Inflammatory macrophage-derived itaconate inhibits DNA demethylase TET2 to prevent excessive osteoclast activation in rheumatoid arthritis

Kewei Rong , Dezheng Wang , Xiting Pu , Cheng Zhang , Pu Zhang , Xiankun Cao , Jinglin Zheng , Xiao Yang , Kexin Liu , Lei Shi , Yin Li , Peixiang Ma , Dan Ye , Jie Zhao , Pu Wang , An Qin

Bone Research ›› 2025, Vol. 13 ›› Issue (1) : 60

PDF
Bone Research ›› 2025, Vol. 13 ›› Issue (1) : 60 DOI: 10.1038/s41413-025-00437-w
Article

Inflammatory macrophage-derived itaconate inhibits DNA demethylase TET2 to prevent excessive osteoclast activation in rheumatoid arthritis

Author information +
History +
PDF

Abstract

Itaconate, a macrophage-specific anti-inflammatory metabolite, has recently emerged as a critical regulator in rheumatoid arthritis pathogenesis. We found that itaconate is a TNF-α responsive metabolite significantly elevated in the serum and synovial fluid of rheumatoid arthritis patients and we demonstrated that itaconate is primarily produced by inflammatory macrophages rather than osteoclasts or osteoblasts. In TNF-transgenic and Irg1 −/− hybrid mice, a more severe bone destruction phenotype was observed. Administration of itaconate prevents excessive activation of osteoclasts by inhibiting Tet2 enzyme activity. Furthermore, exogenous administration of itaconate or its derivative, 4-octyl-itaconate, inhibits arthritis progression and mitigates bone destruction, offering a potential therapeutic strategy for rheumatoid arthritis. This study elucidates that TNF-α drives macrophage-derived itaconate production to epigenetically suppress osteoclast hyperactivation through Tet2 inhibition, establishing itaconate and its derivative OI as novel therapeutic agents against rheumatoid arthritis -associated bone destruction.

Cite this article

Download citation ▾
Kewei Rong, Dezheng Wang, Xiting Pu, Cheng Zhang, Pu Zhang, Xiankun Cao, Jinglin Zheng, Xiao Yang, Kexin Liu, Lei Shi, Yin Li, Peixiang Ma, Dan Ye, Jie Zhao, Pu Wang, An Qin. Inflammatory macrophage-derived itaconate inhibits DNA demethylase TET2 to prevent excessive osteoclast activation in rheumatoid arthritis. Bone Research, 2025, 13(1): 60 DOI:10.1038/s41413-025-00437-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SilmanAJ, PearsonJE. Epidemiology and genetics of rheumatoid arthritis. Arthritis Res., 2002, 4: S265-S272

[2]

YokotaK, et al.. Characterization and function of tumor necrosis factor and interleukin-6-induced osteoclasts in rheumatoid arthritis. Arthritis Rheumatol., 2021, 73: 1145-1154

[3]

KallioliasGD, IvashkivLB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat. Rev. Rheumatol., 2016, 12: 49-62

[4]

FalconerJ, et al.. Review: synovial cell metabolism and chronic inflammation in rheumatoid arthritis. Arthritis Rheumatol., 2018, 70: 984-999

[5]

FearonU, HanlonMM, FloudasA, VealeDJ. Cellular metabolic adaptations in rheumatoid arthritis and their therapeutic implications. Nat. Rev. Rheumatol., 2022, 18: 398-414

[6]

KomatsuN, TakayanagiH. Mechanisms of joint destruction in rheumatoid arthritis - immune cell-fibroblast-bone interactions. Nat. Rev. Rheumatol., 2022, 18: 415-429

[7]

O’NeillLA, KishtonRJ, RathmellJ. A guide to immunometabolism for immunologists. Nat. Rev. Immunol., 2016, 16: 553-565

[8]

CaiWW, YuY, ZongSY, WeiF. Metabolic reprogramming as a key regulator in the pathogenesis of rheumatoid arthritis. Inflamm. Res., 2020, 69: 1087-1101

[9]

