Role of macrophage in intervertebral disc degeneration

Yiming Dou, Yiming Zhang, Yang Liu, Xun Sun, Xinyu Liu, Bin Li, Qiang Yang

Bone Research ›› 2025, Vol. 13 ›› Issue (1) : 15.

Bone Research ›› 2025, Vol. 13 ›› Issue (1) : 15. DOI: 10.1038/s41413-024-00397-7
Review Article

Role of macrophage in intervertebral disc degeneration

Author information +
History +

Abstract

Intervertebral disc degeneration is a degenerative disease where inflammation and immune responses play significant roles. Macrophages, as key immune cells, critically regulate inflammation through polarization into different phenotypes. In recent years, the role of macrophages in inflammation-related degenerative diseases, such as intervertebral disc degeneration, has been increasingly recognized. Macrophages construct the inflammatory microenvironment of the intervertebral disc and are involved in regulating intervertebral disc cell activities, extracellular matrix metabolism, intervertebral disc vascularization, and innervation, profoundly influencing the progression of disc degeneration. To gain a deeper understanding of the inflammatory microenvironment of intervertebral disc degeneration, this review will summarize the role of macrophages in the pathological process of intervertebral disc degeneration, analyze the regulatory mechanisms involving macrophages, and review therapeutic strategies targeting macrophage modulation for the treatment of intervertebral disc degeneration. These insights will be valuable for the treatment and research directions of intervertebral disc degeneration.

Cite this article

Download citation ▾
Yiming Dou, Yiming Zhang, Yang Liu, Xun Sun, Xinyu Liu, Bin Li, Qiang Yang. Role of macrophage in intervertebral disc degeneration. Bone Research, 2025, 13(1): 15 https://doi.org/10.1038/s41413-024-00397-7

References

[1.]
Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017 Lancet, 2018, 392: 1789-1858.
CrossRef Google scholar
[2.]
Yang S, Zhang F, Ma J, Ding W. Intervertebral disc ageing and degeneration: The antiapoptotic effect of oestrogen Ageing Res. Rev., 2020, 57: 100978.
CrossRef Google scholar
[3.]
Lawson LY, Harfe BD. Developmental mechanisms of intervertebral disc and vertebral column formation Wiley Interdiscip. Rev. Dev. Biol., 2017, 6: e283.
CrossRef Google scholar
[4.]
Dou Y, Sun X, Ma X, Zhao X, Yang Q. Intervertebral disk degeneration: the microenvironment and tissue engineering strategies Front. Bioeng. Biotechnol., 2021, 9: 592118.
CrossRef Google scholar
[5.]
Hunter CJ, Matyas JR, Duncan NA. The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering Tissue Eng., 2003, 9: 667-677.
CrossRef Google scholar
[6.]
Frapin L, et al.. Lessons learned from intervertebral disc pathophysiology to guide rational design of sequential delivery systems for therapeutic biological factors Adv. drug Deliv. Rev., 2019, 149-150: 49-71.
CrossRef Google scholar
[7.]
Knezevic NN, Candido KD, Vlaeyen JWS, Van Zundert J, Cohen SP. Low back pain Lancet, 2021, 398: 78-92.
CrossRef Google scholar
[8.]
Ye F, Lyu FJ, Wang H, Zheng Z. The involvement of immune system in intervertebral disc herniation and degeneration JOR spine, 2022, 5: e1196.
CrossRef Google scholar
[9.]
Geiss A, Larsson K, Rydevik B, Takahashi I, Olmarker K. Autoimmune properties of nucleus pulposus: an experimental study in pigs Spine (Philos. Pa 1976), 2007, 32: 168-173.
CrossRef Google scholar
[10.]
Naylor A, et al.. Enzymic and immunological activity in the intervertebral disk Orthop. Clin. North Am., 1975, 6: 51-58.
CrossRef Google scholar
[11.]
Cunha C, et al.. The inflammatory response in the regression of lumbar disc herniation Arthritis Res. Ther., 2018, 20: 251.
CrossRef Google scholar
[12.]
Koroth J, et al.. Macrophages and intervertebral disc degeneration Int. J. Mol. Sci., 2023, 24: 1367.
CrossRef Google scholar
[13.]
Djuric N, et al.. Lumbar disc extrusions reduce faster than bulging discs due to an active role of macrophages in sciatica Acta Neurochir. (Wien.), 2020, 162: 79-85.
CrossRef Google scholar
[14.]
Han F, et al.. Targeting endogenous reactive oxygen species removal and regulating regenerative microenvironment at annulus fibrosus defects promote tissue repair ACS Nano, 2023, 17: 7645-7661.
CrossRef Google scholar
[15.]
Yamagishi A, Nakajima H, Kokubo Y, Yamamoto Y, Matsumine A. Polarization of infiltrating macrophages in the outer annulus fibrosus layer associated with the process of intervertebral disc degeneration and neural ingrowth in the human cervical spine Spine J., 2022, 22: 877-886.
CrossRef Google scholar
[16.]
Yamamoto Y, et al.. Distribution and polarization of hematogenous macrophages associated with the progression of intervertebral disc degeneration Spine (Philos. Pa 1976), 2022, 47: E149-e158.
CrossRef Google scholar
[17.]
Wang Y, et al.. Osteopontin deficiency promotes cartilaginous endplate degeneration by enhancing the NF-κB signaling to recruit macrophages and activate the NLRP3 inflammasome Bone Res, 2024, 12: 53.
