Biased agonism of G protein-coupled receptors as a novel strategy for osteoarthritis therapy

Xiangbo Meng , Ling Qin , Xinluan Wang

Bone Research ›› 2025, Vol. 13 ›› Issue (1) : 52

PDF
Bone Research ›› 2025, Vol. 13 ›› Issue (1) : 52 DOI: 10.1038/s41413-025-00435-y
Review Article

Biased agonism of G protein-coupled receptors as a novel strategy for osteoarthritis therapy

Author information +
History +
PDF

Abstract

Osteoarthritis (OA) is a prevalent degenerative joint disorder marked by chronic pain, inflammation, and cartilage loss, with current treatments limited to symptom relief. G protein-coupled receptors (GPCRs) play a pivotal role in OA progression by regulating inflammation, chondrocyte survival, and matrix homeostasis. However, their multifaceted signaling, via G proteins or β-arrestins, poses challenges for precise therapeutic targeting. Biased agonism, where ligands selectively activate specific GPCR pathways, emerges as a promising approach to optimize efficacy and reduce side effects. This review examines biased signaling in OA-associated GPCRs, including cannabinoid receptors (CB1, CB2), chemokine receptors (CCR2, CXCR4), protease-activated receptors (PAR-2), adenosine receptors (A1R, A2AR, A2BR, A3R), melanocortin receptors (MC1R, MC3R), bradykinin receptors (B2R), prostaglandin E2 receptors (EP-2, EP-4), and calcium-sensing receptors (CaSR). We analyze ligands in clinical trials and explore natural products from Traditional Chinese Medicine as potential biased agonists. These compounds, with diverse structures and bioactivities, offer novel therapeutic avenues. By harnessing biased agonism, this review underscores the potential for developing targeted, safer OA therapies that address its complex pathology, bridging molecular insights with clinical translation.

Keywords

Medical and Health Sciences / Clinical Sciences / Pharmacology and Pharmaceutical Sciences

Cite this article

Download citation ▾
Xiangbo Meng, Ling Qin, Xinluan Wang. Biased agonism of G protein-coupled receptors as a novel strategy for osteoarthritis therapy. Bone Research, 2025, 13(1): 52 DOI:10.1038/s41413-025-00435-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ChenD. Osteoarthritis: a complicated joint disease requiring extensive studies with multiple approaches. J. Orthop. Transl., 2022, 32: 130

[2]

TongL, et al. . Current understanding of osteoarthritis pathogenesis and relevant new approaches. Bone Res., 2022, 10: 60.

[3]

MaqboolM, et al. . An up to date on clinical prospects and management of osteoarthritis. Ann. Med. Surg., 2021, 72. 103077

[4]

LiaoL, et al. . Acute synovitis after trauma precedes and is associated with osteoarthritis onset and progression. Int. J. Biol. Sci., 2020, 16: 970-980.

[5]

KuangS, et al. . Pyroptosis-related crosstalk in osteoarthritis: macrophages, fibroblast-like synoviocytes and chondrocytes. J. Orthop. Transl., 2024, 47: 223-234

[6]

WangF, LiuM, WangN, LuoJ. G protein-coupled receptors in osteoarthritis. Front. Endocrinol., 2021, 12: 808835.

[7]

TchetinaEV. Developmental mechanisms in articular cartilage degradation in osteoarthritis. Arthritis, 2011, 2011. 683970

[8]

Hu, Y., Chen, X., Wang, S., Jing, Y.& Su, J. Subchondral bone microenvironment in osteoarthritis and pain. Bone Res.9, 20 (2021).

[9]

Burr, D. B., Gallant, M. A. Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol.8, 665–673 (2012).

[10]

JiangT, et al. . Radiomics signature of osteoarthritis: current status and perspective. J. Orthop. Transl., 2024, 45: 100-106

[11]

ChoY, et al. . Disease-modifying therapeutic strategies in osteoarthritis: current status and future directions. Exp. Mol. Med., 2021, 53: 1689-1696.

[12]

YangD, et al. . G protein-coupled receptors: structure- and function-based drug discovery. Signal Transduct. Target Ther., 2021, 6: 7.

[13]

ZhangM, et al. . G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct. Target Ther., 2024, 9: 88.

[14]

HauserAS, AttwoodMM, Rask-AndersenM, SchiothHB, GloriamDE. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov., 2017, 16: 829-842.

[15]

WoottenD, ChristopoulosA, Marti-SolanoM, BabuMM, SextonPM. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat. Rev. Mol. Cell Biol., 2018, 19: 638-653.

[16]

KenakinT. Functional selectivity and biased receptor signaling. J. Pharm. Exp. Ther., 2011, 336: 296-302.

[17]

KenakinT. Biased receptor signaling in drug discovery. Pharm. Rev., 2019, 71: 267-315.

[18]

SloskyLM, CaronMG, BarakLS. Biased allosteric modulators: new frontiers in GPCR drug discovery. Trends Pharm. Sci., 2021, 42: 283-299.

[19]

WenZQ, et al. . G protein-coupled receptors in osteoarthritis: a novel perspective on pathogenesis and treatment. Front. Cell Dev. Biol., 2021, 9. 758220

[20]

Wang, X. L. et al. In vivo screening for anti-osteoporotic fraction from extract of herbal formula Xianlinggubao in ovariectomized mice. PLoS ONE10, e0118184 (2015).

