Membrane-initiated estrogen receptor-α signaling in osteoblasts is crucial for normal regulation of the cortical bone in female mice

Yiwen Jiang , Karin Horkeby , Petra Henning , Jianyao Wu , Karin H. Nilsson , Lina Lawenius , Sofia Movérare-Skrtic , Priti Gupta , Cecilia Engdahl , Antti Koskela , Juha Tuukkanen , Lei Li , Claes Ohlsson , Marie K. Lagerquist

Bone Research ›› 2025, Vol. 13 ›› Issue (1) : 65

PDF
Bone Research ›› 2025, Vol. 13 ›› Issue (1) : 65 DOI: 10.1038/s41413-025-00439-8
Article

Membrane-initiated estrogen receptor-α signaling in osteoblasts is crucial for normal regulation of the cortical bone in female mice

Author information +
History +
PDF

Abstract

Membrane-initiated estrogen receptor α (mERα) signaling has been shown to affect bone mass in murine models. However, it remains unknown which cell types mediate the mERα-dependent effects on bone. In this study, we generated a novel mouse model with a conditional C451A mutation in Esr1, which enables selective knockout of the palmitoylation site essential for the membrane localization of ERα (C451Af/f). First, we used Runx2-Cre mice to generate Runx2-C451Af/f mice with conditional inactivation of mERα signaling in Runx2-expressing osteoblast lineage cells. No significant changes were observed in body weight, weights of estrogen-responsive organs, or serum concentrations of estradiol between female Runx2-C451Af/f and homozygous C451Af/f littermate controls. High-resolution microcomputed tomography analysis showed a consistent decrease in cortical bone mass in the tibia, femur, and vertebra L5 of Runx2-C451Af/f mice and three-point bending analysis of humerus revealed an impaired mechanical bone strength in Runx2-C451Af/f female mice compared to controls. Additionally, primary osteoblast cultures from mice lacking mERα signaling showed impaired differentiation compared to controls. In contrast, conditional inactivation of mERα signaling in hematopoietic cells, by transplantation of bone marrow from mice lacking mERα signaling in all cells to adult wildtype female mice, did not result in any skeletal alterations. In conclusion, this study demonstrates that mERα signaling in osteoblast lineage cells plays a crucial role in the regulation of cortical bone in female mice and shows that mERα inactivation in hematopoietic cells of adult female mice is dispensable for bone regulation.

Cite this article

Download citation ▾
Yiwen Jiang, Karin Horkeby, Petra Henning, Jianyao Wu, Karin H. Nilsson, Lina Lawenius, Sofia Movérare-Skrtic, Priti Gupta, Cecilia Engdahl, Antti Koskela, Juha Tuukkanen, Lei Li, Claes Ohlsson, Marie K. Lagerquist. Membrane-initiated estrogen receptor-α signaling in osteoblasts is crucial for normal regulation of the cortical bone in female mice. Bone Research, 2025, 13(1): 65 DOI:10.1038/s41413-025-00439-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

RichelsonLS, WahnerHW, MeltonLJ 3rd, RiggsBL. Relative contributions of aging and estrogen deficiency to postmenopausal bone loss. N. Engl. J. Med., 1984, 311: 1273-1275

[2]

LindsayR, TohmeJF. Estrogen treatment of patients with established postmenopausal osteoporosis. Obstet. Gynecol., 1990, 76: 290-295

[3]

FinkHA, et al.. Association of testosterone and estradiol deficiency with osteoporosis and rapid bone loss in older men. J. Clin. Endocrinol. Metab., 2006, 91: 3908-3915

[4]

VanderschuerenD, et al.. Sex steroid actions in male bone. Endocr. Rev., 2014, 35: 906-960

[5]

BalenaR, et al.. The effects of 2-year treatment with the aminobisphosphonate alendronate on bone metabolism, bone histomorphometry, and bone strength in ovariectomized nonhuman primates. J. Clin. Invest., 1993, 92: 2577-2586