CrossRef Google scholar
[18.]
Fan Y, et al.. Senescent-like macrophages mediate angiogenesis for endplate sclerosis via IL-10 secretion in male mice Nat. Commun., 2024, 15. 2939
CrossRef Google scholar
[19.]
Porcuna J, Menéndez-Gutiérrez MP, Ricote M. Molecular control of tissue-resident macrophage identity by nuclear receptors Curr. Opin. Pharm., 2020, 53: 27-34.
CrossRef Google scholar
[20.]
Burt KG, Kim MKM, Viola DC, Abraham AC, Chahine NO. Nuclear factor κB overactivation in the intervertebral disc leads to macrophage recruitment and severe disc degeneration Sci. Adv., 2024, 10: eadj3194.
CrossRef Google scholar
[21.]
Chen F, et al.. Serglycin secreted by late-stage nucleus pulposus cells is a biomarker of intervertebral disc degeneration Nat. Commun., 2024, 15. 47
CrossRef Google scholar
[22.]
Zhao X, et al.. Degenerated nucleus pulposus cells derived exosome carrying miR-27a-3p aggravates intervertebral disc degeneration by inducing M1 polarization of macrophages J. Nanobiotechnol., 2023, 21. 317
CrossRef Google scholar
[23.]
Yokozeki Y, et al.. Reduced TGF-β expression and CD206-positive resident macrophages in the intervertebral discs of aged mice Biomed. Res. Int., 2021, 2021. 7988320
CrossRef Google scholar
[24.]
Kawakubo A, et al.. Origin of M2 Mϕ and its macrophage polarization by TGF-β in a mice intervertebral injury model Int. J. Immunopathol. Pharm., 2022, 36: 3946320221103792.
CrossRef Google scholar
[25.]
Gao XW, et al.. CX3CL1/CX3CR1 axis alleviates inflammation and apoptosis in human nucleus pulpous cells via M2 macrophage polarization Exp. Ther. Med., 2023, 26: 359.
CrossRef Google scholar
[26.]
Chen S, et al.. Macrophages in immunoregulation and therapeutics Signal Transduct. Target Ther., 2023, 8: 207.
CrossRef Google scholar
[27.]
Bosco MC. Macrophage polarization: reaching across the aisle? J. Allergy Clin. Immunol., 2019, 143: 1348-1350.
CrossRef Google scholar
[28.]
Li M, et al.. Signaling pathways in macrophages: molecular mechanisms and therapeutic targets MedComm (2020), 2023, 4. e349
CrossRef Google scholar
[29.]
Li Y, Liu TM. Discovering macrophage functions using in vivo optical imaging techniques Front. Immunol., 2018, 9: 502.
CrossRef Google scholar
[30.]
Woertgen C, Rothoerl RD, Brawanski A. Influence of macrophage infiltration of herniated lumbar disc tissue on outcome after lumbar disc surgery Spine (Philos. Pa 1976), 2000, 25: 871-875.
CrossRef Google scholar
[31.]
Khan NM, Diaz-Hernandez ME, Presciutti SM, Drissi H. Network analysis identifies gene regulatory network indicating the role of RUNX1 in human intervertebral disc degeneration Genes (Basel), 2020, 11: 771.
CrossRef Google scholar
[32.]
Haro H, et al.. Upregulated expression of chemokines in herniated nucleus pulposus resorption Spine (Philos. Pa 1976), 1996, 21: 1647-1652.
CrossRef Google scholar
[33.]
Kawaguchi S, et al.. Chemokine profile of herniated intervertebral discs infiltrated with monocytes and macrophages Spine (Philos. Pa 1976), 2002, 27: 1511-1516.
CrossRef Google scholar
[34.]
Nakawaki M, et al.. Changes in nerve growth factor expression and macrophage phenotype following intervertebral disc injury in mice J. Orthop. Res. Publ. Orthop. Res. Soc., 2019, 37: 1798-1804.
CrossRef Google scholar
[35.]
Jin L, et al.. Heterogeneous macrophages contribute to the pathology of disc herniation induced radiculopathy Spine J., 2022, 22: 677-689.
CrossRef Google scholar
[36.]
Nakazawa KR, et al.. Accumulation and localization of macrophage phenotypes with human intervertebral disc degeneration Spine J., 2018, 18: 343-356.
CrossRef Google scholar
[37.]
Ling Z, et al.. Single-cell RNA-Seq analysis reveals macrophage involved in the progression of human intervertebral disc degeneration Front. Cell Dev. Biol., 2021, 9. 833420
CrossRef Google scholar
[38.]
Djuric N, Lafeber GCM, Li W, van Duinen SG, Vleggeert-Lankamp CLA. Exploring macrophage differentiation and its relation to Modic changes in human herniated disc tissue Brain Spine, 2022, 2: 101698.
CrossRef Google scholar
[39.]
Li XC, et al.. Investigation of macrophage polarization in herniated nucleus pulposus of patients with lumbar intervertebral disc herniation J. Orthop. Res., 2023, 41: 1335-1347.
CrossRef Google scholar
[40.]
Wang K, et al.. Ligustilide alleviated IL-1β induced apoptosis and extracellular matrix degradation of nucleus pulposus cells and attenuates intervertebral disc degeneration in vivo Int. Immunopharmacol., 2019, 69: 398-407.
CrossRef Google scholar
[41.]