[21]

ChengWX, et al. . The effect and mechanism of QufengZhitong capsule for the treatment of osteoarthritis in a rat model. J. Orthop. Transl., 2021, 28: 65-73

[22]

ZhangP, et al. . Small molecules of herbal origin for osteoarthritis treatment: in vitro and in vivo evidence. Arthritis Res. Ther., 2022, 24: 105.

[23]

ZouJ, et al. . Discovery of a potent antiosteoporotic drug molecular scaffold derived from Angelica sinensis and its bioinspired total synthesis. ACS Cent. Sci., 2024, 10: 628-636.

[24]

GillisA, et al. . Critical assessment of G protein-biased agonism at the μ-opioid receptor. Trends Pharmacol. Sci., 2020, 41: 947-959.

[25]

Xia, J. et al. The μ-opioid receptor-mediated G protein and β-arrestin 2 signaling pathways both contribute to morphine-induced side effects. Eur. J. Pharmacol.966, 176333 (2024).

[26]

MiyanoK, et al. . The G protein signal-biased compound TRV130; structures, its site of action and clinical studies. Curr. Top. Med. Chem., 2020, 20: 2822-2829.

[27]

GurevichVV, GurevichEV. Biased GPCR signaling: possible mechanisms and inherent limitations. Pharm. Ther., 2020, 211: 107540.

[28]

SeyedabadiM, GhahremaniMH, AlbertPR. Biased signaling of G protein coupled receptors (GPCRs): molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharm. Ther., 2019, 200: 148-178.

[29]

Oliveira de SouzaC, SunX, OhD. Metabolic functions of G protein-coupled receptors and beta-arrestin-mediated signaling pathways in the pathophysiology of type 2 diabetes and obesity. Front. Endocrinol., 2021, 12: 715877.

[30]

Pertwee, R. G. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: ∆9-tetrahydrocannabinol, cannabidiol and ∆9-tetrahydrocannabivarin. Br. J. Pharm.153, 199–215 (2008).

[31]

DunnSL, WilkinsonJM, CrawfordA, BunningRAD, Le MaitreCL. Expression of cannabinoid receptors in human osteoarthritic cartilage: implications for future therapies. Cannabis Cannabinoid Res., 2016, 1: 3-15.

[32]

ZhangRX, RenK, DubnerR. Osteoarthritis pain mechanisms: basic studies in animal models. Osteoarthr. Cartil., 2013, 21: 1308-1315.

[33]

Mlost, J., Kostrzewa, M., Malek, N. & Starowicz, K. Molecular understanding of the activation of CB1 and blockade of TRPV1 receptors: implications for novel treatment strategies in osteoarthritis. Int. J. Mol. Sci.19, 342 (2018).

[34]

HillKP, PalastroMD, JohnsonB, DitreJW. Cannabis and pain: a clinical review. Cannabis Cannabinoid Res., 2017, 2: 96-104.

[35]

SchuelertN, McDougallJJ. Cannabinoid-mediated antinociception is enhanced in rat osteoarthritic knees. Arthritis Rheum., 2008, 58: 145-153.

[36]

Leo, L. M. & Abood, M. E. CB1 cannabinoid receptor signaling and biased signaling. Molecules26, 5413 (2021).

[37]

RonanPJ, WongngamnitN, BeresfordTP. Molecular mechanisms of cannabis signaling in the brain. Prog. Mol. Biol. Transl., 2016, 137: 123-147.

[38]

Farrelly, K. N. et al. The impact of recreational cannabis legalization on cannabis use and associated outcomes: a systematic review. Subst. Abus. Res. Treat.17, 1–22, (2023).

[39]

GaraiS, et al. . Discovery of a biased allosteric modulator for cannabinoid 1 receptor: preclinical anti-glaucoma efficacy. J. Med. Chem., 2021, 64: 8104-8126.

[40]

Shen, S. et al. Structure-based identification of a G protein-biased allosteric modulator of cannabinoid receptor CB1. Proc. Natl Acad. Sci.121, e2321532121 (2024).

[41]

Yang, L., Li, F. F., Han, Y. C., Jia, B. & Ding, Y. Cannabinoid receptor CB2 is involved in tetrahydrocannabinol-induced anti-inflammation against lipopolysaccharide in MG-63 cells. Mediators Inflamm.2015, 362126 (2015).

[42]

ParolaroD. Presence and functional regulation of cannabinoid receptors in immune cells. Life Sci., 1999, 65: 637-644.

[43]

SophocleousA, BörjessonAE, SalterDM, RalstonSH. The type 2 cannabinoid receptor regulates susceptibility to osteoarthritis in mice. Osteoarthr. Cartil., 2015, 23: 1586-1594.

[44]

Mlost, J. et al. CB2 agonism controls pain and subchondral bone degeneration induced by mono-iodoacetate: implications GPCR functional bias and tolerance development. Biomed. Pharmacother.136, 111283 (2021).

[45]

SophocleousA, Landao-BassongaE, van’t HofRJ, IdrisAI, RalstonSH. The type 2 cannabinoid receptor regulates bone mass and ovariectomy-induced bone loss by affecting osteoblast differentiation and bone formation. Endocrinology, 2011, 152: 2141-2149.

[46]

MalekN, et al. . The impact of JWH-133 on articular cartilage regeneration in osteoarthritis via metalloproteinase 13-dependent mechanism. Cannabis Cannabinoid, 2023, 8: 779-789.