PucinoV, et al.. Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4+ T cell metabolic rewiring. Cell Metab., 2019, 30: 1055-1074.e1058

[10]

Littlewood-EvansA, et al.. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J. Exp. Med., 2016, 213: 1655-1662

[11]

CaoS, et al.. L-arginine metabolism inhibits arthritis and inflammatory bone loss. Ann. Rheum. Dis., 2024, 83: 72-87

[12]

GuoQ, et al.. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res., 2018, 6: 15

[13]

UsherKM, et al.. Pathological mechanisms and therapeutic outlooks for arthrofibrosis. Bone Res., 2019, 7: 9

[14]

BurmesterGR, Dimitriu-BonaA, WatersSJ, WinchesterRJ. Identification of three major synovial lining cell populations by monoclonal antibodies directed to Ia antigens and antigens associated with monocytes/macrophages and fibroblasts. Scand. J. Immunol., 1983, 17: 69-82

[15]

CutoloM, CampitielloR, GotelliE, SoldanoS. The role of M1/M2 macrophage polarization in rheumatoid arthritis synovitis. Front. Immunol., 2022, 13 ArticleID: 867260

[16]

CutoloM, et al.. CTLA4-Ig treatment induces M1-M2 shift in cultured monocyte-derived macrophages from healthy subjects and rheumatoid arthritis patients. Arthritis Res. Ther., 2021, 23: 306

[17]

TarditoS, et al.. Macrophage M1/M2 polarization and rheumatoid arthritis: a systematic review. Autoimmun. Rev., 2019, 18 ArticleID: 102397

[18]

HooftmanA, O’NeillLAJ. The immunomodulatory potential of the metabolite itaconate. Trends Immunol., 2019, 40: 687-698

[19]

YeD, WangP, ChenLL, GuanKL, XiongY. Itaconate in host inflammation and defense. Trends Endocrinol. Metab., 2024, 35: 586-606

[20]

McGettrickAF, BournerLA, DorseyFC, O’NeillLAJ. Metabolic messengers: itaconate. Nat. Metab., 2024, 6: 1661-1667

[21]

ChenLL, et al.. Itaconate inhibits TET DNA dioxygenases to dampen inflammatory responses. Nat. Cell Biol., 2022, 24: 353-363

[22]

MillsEL, et al.. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature, 2018, 556: 113-117

[23]

RuntschMC, et al.. Itaconate and itaconate derivatives target JAK1 to suppress alternative activation of macrophages. Cell Metab., 2022, 34: 487-501.e488

[24]

BambouskovaM, et al.. Itaconate confers tolerance to late NLRP3 inflammasome activation. Cell Rep., 2021, 34 ArticleID: 108756

[25]

KachlerK, et al.. Acod1-mediated inhibition of aerobic glycolysis suppresses osteoclast differentiation and attenuates bone erosion in arthritis. Ann. Rheum. Dis., 2024, 83: 1691-1706

[26]

KielerM, et al.. Itaconate is a metabolic regulator of bone formation in homeostasis and arthritis. Ann. Rheum. Dis., 2024, 83: 1465-1479

[27]

ZhangF, et al.. Deconstruction of rheumatoid arthritis synovium defines inflammatory subtypes. Nature, 2023, 623: 616-624

[28]

ChenYJ, et al.. Targeting IRG1 reverses the immunosuppressive function of tumor-associated macrophages and enhances cancer immunotherapy. Sci. Adv., 2023, 9 ArticleID: eadg0654

[29]

SchettG, GravalleseE. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat. Rev. Rheumatol., 2012, 8: 656-664

[30]

OkamotoK, et al.. Osteoimmunology: the conceptual framework unifying the immune and skeletal systems. Physiol. Rev., 2017, 97: 1295-1349

[31]

DanieliMG, et al.. Exposome: epigenetics and autoimmune diseases. Autoimmun. Rev., 2024, 23 ArticleID: 103584

[32]

PayetM, DargaiF, GasqueP, GuillotX. Epigenetic regulation (Including Micro-RNAs, DNA Methylation and Histone Modifications) of rheumatoid arthritis: a systematic review. Int. J. Mol. Sci., 2021, 22: 12170

