. DOI:

[38]

Lane NE, et al. . OARSI clinical trials recommendations: design and conduct of clinical trials for hip osteoarthritis. Osteoarthr. Cartil., 2015, 23: 761-771.

[39]

Nagy E, Nagy-Finna C, Popoviciu H-V, Kovács B. Soluble biomarkers of osteoporosis and osteoarthritis, from pathway mapping to clinical trials: an update. CIA, 2020, 15: 501-518.

[40]

Gupta A, et al. . Cell-free stem cell-derived extract formulation for treatment of knee osteoarthritis: study protocol for a preliminary non-randomized, open-label, multi-center feasibility and safety study. J. Orthop. Surg. Res., 2021, 16: 514

[41]

Juárez-Navarro KJ, Padilla-Camberos E, Díaz NF, Miranda-Altamirano A, Díaz-Martínez NE. Human mesenchymal stem cells: the present alternative for high-incidence diseases, even SARS-Cov-2. Stem Cells Int., 2020, 2020: 1-13.

[42]

Lee WY, Wang B. Cartilage repair by mesenchymal stem cells: clinical trial update and perspectives. J. Orthop. Translation, 2017, 9: 76-88.

[43]

Campra M, Riva P, Oricchio G, Brescia V. Bibliometrix analysis of medical tourism. Health Serv. Manag. Res., 2022, 35: 172-188.

[44]

DiMaggio P, Nag M, Blei D. Exploiting affinities between topic modeling and the sociological perspective on culture: application to newspaper coverage of U.S. government arts funding. Poetics, 2013, 41: 570-606.

Funding

Sichuan Provincial Department of Science and Technology | Sichuan Province Science and Technology Support Program(25GJHZ0145)

RIGHTS & PERMISSIONS

The Author(s)

PDF

34

Accesses

0

Citation

Detail

Sections
Recommended

/