[47]

Takheaw, N., Jindaphun, K., Pata, S., Laopajon, W. & Kasinrerk, W. Cannabinoid receptor 1 agonist ACEA and cannabinoid receptor 2 agonist GW833972A attenuates cell-mediated immunity by different biological mechanisms. Cells12, 848 (2023).

[48]

Soethoudt, M. et al. Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity. Nat. Commun.8, 13958 (2017).

[49]

BonecchiR, et al. . Chemokines and chemokine receptors: an overview. Front. Biosci., 2009, 14: 540-551.

[50]

BikfalviA, BillottetC. The CC and CXC chemokines: major regulators of tumor progression and the tumor microenvironment. Am. J. Physiol. Cell Physiol., 2020, 318: C542-C554.

[51]

Molnar, V. et al. Cytokines and chemokines involved in osteoarthritis pathogenesis. Int. J. Mol. Sci.22, 9208 (2021).

[52]

Zhao, X. et al. CCL3/CCR1 mediates CD14+CD16- circulating monocyte recruitment in knee osteoarthritis progression. Osteoarthr. Cartil.28, 613–625 (2020).

[53]

Sanchez-LopezE, CorasR, TorresA, LaneNE, GumaM. Synovial inflammation in osteoarthritis progression. Nat. Rev. Rheumatol., 2022, 18: 258-275.

[54]

van den BoschMHJ, van LentP, van der KraanPM. Identifying effector molecules, cells, and cytokines of innate immunity in OA. Osteoarthr. Cartil., 2020, 28: 532-543.

[55]

WangZ, et al. . Chemokine (C-C Motif) ligand 2/chemokine receptor 2 (CCR2) axis blockade to delay chondrocyte hypertrophy as a therapeutic strategy for osteoarthritis. Med. Sci. Monit., 2021, 27e930053

[56]

MillerRE, MalfaitAM. Can we target CCR2 to treat osteoarthritis? The trick is in the timing!. Osteoarthritis Cartilage, 2017, 25: 799-801.

[57]

ZhengY, et al. . Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature, 2016, 540: 458-461.

[58]

Na, H. S. et al. Soluble CCR2 gene therapy controls joint inflammation, cartilage damage, and the progression of osteoarthritis by targeting MCP-1 in a monosodium iodoacetate (MIA)-induced OA rat model. J. Transl. Med.20, 428 (2022).

[59]

Willcockson, H. et al. Early ablation of CCR2 in aggrecan-expressing cells following knee injury ameliorates joint damage and pain during post-traumatic osteoarthritis. Osteoarthr. Cartil.30, 1616–1630 (2022).

[60]

CorbisierJ, HuszaghA, GalesC, ParmentierM, SpringaelJY. Partial agonist and biased signaling properties of the synthetic enantiomers J113863/UCB35625 at chemokine receptors CCR2 and CCR5. J. Biol. Chem., 2017, 292: 575-584.

[61]

Ansari, M. A. et al. CCR1 antagonist J-113863 corrects the imbalance of pro- and anti-inflammatory cytokines in a SJL/J mouse model of relapsing-remitting multiple sclerosis. Immunobiology227, 152245 (2022).

[62]

ZhangY, et al. . CC chemokines and receptors in osteoarthritis: new insights and potential targets. Arthritis Res. Ther., 2023, 25: 113.

[63]

DasseOA, et al. . Novel, acidic CCR2 receptor antagonists: lead optimization. Lett. Drug Des. Discov., 2007, 4: 263-271.

[64]

Dong, Y. et al. Inhibition of SDF-1α/CXCR4 signalling in subchondral bone attenuates post-traumatic osteoarthritis. Int. J. Mol. Sci.17, 943 (2016).

[65]

PlanesasJM, Perez-NuenoVI, BorrellJI, TeixidoJ. Studying the binding interactions of allosteric agonists and antagonists of the CXCR4 receptor. J. Mol. Graph Model, 2015, 60: 1-14.

[66]

PlanesasJM, Pérez-NuenoVI, BorrellJI, TeixidóJ. Polypharmacology within CXCR4: multiple binding sites and allosteric behavior. AIP Conf. Proc., 2014, 1618: 1036-1038.

[67]

WuB, et al. . Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science, 2010, 330: 1066-1071.

[68]

SadriF, RezaeiZ, FereidouniM. The significance of the SDF-1/CXCR4 signaling pathway in the normal development. Mol. Biol. Rep., 2022, 49: 3307-3320.

[69]

SuYW, et al. . Roles of apoptotic chondrocyte-derived CXCL12 in the enhanced chondroclast recruitment following methotrexate and/or dexamethasone treatment. J. Cell Physiol., 2021, 236: 5966-5979.

[70]

Yang, J. et al. Role of the SDF-1/CXCR4 signaling pathway in cartilage and subchondral bone in temporomandibular joint osteoarthritis induced by overloaded functional orthopedics in rats. J. Orthop. Surg. Res.15, 330 (2020).

[71]

LiY, et al. . Influence on matrix metalloproteinases 3, 9, and 13 levels after blocking stromal cell derived factor 1/chemokine receptor 4 signaling pathway with AMD3100. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2012, 26: 652-656

[72]

RayP, et al. . Secreted CXCL12 (SDF-1) forms dimers under physiological conditions. Biochem. J., 2012, 442: 433-442.