Li H, et al.. IL-1β-mediated inflammatory responses in intervertebral disc degeneration: Mechanisms, signaling pathways, and therapeutic potential Heliyon, 2023, 9. e19951
CrossRef Google scholar
[42.]
Pan H, et al.. The mechanisms and functions of TNF-α in intervertebral disc degeneration Exp. Gerontol., 2023, 174. 112119
CrossRef Google scholar
[43.]
Zhang L, Chen Q, Wang H, Yang J, Sheng S. Andrographolide mitigates IL‑1β‑induced human nucleus pulposus cells degeneration through the TLR4/MyD88/NF‑κB signaling pathway Mol. Med. Rep., 2018, 18: 5427-5436
[44.]
Zhang HJ, Liao HY, Bai DY, Wang ZQ, Xie XW. MAPK /ERK signaling pathway: A potential target for the treatment of intervertebral disc degeneration Biomed. Pharmacother., 2021, 143: 112170.
CrossRef Google scholar
[45.]
Suzuki S, et al.. Potential involvement of the IL-6/JAK/STAT3 pathway in the pathogenesis of intervertebral disc degeneration Spine (Philos. Pa 1976), 2017, 42: E817-e824.
CrossRef Google scholar
[46.]
Bisson DG, Mannarino M, Racine R, Haglund L. For whom the disc tolls: intervertebral disc degeneration, back pain and toll-like receptors Eur. Cell Mater., 2021, 41: 355-369.
CrossRef Google scholar
[47.]
Chao-Yang G, Peng C, Hai-Hong Z. Roles of NLRP3 inflammasome in intervertebral disc degeneration Osteoarthr. Cartil., 2021, 29: 793-801.
CrossRef Google scholar
[48.]
Chen F, et al.. Melatonin alleviates intervertebral disc degeneration by disrupting the IL-1β/NF-κB-NLRP3 inflammasome positive feedback loop Bone Res., 2020, 8: 10.
CrossRef Google scholar
[49.]
Chen S, et al.. Kindlin-2 inhibits Nlrp3 inflammasome activation in nucleus pulposus to maintain homeostasis of the intervertebral disc Bone Res., 2022, 10: 5.
CrossRef Google scholar
[50.]
James G, et al.. Macrophage polarization contributes to local inflammation and structural change in the multifidus muscle after intervertebral disc injury Eur. Spine J., 2018, 27: 1744-1756.
CrossRef Google scholar
[51.]
Wang J, et al.. Tumor necrosis factor α- and interleukin-1β-dependent induction of CCL3 expression by nucleus pulposus cells promotes macrophage migration through CCR1 Arthritis Rheumatism, 2013, 65: 832-842.
CrossRef Google scholar
[52.]
Studer RK, Vo N, Sowa G, Ondeck C, Kang J. Human nucleus pulposus cells react to IL-6: independent actions and amplification of response to IL-1 and TNF-α Spine (Philos. Pa 1976), 2011, 36: 593-599.
CrossRef Google scholar
[53.]
Dong X, et al.. DPSCs protect architectural integrity and alleviate intervertebral disc degeneration by regulating nucleus pulposus immune status Stem Cells Int., 2022, 2022: 7590337.
CrossRef Google scholar
[54.]
Kirnaz S, et al.. Fundamentals of intervertebral disc degeneration World Neurosurg., 2022, 157: 264-273.
CrossRef Google scholar
[55.]
Chen ZH, et al.. Enhanced NLRP3, caspase-1, and IL- 1β levels in degenerate human intervertebral disc and their association with the grades of disc degeneration Anat. Rec. (Hoboken), 2015, 298: 720-726.
CrossRef Google scholar
[56.]
Wang Y, et al.. The role of IL-1β and TNF-α in intervertebral disc degeneration Biomed. Pharmacother., 2020, 131. 110660
CrossRef Google scholar
[57.]
Yoshida M, Nakamura T, Kikuchi T, Takagi K, Matsukawa A. Expression of monocyte chemoattractant protein-1 in primary cultures of rabbit intervertebral disc cells J. Orthop. Res., 2002, 20: 1298-1304.
CrossRef Google scholar
[58.]
Shnayder NA, et al.. Cytokine imbalance as a biomarker of intervertebral disk degeneration Int. J. Mol. Sci., 2023, 24: 2360.
CrossRef Google scholar
[59.]
Fu Z, et al.. Interleukin-18-induced inflammatory responses in synoviocytes and chondrocytes from osteoarthritic patients Int. J. Mol. Med., 2012, 30: 805-810.
CrossRef Google scholar
[60.]
Zhang K, et al.. Interleukin-18 inhibition protects against intervertebral disc degeneration via the inactivation of caspase-3/9 dependent apoptotic pathways Immunol. Invest., 2022, 51: 1895-1907.
CrossRef Google scholar
[61.]
Aripaka SS, et al.. Low back pain scores correlate with the cytokine mRNA level in lumbar disc biopsies: a study of inflammatory markers in patients undergoing lumbar spinal fusion Eur. Spine J., 2021, 30: 2967-2974.
CrossRef Google scholar
[62.]
Stover JD, Lawrence B, Bowles RD. Degenerative IVD conditioned media and acidic pH sensitize sensory neurons to cyclic tensile strain J. Orthop. Res., 2021, 39: 1192-1203.
CrossRef Google scholar
[63.]