[6]

LindbergMK, et al.. Estrogen receptor specificity for the effects of estrogen in ovariectomized mice. J. Endocrinol., 2002, 174: 167-178

[7]

LelovasPP, XanthosTT, ThomaSE, LyritisGP, DontasIA. The laboratory rat as an animal model for osteoporosis research. Comp. Med., 2008, 58: 424-430

[8]

GradyD, GebretsadikT, KerlikowskeK, ErnsterV, PetittiD. Hormone replacement therapy and endometrial cancer risk: a meta-analysis. Obstet. Gynecol., 1995, 85: 304-313

[9]

DalyE, et al.. Risk of venous thromboembolism in users of hormone replacement therapy. Lancet, 1996, 348: 977-980

[10]

ChenCL, WeissNS, NewcombP, BarlowW, WhiteE. Hormone replacement therapy in relation to breast cancer. JAMA, 2002, 287: 734-741

[11]

HeldringN, et al.. Estrogen receptors: how do they signal and what are their targets. Physiol. Rev., 2007, 87: 905-931

[12]

LindbergMK, et al.. Estrogen receptor specificity in the regulation of the skeleton in female mice. J. Endocrinol., 2001, 171: 229-236

[13]

SimsNA, et al.. Deletion of estrogen receptors reveals a regulatory role for estrogen receptors-beta in bone remodeling in females but not in males. Bone, 2002, 30: 18-25

[14]

BorjessonAE, et al.. Roles of transactivating functions 1 and 2 of estrogen receptor-alpha in bone. Proc. Natl Acad. Sci. USA, 2011, 108: 6288-6293

[15]

van der EerdenBC, LowikCW, WitJM, KarperienM. Expression of estrogen receptors and enzymes involved in sex steroid metabolism in the rat tibia during sexual maturation. J. Endocrinol., 2004, 180: 457-467

[16]

NakamuraT, et al.. Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell, 2007, 130: 811-823

[17]

Martin-MillanM, et al.. The estrogen receptor-alpha in osteoclasts mediates the protective effects of estrogens on cancellous but not cortical bone. Mol. Endocrinol., 2010, 24: 323-334

[18]

AlmeidaM, et al.. Estrogen receptor-alpha signaling in osteoblast progenitors stimulates cortical bone accrual. J. Clin. Invest., 2013, 123: 394-404

[19]

MaattaJA, et al.. Inactivation of estrogen receptor alpha in bone-forming cells induces bone loss in female mice. FASEB J., 2013, 27: 478-488

[20]

MelvilleKM, et al.. Female mice lacking estrogen receptor-alpha in osteoblasts have compromised bone mass and strength. J. Bone Min. Res., 2014, 29: 370-379

[21]

WindahlSH, et al.. Estrogen receptor-alpha in osteocytes is important for trabecular bone formation in male mice. Proc. Natl Acad. Sci. USA, 2013, 110: 2294-2299

[22]

GustafssonKL, et al.. The role of membrane ERα signaling in bone and other major estrogen responsive tissues. Sci. Rep., 2016, 6 ArticleID: 29473

[23]

FarmanHH, et al.. Membrane estrogen receptor alpha is essential for estrogen signaling in the male skeleton. J. Endocrinol., 2018, 239: 303-312

[24]

VinelA, et al.. Respective role of membrane and nuclear estrogen receptor (ER) alpha in the mandible of growing mice: Implications for ERalpha modulation. J. Bone Min. Res., 2018, 33: 1520-1531

[25]

GustafssonKL, et al.. A tissue-specific role of membrane-initiated ERalpha signaling for the effects of SERMs. J. Endocrinol., 2022, 253: 75-84

[26]

JiangY, et al.. Membrane estrogen receptor alpha signaling modulates the sensitivity to estradiol treatment in a dose- and tissue- dependent manner. Sci. Rep., 2023, 13 ArticleID: 9046