[73]

Drury, L. J. et al. Monomeric and dimeric CXCL12 inhibit metastasis through distinct CXCR4 interactions and signaling pathways. Proc. Natl Acad. Sci.108, 17655–17660 (2011).

[74]

OikonomopoulouK, DiamandisEP, HollenbergMD, ChandranV. Proteinases and their receptors in inflammatory arthritis: an overview. Nat. Rev. Rheumatol., 2018, 14: 170.

[75]

Lucena, F. & McDougall, J. J. Protease activated receptors and arthritis. Int. J. Mol. Sci.22, 9352 (2021).

[76]

CantoI, SohUJ, TrejoJ. Allosteric modulation of protease-activated receptor signaling. Mini Rev. Med. Chem., 2012, 12: 804-811.

[77]

ZhaoP, MetcalfM, BunnettNW. Biased signaling of protease-activated receptors. Front. Endocrinol., 2014, 5: 67.

[78]

Soh, U. J. & Trejo, J. Activated protein C promotes protease-activated receptor-1 cytoprotective signaling through β-arrestin and dishevelled-2 scaffolds. Proc. Natl Acad. Sci. USA108, E1372–E1380 (2011).

[79]

TrivediV, et al. . Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. Cell, 2009, 137: 332-343.

[80]

BohmSK, et al. . Mechanisms of desensitization and resensitization of proteinase-activated receptor-2. J. Biol. Chem., 1996, 271: 22003-22016.

[81]

ScottG, et al. . The proteinase-activated receptor-2 mediates phagocytosis in a Rho-dependent manner in human keratinocytes. J. Invest. Dermatol., 2003, 121: 529-541.

[82]

DeFeaKA, et al. . β-Arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J. Cell Biol., 2000, 148: 1267-1281.

[83]

Kanke, T. et al. Proteinase-activated receptor-2-mediated activation of stress-activated protein kinases and inhibitory κB kinases in NCTC 2544 keratinocytes. J. Biol. Chem.276, 31657–31666 (2001).

[84]

SadaghianiAM, VerhelstSHL, BogyoM. Tagging and detection strategies for activity-based proteomics. Curr. Opin. Chem. Biol., 2007, 11: 20-28.

[85]

Ramachandran, R. et al. Neutrophil elastase acts as a biased agonist for proteinase-activated receptor-2 (PAR2). J. Biol. Chem.286, 24638–24648 (2011).

[86]

KaisermanD, et al. . Granzyme K initiates IL-6 and IL-8 release from epithelial cells by activating protease-activated receptor 2. PLoS ONE, 2022, 17: e0270584.

[87]

LamFF. Role of protease-activated receptor 2 in joint inflammation. Arthritis Rheum., 2007, 56: 3514-3517.

[88]

BoileauC, et al. . Activation of proteinase-activated receptor 2 in human osteoarthritic cartilage upregulates catabolic and proinflammatory pathways capable of inducing cartilage degradation: a basic science study. Arthritis Res. Ther., 2007, 9. R121

[89]

HuesaC, et al. . Proteinase-activated receptor 2 modulates OA-related pain, cartilage and bone pathology. Ann. Rheum. Dis., 2016, 75: 1989-1997.

[90]

HollenbergMD, et al. . Biased signalling and proteinase-activated receptors (PARs): targeting inflammatory disease. Br. J. Pharm., 2014, 171: 1180-1194.

[91]

HirotaY, et al. . Activation of protease-activated receptor 2 stimulates proliferation and interleukin (IL)-6 and IL-8 secretion of endometriotic stromal cells. Hum. Reprod., 2005, 20: 3547-3553.

[92]

Avet, C. et al. The PAR2 inhibitor I-287 selectively targets Gαq and Gα12/13 signaling and has anti-inflammatory effects. Commun. Biol.3, 719 (2020).

[93]

HuangX, et al. . Protease-activated receptor 2 (PAR-2) antagonist AZ3451 as a novel therapeutic agent for osteoarthritis. Aging, 2019, 11: 12532-12545.

[94]

SawynokJ, LiuXJ. Adenosine in the spinal cord and periphery: release and regulation of pain. Prog. Neurobiol., 2003, 69: 313-340.

[95]

Li, Y., Wu, F., Lao, L. X. & Shen, X. Y. Laser irradiation activates spinal adenosine A1 receptor to alleviate osteoarthritis pain in monosodium iodoacetate injected rats. J. Integr. Neurosci.19, 295–302 (2020).

[96]

LatiniS, PedataF. Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J. Neurochem., 2001, 79: 463-484.

[97]

LaoLJ, KawasakiY, YangK, FujitaT, KumamotoE. Modulation by adenosine of Adelta and C primary-afferent glutamatergic transmission in adult rat substantia gelatinosa neurons. Neuroscience, 2004, 125: 221-231.

[98]

Langemeijer, E. V., Verzijl, D., Dekker, S. J. & Ijzerman, A. P. Functional selectivity of adenosine A1 receptor ligands? Purinergic Signal9, 91–100 (2013).

[99]

Baltos, J. A. et al. Quantification of adenosine A1 receptor biased agonism: implications for drug discovery. Biochem. Pharm.99, 101–112 (2016).

[100]

Valant, C. et al. Delineating the mode of action of adenosine A1 receptor allosteric modulators. Mol. Pharmacol.78, 444–455 (2010).