Xu HW, et al.. α-Ketoglutaric acid ameliorates intervertebral disk degeneration by blocking the IL-6/JAK2/STAT3 pathway Am. J. Physiol. Cell Physiol., 2023, 325: C1119-c1130.
CrossRef Google scholar
[64.]
Kawakubo A, et al.. Investigation of resident and recruited macrophages following disc injury in mice J. Orthop. Res, 2020, 38: 1703-1709.
CrossRef Google scholar
[65.]
Wang Y, et al.. Oxidative stress in intervertebral disc degeneration: Molecular mechanisms, pathogenesis and treatment Cell Prolif., 2023, 56. e13448
CrossRef Google scholar
[66.]
Suzuki S, et al.. Excessive reactive oxygen species are therapeutic targets for intervertebral disc degeneration Arthritis Res. Ther., 2015, 17: 316.
CrossRef Google scholar
[67.]
Wang D, et al.. Attenuating intervertebral disc degeneration through spermidine-delivery nanoplatform based on polydopamine for persistent regulation of oxidative stress Int. J. Biol. Macromol., 2024, 274. 132881
CrossRef Google scholar
[68.]
Li W, et al.. Deciphering the sequential changes of monocytes/macrophages in the progression of IDD with longitudinal approach using single-cell transcriptome Front. Immunol., 2023, 14. 1090637
CrossRef Google scholar
[69.]
Wei B, et al.. Innovative immune mechanisms and antioxidative therapies of intervertebral disc degeneration Front. Bioeng. Biotechnol., 2022, 10. 1023877
CrossRef Google scholar
[70.]
Sabat R, et al.. Biology of interleukin-10 Cytokine Growth Factor Rev., 2010, 21: 331-344.
CrossRef Google scholar
[71.]
Yin J, et al.. Exploration about changes of IL-10, NF-κB and MMP-3 in a rat model of cervical spondylosis Mol. Immunol., 2018, 93: 184-188.
CrossRef Google scholar
[72.]
Lin WP, et al.. Interleukin-10 promoter polymorphisms associated with susceptibility to lumbar disc degeneration in a Chinese cohort Genet. Mol. Res., 2011, 10: 1719-1727.
CrossRef Google scholar
[73.]
D’Andrea A, et al.. Interleukin 10 (IL-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells J. Exp. Med., 1993, 178: 1041-1048.
CrossRef Google scholar
[74.]
Brandtzaeg P, et al.. Net inflammatory capacity of human septic shock plasma evaluated by a monocyte-based target cell assay: identification of interleukin-10 as a major functional deactivator of human monocytes J. Exp. Med, 1996, 184: 51-60.
CrossRef Google scholar
[75.]
Ge J, et al.. IL-10 delays the degeneration of intervertebral discs by suppressing the p38 MAPK signaling pathway Free Radic. Biol. Med., 2020, 147: 262-270.
CrossRef Google scholar
[76.]
Sabbadini F, et al.. The multifaceted role of TGF-β in gastrointestinal tumors Cancers (Basel), 2021, 13: 3960.
CrossRef Google scholar
[77.]
Hu HH, et al.. New insights into TGF-β/Smad signaling in tissue fibrosis Chem. Biol. Interact., 2018, 292: 76-83.
CrossRef Google scholar
[78.]
Chen S, et al.. TGF-β signaling in intervertebral disc health and disease Osteoarthr. Cartil., 2019, 27: 1109-1117.
CrossRef Google scholar
[79.]
Wu T, et al.. Krüppel like factor 10 prevents intervertebral disc degeneration via TGF-β signaling pathway both in vitro and in vivo J. Orthop. Transl., 2021, 29: 19-29
[80.]
Xiao L, et al.. TGF-β/SMAD signaling inhibits intermittent cyclic mechanical tension-induced degeneration of endplate chondrocytes by regulating the miR-455-5p/RUNX2 axis J. Cell Biochem., 2018, 119: 10415-10425.
CrossRef Google scholar
[81.]
Wu Q, et al.. Smad3 controls β-1,3-glucuronosyltransferase 1 expression in rat nucleus pulposus cells: implications of dysregulated expression in disc disease Arthritis Rheum., 2012, 64: 3324-3333.
CrossRef Google scholar
[82.]
Tolonen J, et al.. Transforming growth factor beta receptor induction in herniated intervertebral disc tissue: an immunohistochemical study Eur. Spine J., 2001, 10: 172-176.
CrossRef Google scholar
[83.]
Uchiyama Y, et al.. SMAD3 functions as a transcriptional repressor of acid-sensing ion channel 3 (ASIC3) in nucleus pulposus cells of the intervertebral disc J. Bone Miner. Res., 2008, 23: 1619-1628.
CrossRef Google scholar
[84.]
Li H, et al.. Role of AP-2α/TGF-β1/Smad3 axis in rats with intervertebral disc degeneration Life Sci., 2020, 263. 118567
CrossRef Google scholar
[85.]
Yang H, et al.. TGF-βl suppresses inflammation in cell therapy for intervertebral disc degeneration Sci. Rep., 2015, 5. 13254
CrossRef Google scholar
[86.]
Sun R, et al.. Strontium ranelate ameliorates intervertebral disc degeneration via regulating TGF-β1/NF-κB axis Int. J. Med. Sci., 2023, 20: 1679-1697.
CrossRef Google scholar
[87.]