[27]

AdlanmeriniM, et al.. Mutation of the palmitoylation site of estrogen receptor alpha in vivo reveals tissue-specific roles for membrane versus nuclear actions. Proc. Natl Acad. Sci. USA, 2014, 111: E283-E290

[28]

PedramA, RazandiM, LewisM, HammesS, LevinER. Membrane-localized estrogen receptor alpha is required for normal organ development and function. Dev. Cell, 2014, 29: 482-490

[29]

ShangY, BrownM. Molecular determinants for the tissue specificity of SERMs. Science, 2002, 295: 2465-2468

[30]

KommBS, MirkinS. Evolution of the tissue selective estrogen complex (TSEC). J. Cell Physiol., 2013, 228: 1423-1427

[31]

OhlssonC, et al.. Phosphorylation site S122 in estrogen receptor alpha has a tissue-dependent role in female mice. FASEB J., 2020, 34: 15991-16002

[32]

Madak-ErdoganZ, et al.. Design of pathway preferential estrogens that provide beneficial metabolic and vascular effects without stimulating reproductive tissues. Sci. Signal, 2016, 9: ra53

[33]

RauchA, et al.. Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metab., 2010, 11: 517-531

[34]

SeitzS, et al.. Pharmacological estrogen administration causes a FSH-independent osteo-anabolic effect requiring ER alpha in osteoblasts. PLoS One, 2012, 7: e50301

[35]

RuffCB, HayesWC. Subperiosteal expansion and cortical remodeling of the human femur and tibia with aging. Science, 1982, 217: 945-948

[36]

WallaceJM, et al.. Exercise-induced changes in the cortical bone of growing mice are bone- and gender-specific. Bone, 2007, 40: 1120-1127

[37]

Zhang, B. et al. A human embryonic limb cell atlas resolved in space and time. Nature 635, 668–678 (2024).

[38]

HenningP, et al.. The effect of estrogen on bone requires ERalpha in nonhematopoietic cells but is enhanced by ERalpha in hematopoietic cells. Am. J. Physiol. Endocrinol. Metab., 2014, 307: E589-E595

[39]

VinelA, et al.. Role of ERalphaMISS in the effect of estradiol on cancellous and cortical femoral bone in growing female mice. Endocrinology, 2016, 157: 2533-2544

[40]

LallemandY, LuriaV, Haffner-KrauszR, LonaiP. Maternally expressed PGK-Cre transgene as a tool for early and uniform activation of the Cre site-specific recombinase. Transgenic Res., 1998, 7: 105-112

[41]

Moverare-SkrticS, et al.. Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat. Med., 2014, 20: 1279-1288

[42]

OhlssonC, et al.. Low progesterone and low estradiol levels associate with abdominal aortic aneurysms in men. J. Clin. Endocrinol. Metab., 2022, 107: e1413-e1425

[43]

WindahlSH, VidalO, AnderssonG, GustafssonJA, OhlssonC. Increased cortical bone mineral content but unchanged trabecular bone mineral density in female ERbeta(-/-) mice. J. Clin. Invest., 1999, 104: 895-901

[44]

DempsterDW, et al.. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Min. Res., 2013, 28: 2-17

[45]

BakkerAD, Klein-NulendJ. Osteoblast isolation from murine calvaria and long bones. Methods Mol. Biol., 2012, 816: 19-29

Funding

Vetenskapsrådet (Swedish Research Council)(2017-01286)

Stiftelsen Konung Gustaf V:s 80-årsfond (King Gustaf V's 80-year Foundation)(FAI-2018-0466)

IngaBritt och Arne Lundbergs Forskningsstiftelse (Ingabritt and Arne Lundberg Research Foundation)(LU2017-0076)

Novo Nordisk Fonden (Novo Nordisk Foundation)(26844)

The Swedish state under the agreement between the Swedish government and the county councils (ALF-agreement) (ALFGBG721581)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/