[101]

Corciulo, C. et al. Endogenous adenosine maintains cartilage homeostasis and exogenous adenosine inhibits osteoarthritis progression. Nat. Commun.8, 15019 (2017).

[102]

Friedman, B., Corciulo, C., Castro, C. M. & Cronstein, B. N. Adenosine A2A receptor signaling promotes FoxO associated autophagy in chondrocytes. Sci. Rep.11, 968 (2021).

[103]

Castro, C. M. et al. Adenosine A2A receptor null chondrocyte transcriptome resembles that of human osteoarthritic chondrocytes. Purinergic Signal.17, 439–448 (2021).

[104]

Castro, C. M. et al. Adenosine A2A receptor (A2AR) stimulation enhances mitochondrial metabolism and mitigates reactive oxygen species-mediated mitochondrial injury. FASEB J.34, 5027–5045 (2020).

[105]

Friedman, B. et al. Adenosine A2A receptor activation reduces chondrocyte senescence. FASEB J.37, e22838 (2023).

[106]

Friedman, B. & Cronstein, B. Adenosine A2A receptor activation reduces markers of chondrocyte senescence and cartilage inflammation associated with osteoarthritis [abstract]. Arthritis Rheumatol.72, suppl 10 (2020).

[107]

WelihindaAA, KaurM, GreeneK, ZhaiYJ, AmentoEP. The adenosine metabolite inosine is a functional agonist of the adenosine A2A receptor with a unique signaling bias. Cell Signal, 2016, 28: 552-560.

[108]

KimSJ, et al. . ERK-1/2 and p38 kinase oppositely regulate nitric oxide-induced apoptosis of chondrocytes in association with p53, caspase-3, and differentiation status. J. Biol. Chem., 2002, 277: 1332-1339.

[109]

Lu, N., Malemud, C. J. Extracellular signal-regulated kinase: a regulator of cell growth, inflammation, chondrocyte and bone cell receptor-mediated gene expression. Int. J. Mol. Sci.20, 3792 (2019).

[110]

HeWJ, MazumderA, WilderT, CronsteinBN. Adenosine regulates bone metabolism A1, A2A, and A2B receptors in bone marrow cells from normal humans and patients with multiple myeloma. FASEB J., 2013, 27: 3446-3454.

[111]

Corciulo, C., Wilder, T. & Cronstein, B. N. Adenosine A2B receptors play an important role in bone homeostasis. Purinergic Signal12, 537–547 (2016).

[112]

Beukers, M. W., den Dulk, H., van Tilburg, E. W., Brouwer, J. & Ijzerman, A. P. Why are A2B receptors low-affinity adenosine receptors? Mutation of Asn273 to Tyr increases affinity of human A2B receptor for 2-(1-Hexynyl)adenosine. Mol. Pharm.58, 1349–1356 (2000).

[113]

GaoZG, BalasubramanianR, KiselevE, WeiQ, JacobsonKA. Probing biased/partial agonism at the G protein-coupled A2B adenosine receptor. Biochem. Pharmacol., 2014, 90: 297-306.

[114]

Kim, B. H., Oh, J. H. & Lee, N. K. The inactivation of ERK1/2, p38 and NF-κB is involved in the down-regulation of osteoclastogenesis and function by A2B adenosine receptor stimulation. Mol. Cells40, 752–760 (2017).

[115]

Nell, P. G. & Albrecht-Kupper, B. The adenosine A1 receptor and its ligands. Prog. Med. Chem.47, 163–201 (2009).

[116]

Shkhyan, R. et al. Genetic ablation of adenosine receptor A3 results in articular cartilage degeneration. J. Mol. Med.96, 1049–1060 (2018).

[117]

Bai, H. et al. Activation of adenosine A3 receptor attenuates progression of osteoarthritis through inhibiting the NLRP3/caspase-1/GSDMD induced signalling. J. Cell Mol. Med.26, 4230–4243 (2022).

[118]

Lin, L. et al. CF101 alleviates OA progression and inhibits the inflammatory process via the AMP/ATP/AMPK/mTOR axis. Bone155, 116264 (2022).

[119]

Gao, Z. G. & Jacobson, K. A. Translocation of arrestin induced by human A3 adenosine receptor ligands in an engineered cell line: comparison with G protein-dependent pathways. Pharm. Res.57, 303–311 (2008).

[120]

Gao, Z. G. et al. Functionally biased modulation of A3 adenosine receptor agonist efficacy and potency by imidazoquinolinamine allosteric enhancers. Biochem. Pharm.82, 658–668 (2011).

[121]

YangYK. Structure, function and regulation of the melanocortin receptors. Eur. J. Pharm., 2011, 660: 125-130.

[122]

Montero-MelendezT, GobbettiT, CooraySN, JonassenTEN, PerrettiM. Biased agonism as a novel strategy to harness the proresolving properties of melanocortin receptors without eliciting melanogenic effects. J. Immunol., 2015, 194: 3381-3388.

[123]

Yeo, G. S. H. et al. The melanocortin pathway and energy homeostasis: from discovery to obesity therapy. Mol. Metab.48, 101206 (2021).

[124]

KaskA, et al. . Selective antagonist for the melanocortin 4 receptor (HS014) increases food intake in free-feeding rats. Biochem. Biophys. Res. Commun., 1998, 245: 90-93.

[125]

TaoYX. The melanocortin-4 receptor: physiology, pharmacology, and pathophysiology. Endocr. Rev., 2010, 31: 506-543.