Yang H, et al.. TNF-α and TGF-β1 regulate Syndecan-4 expression in nucleus pulposus cells: role of the mitogen-activated protein kinase and NF-κB pathways Connect Tissue Res, 2015, 56: 281-287.
CrossRef Google scholar
[88.]
Li W, et al.. Blocking the function of inflammatory cytokines and mediators by using IL-10 and TGF-β: a potential biological immunotherapy for intervertebral disc degeneration in a beagle model Int. J. Mol. Sci., 2014, 15: 17270-17283.
CrossRef Google scholar
[89.]
Zhang J, et al.. TGF-β1 suppresses CCL3/4 expression through the ERK signaling pathway and inhibits intervertebral disc degeneration and inflammation-related pain in a rat model Exp. Mol. Med., 2017, 49. e379
CrossRef Google scholar
[90.]
Lossi L. The concept of intrinsic versus extrinsic apoptosis Biochem J., 2022, 479: 357-384.
CrossRef Google scholar
[91.]
He WT, et al.. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion Cell Res., 2015, 25: 1285-1298.
CrossRef Google scholar
[92.]
Wang P, Qian H, Xiao M, Lv J. Role of signal transduction pathways in IL-1β-induced apoptosis: Pathological and therapeutic aspects Immun. Inflamm. Dis., 2023, 11. e762
CrossRef Google scholar
[93.]
Hu J, et al.. BMSC paracrine activity attenuates interleukin-1β-induced inflammation and apoptosis in rat AF cells via inhibiting relative NF-κB signaling and the mitochondrial pathway Am. J. Transl. Res., 2017, 9: 79-89
[94.]
Lu L, et al.. Berberine prevents human nucleus pulposus cells from IL‑1β‑induced extracellular matrix degradation and apoptosis by inhibiting the NF‑κB pathway Int. J. Mol. Med., 2019, 43: 1679-1686
[95.]
Jiang Y, Xie Z, Yu J, Fu L. Resveratrol inhibits IL-1β-mediated nucleus pulposus cell apoptosis through regulating the PI3K/Akt pathway Biosci. Rep., 2019, 39: BSR20190043.
CrossRef Google scholar
[96.]
Chou WC, Jha S, Linhoff MW, Ting JP. The NLR gene family: from discovery to present day Nat. Rev. Immunol., 2023, 23: 635-654.
CrossRef Google scholar
[97.]
Ma Z, et al.. SIRT1 alleviates IL-1β induced nucleus pulposus cells pyroptosis via mitophagy in intervertebral disc degeneration Int. Immunopharmacol., 2022, 107. 108671
CrossRef Google scholar
[98.]
Xu H, et al.. Gamma-oryzanol alleviates intervertebral disc degeneration development by intercepting the IL-1β/NLRP3 inflammasome positive cycle Phytomedicine, 2022, 102. 154176
CrossRef Google scholar
[99.]
Zhang J, et al.. TNF-α enhances apoptosis by promoting chop expression in nucleus pulposus cells: role of the MAPK and NF-κB pathways J. Orthop. Res., 2019, 37: 697-705.
CrossRef Google scholar
[100.]
Afonina IS, Zhong Z, Karin M, Beyaert R. Limiting inflammation-the negative regulation of NF-κB and the NLRP3 inflammasome Nat. Immunol., 2017, 18: 861-869.
CrossRef Google scholar
[101.]
Luo R, et al.. Berberine ameliorates oxidative stress-induced apoptosis by modulating ER stress and autophagy in human nucleus pulposus cells Life Sci., 2019, 228: 85-97.
CrossRef Google scholar
[102.]
Zou L, et al.. N-cadherin alleviates apoptosis and senescence of nucleus pulposus cells via suppressing ROS-dependent ERS in the hyper-osmolarity microenvironment Int. J. Med. Sci., 2024, 21: 341-356.
CrossRef Google scholar
[103.]
Chen J, et al.. Targeting ferroptosis holds potential for intervertebral disc degeneration therapy Cells, 2022, 11: 3508.
CrossRef Google scholar
[104.]
Dou X, et al.. Therapeutic potential of melatonin in the intervertebral disc degeneration through inhibiting the ferroptosis of nucleus pulpous cells J. Cell Mol. Med., 2023, 27: 2340-2353.
CrossRef Google scholar
[105.]
Bin S, et al.. Targeting miR-10a-5p/IL-6R axis for reducing IL-6-induced cartilage cell ferroptosis Exp. Mol. Pathol., 2021, 118. 104570
CrossRef Google scholar
[106.]
Fan C, et al.. The role of ferroptosis in intervertebral disc degeneration Front Cell Dev. Biol., 2023, 11. 1219840
CrossRef Google scholar
[107.]
Kritschil R, Scott M, Sowa G, Vo N. Role of autophagy in intervertebral disc degeneration J. Cell Physiol., 2022, 237: 1266-1284.
CrossRef Google scholar
[108.]
Wang Z, et al.. Role of autophagy and pyroptosis in intervertebral disc degeneration J. Inflamm. Res., 2024, 17: 91-100.
CrossRef Google scholar
[109.]
Gruber HE, Hoelscher GL, Ingram JA, Bethea S, Hanley EN Jr. Autophagy in the degenerating human intervertebral disc: In vivo molecular and morphological evidence, and induction of autophagy in cultured annulus cells exposed to proinflammatory cytokines-implications for disc degeneration Spine (Philos. Pa 1976), 2015, 40: 773-782.
CrossRef Google scholar
[110.]