[33]

Delgado-CalleJ, et al.. Role of DNA methylation in the regulation of the RANKL-OPG system in human bone. Epigenetics, 2012, 7: 83-91

[34]

DoiK, et al.. Role of lysine-specific demethylase 1 in metabolically integrating osteoclast differentiation and inflammatory bone resorption through hypoxia-inducible factor 1α and E2F1. Arthritis Rheumatol., 2022, 74: 948-960

[35]

HeJ, et al.. Intestinal butyrate-metabolizing species contribute to autoantibody production and bone erosion in rheumatoid arthritis. Sci. Adv., 2022, 8 ArticleID: eabm1511

[36]

LiG, et al.. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut Microbes, 2021, 13 ArticleID: 1968257

[37]

WangR, et al.. Gut microbiota-derived butyrate induces epigenetic and metabolic reprogramming in myeloid-derived suppressor cells to alleviate primary biliary cholangitis. Gastroenterology, 2024, 167: 733-749.e733

[38]

KimHW, et al.. NAD+-boosting molecules suppress mast cell degranulation and anaphylactic responses in mice. Theranostics, 2022, 12: 3316-3328

[39]

WangJ, et al.. Treatment with NAD+ inhibited experimental autoimmune encephalomyelitis by activating AMPK/SIRT1 signaling pathway and modulating Th1/Th17 immune responses in mice. Int Immunopharmacol., 2016, 39: 287-294

[40]

PeaceCG, O'NeillLA. The role of itaconate in host defense and inflammation. J. Clin. Investig, 2022, 132: e148548

[41]

IchiyamaK, et al.. The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells. Immunity, 2015, 42: 613-626

[42]

TadaM, et al.. Itaconate reduces proliferation and migration of fibroblast-like synoviocytes and ameliorates arthritis models. Clin. Immunol., 2024, 264 ArticleID: 110255

[43]

AtzeniF, Sarzi-PuttiniP. Autoantibody production in patients treated with anti-TNF-alpha. Expert Rev. Clin. Immunol., 2008, 4: 275-280

[44]

Di MatteoA, BathonJM, EmeryP. Rheumatoid arthritis. Lancet, 2023, 402: 2019-2033

[45]

BrownP, PrattAG, HyrichKL. Therapeutic advances in rheumatoid arthritis. Bmj, 2024, 384: e070856

[46]

AletahaD, et al.. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis., 2010, 69: 1580-1588

[47]

BrandDD, LathamKA, RosloniecEF. Collagen-induced arthritis. Nat. Protoc., 2007, 2: 1269-1275

[48]

CampbellIK, HamiltonJA, WicksIP. Collagen-induced arthritis in C57BL/6 (H-2b) mice: new insights into an important disease model of rheumatoid arthritis. Eur. J. Immunol., 2000, 30: 1568-1575

[49]

HasegawaT, et al.. Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1. Nat. Immunol., 2019, 20: 1631-1643

[50]

WuY, et al.. Mettl3-mediated m(6)A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Nat. Commun., 2018, 9 ArticleID: 4772

[51]

LoveMI, HuberW, AndersS. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 2014, 15 ArticleID: 550

[52]

WangL, FengZ, WangX, WangX, ZhangX. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 2010, 26: 136-138

[53]

JiangZ, et al.. Dietary fruit and vegetable intake, gut microbiota, and type 2 diabetes: results from two large human cohort studies. BMC Med., 2020, 18 ArticleID: 371

[54]

WangY, et al.. WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation. Mol. Cell, 2015, 57: 662-673

[55]

XuYP, et al.. Tumor suppressor TET2 promotes cancer immunity and immunotherapy efficacy. J. Clin. Investig., 2019, 129: 4316-4331

[56]

NestorCE, MeehanRR. Hydroxymethylated DNA immunoprecipitation (hmeDIP). Methods Mol. Biol., 2014, 1094: 259-267

Funding

National Natural Science Foundation of China (National Science Foundation of China)(82372430)

National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund)(31871431)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

303

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/