[126]

Mun, Y., Kim, W. & Shin, D. Melanocortin 1 receptor (MC1R): pharmacological and therapeutic aspects. Int. J. Mol. Sci.24, 12152 (2023).

[127]

LorenzJ, et al. . Melanocortin 1 receptor-signaling deficiency results in an articular cartilage phenotype and accelerates pathogenesis of surgically induced murine osteoarthritis. PLoS ONE, 2014, 9: e105858.

[128]

KanevaMK, et al. . Melanocortin peptides protect chondrocytes from mechanically induced cartilage injury. Biochem. Pharm., 2014, 92: 336-347.

[129]

Montero-MelendezT, et al. . Therapeutic senescence via GPCR activation in synovial fibroblasts facilitates resolution of arthritis. Nat. Commun., 2020, 11. 745

[130]

CanVC, et al. . Novel anti-inflammatory and chondroprotective effects of the human melanocortin MC1 receptor agonist BMS-470539 dihydrochloride and human melanocortin MC3 receptor agonist PG-990 on lipopolysaccharide activated chondrocytes. Eur. J. Pharm., 2020, 872. 172971

[131]

RexDAB, et al. . A modular map of Bradykinin-mediated inflammatory signaling network. J. Cell Commun. Signal, 2022, 16: 301-310.

[132]

Sriramula, S. Kinin B1 receptor: a target for neuroinflammation in hypertension. Pharmacol. Res.155, 104715 (2020).

[133]

Kuhr, F., Lowry, J., Zhang, Y., Brovkovych, V. & Skidgel, R. A. Differential regulation of inducible and endothelial nitric oxide synthase by kinin B1 and B2 receptors. Neuropeptides44, 145–154 (2010).

[134]

Meini, S. et al. Bradykinin and B2 receptor antagonism in rat and human articular chondrocytes. Br. J. Pharm.162, 611–622 (2011).

[135]

Tsou, P. S. et al. Soluble CD13 induces inflammatory arthritis by activating the bradykinin receptor B1. J. Clin. Invest.132, e151827 (2022).

[136]

RoyS, GangulyA, HaqueM, AliH. Angiogenic host defense peptide AG-30/5C and bradykinin B2 receptor antagonist icatibant are G protein biased agonists for MRGPRX2 in mast cells. J. Immunol., 2019, 202: 1229-1238.

[137]

TentiS, PascarelliNA, CheleschiS, GuidelliGM, FioravantiA. The emerging role of bradykinin in the pathogenesis of osteoarthritis and its possible clinical implications. Curr. Rheumatol. Rev., 2016, 12: 177-184.

[138]

NeumannE, KhawajaK, Müller-LadnerU. G protein-coupled receptors in rheumatology. Nat. Rev. Rheumatol., 2014, 10: 429-436.

[139]

Kawahara, K., Hohjoh, H., Inazumi, T., Tsuchiya, S. & Sugimoto, Y. Prostaglandin E2-induced inflammation: relevance of prostaglandin E receptors. Biochim. Biophys. Acta1851, 414–421 (2015).

[140]

Gahbauer, S. et al. Docking for EP4R antagonists active against inflammatory pain. Nat. Commun.14, 8067 (2023).

[141]

Huang, S. M. et al. Single hormone or synthetic agonist induces Gs/Gi coupling selectivity of EP receptors via distinct binding modes and propagating paths. Proc. Natl Acad. Sci.120, e2216329120 (2023).

[142]

FujinoH, et al. . Human DP and EP2 prostanoid receptors take on distinct forms depending on the diverse binding of different ligands. J. Pharm. Sci., 2017, 133: S200-S200

[143]

ArakiY, et al. . PGE1 and E3 show lower efficacies than E2 to β-catenin-mediated activity as biased ligands of EP4 prostanoid receptors. FEBS Lett., 2017, 591: 3771-3780.

[144]

Endo, S. et al. 15-Keto-PGE2 acts as a biased/partial agonist to terminate PGE2-evoked signaling. J. Biol. Chem.295, 13338–13352 (2020).

[145]

Attur, M. et al. Prostaglandin E2 exerts catabolic effects in osteoarthritis cartilage: evidence for signaling via the EP4 receptor. J. Immunol.181, 5082–5088 (2008).

[146]

Jiang, W. H. et al. PGE2 activates EP4 in subchondral bone osteoclasts to regulate osteoarthritis. Bone Res.10, 27 (2022).

[147]

PhillipsR. PGE2 receptor antagonist has potential to treat osteoarthritis. Nat. Rev. Rheumatol., 2022, 18: 245-245.

[148]

HannanFM, BabinskyVN, ThakkerRV. Disorders of the calcium-sensing receptor and partner proteins: insights into the molecular basis of calcium homeostasis. J. Mol. Endocrinol., 2016, 57: R127-R142.

[149]

LuoJ, SunP, SiwkoS, LiuM, XiaoJ. The role of GPCRs in bone diseases and dysfunctions. Bone Res., 2019, 7: 19.

[150]

Nanoff, C., Yang, Q., Hellinger, R. & Hermann, M. Activation of the calcium-sensing receptor by a subfraction of amino acids contained in thyroid drainage fluid. ACS Pharmacol. Transl. Sci.7, 1937–1950 (2024).