Yi W, et al.. Impact of NF-κB pathway on the apoptosis-inflammation-autophagy crosstalk in human degenerative nucleus pulposus cells Aging (Albany NY), 2019, 11: 7294-7306.
CrossRef Google scholar
[111.]
Lin H, et al.. Mechanism of microRNA-21 regulating IL-6 inflammatory response and cell autophagy in intervertebral disc degeneration Exp. Ther. Med., 2017, 14: 1441-1444.
CrossRef Google scholar
[112.]
Zheng L, et al.. Ciliary parathyroid hormone signaling activates transforming growth factor-β to maintain intervertebral disc homeostasis during aging Bone Res., 2018, 6: 21.
CrossRef Google scholar
[113.]
Chen S, et al.. Grem1 accelerates nucleus pulposus cell apoptosis and intervertebral disc degeneration by inhibiting TGF-β-mediated Smad2/3 phosphorylation Exp. Mol. Med., 2022, 54: 518-530.
CrossRef Google scholar
[114.]
Chia SL, et al.. Fibroblast growth factor 2 is an intrinsic chondroprotective agent that suppresses ADAMTS-5 and delays cartilage degradation in murine osteoarthritis Arthritis Rheum., 2009, 60: 2019-2027.
CrossRef Google scholar
[115.]
Ashraf S, Santerre P, Kandel R. Induced senescence of healthy nucleus pulposus cells is mediated by paracrine signaling from TNF-α-activated cells FASEB J., 2021, 35: e21795.
CrossRef Google scholar
[116.]
Yang M, et al.. Sirtuin 2 expression suppresses oxidative stress and senescence of nucleus pulposus cells through inhibition of the p53/p21 pathway Biochem. Biophys. Res. Commun., 2019, 513: 616-622.
CrossRef Google scholar
[117.]
Xie J, et al.. Osteogenic protein-1 attenuates the inflammatory cytokine-induced NP cell senescence through regulating the ROS/NF-κB pathway Biomed. Pharmacother., 2018, 99: 431-437.
CrossRef Google scholar
[118.]
Lyu G, et al.. TGF-β signaling alters H4K20me3 status via miR-29 and contributes to cellular senescence and cardiac aging Nat. Commun., 2018, 9. 2560
CrossRef Google scholar
[119.]
Bird TG, et al.. TGFβ inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence Sci. Transl. Med., 2018, 10: eaan1230.
CrossRef Google scholar
[120.]
Duan J, et al.. BSHXF-medicated serum combined with ADSCs regulates the TGF-β1/Smad pathway to repair oxidatively damaged NPCs and its component analysis J. Ethnopharmacol., 2023, 316. 116692
CrossRef Google scholar
[121.]
Liu Y, Dou Y, Sun X, Yang Q. Mechanisms and therapeutic strategies for senescence-associated secretory phenotype in the intervertebral disc degeneration microenvironment J. Orthop. Transl., 2024, 45: 56-65
[122.]
Wang SL, Yu YL, Tang CL, Lv FZ. Effects of TGF-β1 and IL-1β on expression of ADAMTS enzymes and TIMP-3 in human intervertebral disc degeneration Exp. Ther. Med, 2013, 6: 1522-1526.
CrossRef Google scholar
[123.]
Wu YD, Guo ZG, Deng WJ, Wang JG. SD0006 promotes nucleus pulposus cell proliferation via the p38MAPK/HDAC4 pathway Eur. Rev. Med. Pharm. Sci., 2020, 24: 10966-10974
[124.]
Mern DS, Beierfuß A, Thomé C, Hegewald AA. Enhancing human nucleus pulposus cells for biological treatment approaches of degenerative intervertebral disc diseases: a systematic review J. Tissue Eng. Regen. Med., 2014, 8: 925-936.
CrossRef Google scholar
[125.]
Wang C, et al.. Tumor necrosis factor-α: a key contributor to intervertebral disc degeneration Acta Biochim. Biophys. Sin. (Shanghai), 2017, 49: 1-13.
CrossRef Google scholar
[126.]
Chen L, et al.. Endoplasmic reticulum stress facilitates the survival and proliferation of nucleus pulposus cells in TNF-α stimulus by activating unfolded protein response DNA Cell Biol., 2018, 37: 347-358.
CrossRef Google scholar
[127.]
Nakai T, et al.. CD146 defines commitment of cultured annulus fibrosus cells to express a contractile phenotype J. Orthop. Res., 2016, 34: 1361-1372.
CrossRef Google scholar
[128.]
Chou PH, et al.. Development of a two-step protocol for culture expansion of human annulus fibrosus cells with TGF-β1 and FGF-2 Stem Cell Res. Ther., 2016, 7: 89.
CrossRef Google scholar
[129.]
Nakai T, Mochida J, Sakai D. Synergistic role of c-Myc and ERK1/2 in the mitogenic response to TGF beta-1 in cultured rat nucleus pulposus cells Arthritis Res. Ther., 2008, 10: R140.
CrossRef Google scholar
[130.]
Hiyama A, et al.. The relationship between the Wnt/β-catenin and TGF-β/BMP signals in the intervertebral disc cell J. Cell Physiol., 2011, 226: 1139-1148.
CrossRef Google scholar
[131.]
Yu P, et al.. Characteristics and mechanisms of resorption in lumbar disc herniation Arthritis Res. Ther., 2022, 24: 205.
CrossRef Google scholar
[132.]
Autio RA, et al.. Determinants of spontaneous resorption of intervertebral disc herniations Spine (Philos. Pa 1976), 2006, 31: 1247-1252.
CrossRef Google scholar
[133.]
Fang W, et al.. Wogonin mitigates intervertebral disc degeneration through the Nrf2/ARE and MAPK signaling pathways Int. Immunopharmacol., 2018, 65: 539-549.
CrossRef Google scholar
[134.]
Phillips KL, Jordan-Mahy N, Nicklin MJ, Le Maitre CL. Interleukin-1 receptor antagonist deficient mice provide insights into pathogenesis of human intervertebral disc degeneration Ann. Rheum. Dis., 2013, 72: 1860-1867.
CrossRef Google scholar
[135.]
Wang J, et al.. Polydatin suppresses nucleus pulposus cell senescence, promotes matrix homeostasis and attenuates intervertebral disc degeneration in rats J. Cell Mol. Med., 2018, 22: 5720-5731.
CrossRef Google scholar
[136.]
Vo NV, et al.. Expression and regulation of metalloproteinases and their inhibitors in intervertebral disc aging and degeneration Spine J., 2013, 13: 331-341.
CrossRef Google scholar
[137.]
Séguin CA, Pilliar RM, Roughley PJ, Kandel RA. Tumor necrosis factor-alpha modulates matrix production and catabolism in nucleus pulposus tissue Spine (Philos. Pa 1976), 2005, 30: 1940-1948.
CrossRef Google scholar
[138.]
Chen J, et al.. IL-6/YAP1/β-catenin signaling is involved in intervertebral disc degeneration J. Cell Physiol., 2019, 234: 5964-5971.
CrossRef Google scholar
[139.]
Liu Y, et al.. Exosomes from M2c macrophages alleviate intervertebral disc degeneration by promoting synthesis of the extracellular matrix via MiR-124/CILP/TGF-β Bioeng. Transl. Med., 2023, 8. e10500
CrossRef Google scholar
[140.]
Swahn H, et al.. Shared and compartment-specific processes in nucleus pulposus and annulus fibrosus during intervertebral disc degeneration Adv. Sci. (Weinh.), 2024, 11 e2309032
[141.]
Zhang S, et al.. Inhibiting heat shock protein 90 attenuates nucleus pulposus fibrosis and pathologic angiogenesis induced by macrophages via down-regulating cell migration-inducing protein Am. J. Pathol., 2023, 193: 960-976.
CrossRef Google scholar
[142.]
Zhang S, et al.. HSP90 inhibitor 17-AAG attenuates nucleus pulposus inflammation and catabolism induced by M1-polarized macrophages Front. Cell Dev. Biol., 2021, 9. 796974
CrossRef Google scholar
[143.]
Sun Y, Lyu M, Lu Q, Cheung K, Leung V. Current perspectives on nucleus pulposus fibrosis in disc degeneration and repair Int. J. Mol. Sci., 2022, 23: 6612.
CrossRef Google scholar
[144.]
Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis Immunity, 2016, 44: 450-462.
CrossRef Google scholar
[145.]
Cui L, Wei H, Li ZM, Dong XB, Wang PY. TGF-β1 aggravates degenerative nucleus pulposus cells inflammation and fibrosis through the upregulation of angiopoietin-like protein 2 expression Eur. Rev. Med. Pharmacol. Sci., 2020, 24: 12025-12033
[146.]
Hou J, et al.. TNF-α-induced NF-κB activation promotes myofibroblast differentiation of LR-MSCs and exacerbates bleomycin-induced pulmonary fibrosis J. Cell Physiol., 2018, 233: 2409-2419.
CrossRef Google scholar
[147.]
Zhang X, Qu H, Yang T, Kong X, Zhou H. Regulation and functions of NLRP3 inflammasome in cardiac fibrosis: Current knowledge and clinical significance Biomed. Pharmacother., 2021, 143: 112219.
CrossRef Google scholar
[148.]
Bian Q, et al.. Mechanosignaling activation of TGFβ maintains intervertebral disc homeostasis Bone Res, 2017, 5. 17008
CrossRef Google scholar
[149.]
Stich S, et al.. Chemokine CCL25 induces migration and extracellular matrix production of anulus fibrosus-derived cells Int. J. Mol. Sci., 2018, 19: 2207.
CrossRef Google scholar
[150.]
Hondke S, et al.. Proliferation, migration, and ECM formation potential of human annulus fibrosus cells is independent of degeneration status Cartilage, 2020, 11: 192-202.
CrossRef Google scholar
[151.]
An JL, et al.. Vitamin D improves the content of TGF-β and IGF-1 in intervertebral disc of diabetic rats Exp. Biol. Med. (Maywood), 2017, 242: 1254-1261.
CrossRef Google scholar
[152.]
Zieba J, et al.. Intervertebral disc degeneration is rescued by TGFβ/BMP signaling modulation in an ex vivo filamin B mouse model Bone Res, 2022, 10: 37.
CrossRef Google scholar
[153.]
Yang H, et al.. TGF-β1 antagonizes TNF-α induced up-regulation of matrix metalloproteinase 3 in nucleus pulposus cells: role of the ERK1/2 pathway Connect Tissue Res., 2015, 56: 461-468.
CrossRef Google scholar
[154.]
Xie Z, et al.. TGF-β synergizes with ML264 to block IL-1β-induced matrix degradation mediated by Krüppel-like factor 5 in the nucleus pulposus Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864: 579-589.