[151]

ConigraveAD, WardDT. Calcium-sensing receptor (CaSR): pharmacological properties and signaling pathways. Best. Pr. Res. Clin. Endocrinol. Metab., 2013, 27: 315-331.

[152]

PetrelC, et al. . Positive and negative allosteric modulators of the Ca2+-sensing receptor interact within overlapping but not identical binding sites in the transmembrane domain. J. Biol. Chem., 2004, 279: 18990-18997.

[153]

Wen, T. et al. Structural basis for activation and allosteric modulation of full-length calcium-sensing receptor. Sci. Adv.7, eabg1483 (2021).

[154]

JosephsTM, et al. . Negative allosteric modulators of the human calcium-sensing receptor bind to overlapping and distinct sites within the 7-transmembrane domain. Br. J. Pharm., 2020, 177: 1917-1930.

[155]

ZhangC, et al. . Structural basis for regulation of human calcium-sensing receptor by magnesium ions and an unexpected tryptophan derivative co-agonist. Sci. Adv., 2016, 2. e1600241

[156]

Li, M. et al. Stimulatory effects of the degradation products from Mg-Ca-Sr alloy on the osteogenesis through regulating ERK signaling pathway. Sci. Rep.6, 32323 (2016).

[157]

LiuJ, et al. . The abnormal phenotypes of cartilage and bone in calcium-sensing receptor deficient mice are dependent on the actions of calcium, phosphorus, and PTH. PLoS Genet., 2011, 7: e1002294.

[158]

ChangW, TuC, ChenTH, BikleD, ShobackD. The extracellular calcium-sensing receptor (CaSR) is a critical modulator of skeletal development. Sci. Signal, 2008, 1: ra1.

[159]

RybchynMS, SlaterM, ConigraveAD, MasonRS. An Akt-dependent increase in canonical Wnt signaling and a decrease in sclerostin protein levels are involved in strontium ranelate-induced osteogenic effects in human osteoblasts. J. Biol. Chem., 2011, 286: 23771-23779.

[160]

Yamaguchi, M. & Weitzmann, M. N. The intact strontium ranelate complex stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-κB activation. Mol. Cell Biochem.359, 399–407 (2012).

[161]

DiepenhorstNA, et al. . Divergent effects of strontium and calcium-sensing receptor positive allosteric modulators (calcimimetics) on human osteoclast activity. Br. J. Pharm., 2018, 175: 4095-4108.

[162]

ZhangM, et al. . Prevention of injury-induced osteoarthritis in rodent temporomandibular joint by targeting chondrocyte CaSR. J. Bone Min. Res., 2019, 34: 726-738.

[163]

YaoH, et al. . Combination of magnesium ions and vitamin C alleviates synovitis and osteophyte formation in osteoarthritis of mice. Bioact. Mater., 2021, 6: 1341-1352

[164]

Wei, X. et al. A human organoid drug screen identifies α2-adrenergic receptor signaling as a therapeutic target for cartilage regeneration. Cell Stem Cell31, 1813–1830.e1818 (2024).

[165]

ZhaoZ, et al. . G protein-coupled receptor 30 activation inhibits ferroptosis and protects chondrocytes against osteoarthritis. J. Orthop. Transl., 2024, 44: 125-138

[166]

Li, R. et al. The proton-activated G protein-coupled receptor GPR4 regulates the development of osteoarthritis via modulating CXCL12/CXCR7 signaling. Cell Death Dis.13, 152 (2022).

[167]

SanderlinEJ, JustusCR, KrewsonEA, YangLV. Emerging roles for the pH-sensing G protein-coupled receptors in response to acidotic stress. Cell Health Cytoskelet., 2015, 7: 99-109

[168]

Khan, N. M. et al. pH-sensing G protein-coupled orphan receptor GPR68 is expressed in human cartilage and correlates with degradation of extracellular matrix during OA progression. PeerJ11, e16553 (2023).

[169]

Wang, F. H. et al. Fatty acid sensing GPCR (GPR84) signaling safeguards cartilage homeostasis and protects against osteoarthritis. Pharmacol. Res.164,105406 (2021).

[170]

MuratspahicE, FreissmuthM, GruberCW. Nature-derived peptides: a growing niche for GPCR ligand discovery. Trends Pharm. Sci., 2019, 40: 309-326.

[171]

An, D., Peigneur, S., Hendrickx, L. A. & Tytgat, J. Targeting cannabinoid receptors: current status and prospects of natural products. Int. J. Mol. Sci.21, 5064 (2020).

[172]

Serrano-Marin, J., Reyes-Resina, I., Martinez-Pinilla, E., Navarro, G. & Franco, R. Natural compounds as guides for the discovery of drugs targeting G-protein-coupled receptors. Molecules25, 5060 (2020).

[173]

GaoM, et al. . Research progress on the antiosteoarthritic mechanism of action of natural products. Evid. Based Complement. Altern. Med., 2021, 2021. 7714533

[174]

Wu, Y. et al. Sinomenine contributes to the inhibition of the inflammatory response and the improvement of osteoarthritis in mouse-cartilage cells by acting on the Nrf2/HO-1 and NF-κB signaling pathways. Int. Immunopharmacol.75, 105715 (2019).

[175]

Yi, L. et al. Sinomenine increases adenosine A2A receptor and inhibits NF-κB to inhibit arthritis in adjuvant-induced-arthritis rats and fibroblast-like synoviocytes through α7nAChR. J. Leukoc. Biol.110, 1113–1120 (2021).

[176]

LiuR, et al. . MRGPRX2 is essential for sinomenine hydrochloride induced anaphylactoid reactions. Biochem. Pharm., 2017, 146: 214-223.

[177]

Ling, W., Can, Y., Meng Ying, L., Man, X. & Hu, H. Berberine reduce inflammation in RA rats through MCP1/CCR2 pathway. bioRxiv. https://doi.org/10.1101/2023.08.09.552722 (2023).

[178]

Zhao, H. et al. Berberine ameliorates cartilage degeneration in interleukin-1β-stimulated rat chondrocytes and in a rat model of osteoarthritis via Akt signalling. J. Cell Mol. Med.18, 283–292 (2014).

[179]

ThollD. Biosynthesis and biological functions of terpenoids in plants. Adv. Biochem. Eng. Biotechnol., 2015, 148: 63-106

[180]

Liu, D. Z. et al. Neuroprotective effect of paeoniflorin on cerebral ischemic rat by activating adenosine A1 receptor in a manner different from its classical agonists. Br. J. Pharm.146, 604–611 (2005).

[181]

ChenP, ZhouJ, RuanAM, MaYF, WangQF. Paeoniflorin, the main monomer component of paeonia lactiflora, exhibits anti-inflammatory properties in osteoarthritis synovial inflammation. Chin. J. Integr. Med., 2024, 30: 433-442.

[182]

Mittal, S. P. K. et al. Andrographolide protects liver cells from H2O2 induced cell death by upregulation of Nrf-2/HO-1 mediated via adenosine A2a receptor signalling. Biochim. Biophys. Acta1860, 2377–2390 (2016).

[183]

LiB, et al. . Andrographolide protects chondrocytes from oxidative stress injury by activation of the Keap1-Nrf2-Are signaling pathway. J. Cell Physiol., 2018, 234: 561-571.

[184]

Feng, K., Chen, H. & Xu, C. Chondro-protective effects of celastrol on osteoarthritis through autophagy activation and NF-κB signaling pathway inhibition. Inflamm. Res.69, 385–400 (2020).

[185]

Jiang, X. W. et al. Celastrol is a novel selective agonist of cannabinoid receptor 2 with anti-inflammatory and anti-fibrotic activity in a mouse model of systemic sclerosis. Phytomedicine67, 153160 (2020).

[186]

ParkB, et al. . Acetyl-11-keto-β-boswellic acid suppresses invasion of pancreatic cancer cells through the downregulation of CXCR4 chemokine receptor expression. Int. J. Cancer, 2011, 129: 23-33.

[187]

AltmannA, et al. . Coupling of boswellic acid-induced Ca2+ mobilisation and MAPK activation to lipid metabolism and peroxide formation in human leucocytes. Br. J. Pharm., 2004, 141: 223-232.

[188]

Yang, K. et al. Astragaloside IV as a novel CXCR4 antagonist alleviates osteoarthritis in the knee of monosodium iodoacetate-induced rats. Phytomedicine108, 154506 (2023).

[189]

Li, H. et al. Astragaloside inhibits IL-1β-induced inflammatory response in human osteoarthritis chondrocytes and ameliorates the progression of osteoarthritis in mice. Immunopharmacol. Immunotoxicol.41, 497–503 (2019).

[190]

ChdaA, BencheikhR. Flavonoids as G protein-coupled receptors ligands: new potential therapeutic natural drugs. Curr. Drug Targets, 2023, 24: 1346-1363.

[191]

WahnouH, LimamiY, OudghiriM. Flavonoids and flavonoid-based nanoparticles for osteoarthritis and rheumatoid arthritis management. BioChem, 2024, 4: 38-61.

[192]

PalR, KumarL, AnandS, BharadvajaN. Role of natural flavonoid products in managing osteoarthritis. Rev. Bras. Farmacogn., 2023, 33: 663-675.

[193]

Felix, F. B. et al. Biochanin A regulates key steps of inflammation resolution in a model of antigen-induced arthritis via GPR30/PKA-dependent mechanism. Front. Pharmacol.12, 662308 (2021).

[194]

Huang, X. Y. et al. Baicalin attenuates bleomycin-induced pulmonary fibrosis via adenosine A2a receptor related TGF-β1-induced ERK1/2 signaling pathway. BMC Pulm. Med.16, 132 (2016).

[195]

AtanasovAG, ZotchevSB, DirschVMInternational Natural Product Sciences, T.SupuranCT. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov., 2021, 20: 200-216.

[196]

Gangwal, A. & Lavecchia, A. Artificial intelligence in natural product drug discovery: current applications and future perspectives. J. Med. Chem.68, 3948–3969 (2025).

[197]

ChenY, et al. . High-throughput screening strategy and metal-organic framework-based multifunctional controlled-release nanomaterial for osteoarthritis therapy. ACS Nano, 2025, 19: 4802-4819.

Funding

National Natural Science Foundation of China (National Science Foundation of China)(82374106)

Shenzhen Science and Technology Innovation Commission(JCYJ20210324102006017)

Ministry of Science and Technology of the People's Republic of China (Chinese Ministry of Science and Technology)(2023YFC2509900)

Applied Basic Research Fund of Guangdong Province (2021B1515120061)

SZ-HK Joint Laboratory for Innovative Biomaterials under CAS-HK Joint Laboratories (2024-2028)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

207

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/