CrossRef Google scholar
[155.]
Chen C, et al.. Autologous fibroblasts induce fibrosis of the nucleus pulposus to maintain the stability of degenerative intervertebral discs Bone Res., 2020, 8: 7.
CrossRef Google scholar
[156.]
Chen L, et al.. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment Biomed. Pharmacother., 2018, 101: 670-681.
CrossRef Google scholar
[157.]
Eser P, Jänne PA. TGFβ pathway inhibition in the treatment of non-small cell lung cancer Pharm. Ther., 2018, 184: 112-130.
CrossRef Google scholar
[158.]
Ricard-Blum S, Baffet G, Théret N. Molecular and tissue alterations of collagens in fibrosis Matrix Biol., 2018, 68-69: 122-149.
CrossRef Google scholar
[159.]
Lv FJ, et al.. Matrix metalloproteinase 12 is an indicator of intervertebral disc degeneration co-expressed with fibrotic markers Osteoarthr. Cartil., 2016, 24: 1826-1836.
CrossRef Google scholar
[160.]
Fujii K, et al.. Discogenic back pain: Literature review of definition, diagnosis, and treatment JBMR, 2019, 3 e10180
[161.]
Groh AMR, Fournier DE, Battié MC, Séguin CA. Innervation of the human intervertebral disc: A scoping review Pain. Med., 2021, 22: 1281-1304.
CrossRef Google scholar
[162.]
Peng B, et al.. Possible pathogenesis of painful intervertebral disc degeneration Spine (Philos. Pa 1976), 2006, 31: 560-566.
CrossRef Google scholar
[163.]
Aoki Y, et al.. Neural mechanisms of discogenic back pain: How does nerve growth factor play a key role? Korean J. Spine, 2011, 8: 83-87.
CrossRef Google scholar
[164.]
Aoki Y, et al.. Increase of nerve growth factor levels in the human herniated intervertebral disc: can annular rupture trigger discogenic back pain? Arthritis Res. Ther., 2014, 16. R159
CrossRef Google scholar
[165.]
Peng Y, et al.. Multifunctional annulus fibrosus matrix prevents disc-related pain via inhibiting neuroinflammation and sensitization Acta Biomater., 2023, 170: 288-302.
CrossRef Google scholar
[166.]
Yang W, et al.. An engineered bionic nanoparticle sponge as a cytokine trap and reactive oxygen species scavenger to relieve disc degeneration and discogenic pain ACS Nano, 2024, 18: 3053-3072.
CrossRef Google scholar
[167.]
Miyagi, M. et al. Macrophage-derived inflammatory cytokines regulate growth factors and pain-related molecules in mice with intervertebral disc injury. J. Orthop Res. https://doi.org/10.1002/jor.23888 (2018).
[168.]
Djuric N, Lafeber GCM, Vleggeert-Lankamp CLA. The contradictory effect of macrophage-related cytokine expression in lumbar disc herniations: a systematic review Eur. Spine J., 2020, 29: 1649-1659.
CrossRef Google scholar
[169.]
Banimostafavi ES, et al.. Determining serum levels of IL-10 and IL-17 in patients with low back pain caused by lumbar disc degeneration Infect. Disord. Drug Targets, 2021, 21. e270421185135
CrossRef Google scholar
[170.]
Johnson ZI, Schoepflin ZR, Choi H, Shapiro IM, Risbud MV. Disc in flames: roles of TNF-α and IL-1β in intervertebral disc degeneration Eur. Cell Mater., 2015, 30: 104-116.
CrossRef Google scholar
[171.]
Lee S, Millecamps M, Foster DZ, Stone LS. Long-term histological analysis of innervation and macrophage infiltration in a mouse model of intervertebral disc injury-induced low back pain J. Orthop. Res., 2020, 38: 1238-1247.
CrossRef Google scholar
[172.]
Ito K, Creemers L. Mechanisms of intervertebral disk degeneration/injury and pain: a review Glob. Spine J., 2013, 3: 145-152.
CrossRef Google scholar
[173.]
Lotz JC, Fields AJ, Liebenberg EC. The role of the vertebral end plate in low back pain Glob. Spine J., 2013, 3: 153-164.
CrossRef Google scholar
[174.]
Crump KB, et al.. Cartilaginous endplates: A comprehensive review on a neglected structure in intervertebral disc research JOR Spine, 2023, 6. e1294
CrossRef Google scholar
[175.]
Neidlinger-Wilke C, et al.. Molecular interactions between human cartilaginous endplates and nucleus pulposus cells: a preliminary investigation Spine (Philos. Pa 1976), 2014, 39: 1355-1364.
CrossRef Google scholar
[176.]
Hu X, et al.. Single-cell sequencing: new insights for intervertebral disc degeneration Biomed. Pharmacother., 2023, 165. 115224
CrossRef Google scholar
[177.]
Czaplewski LG, Rimmer O, McHale D, Laslett M. Modic changes as seen on MRI are associated with nonspecific chronic lower back pain and disability J. Orthop. Surg. Res., 2023, 18: 351.
CrossRef Google scholar
[178.]
Lv B, et al.. Relationship between endplate defects, modic change, disc degeneration, and facet joint degeneration in patients with low back pain Biomed. Res. Int., 2019, 2019. 9369853
CrossRef Google scholar
[179.]
Herlin C, et al.. Modic changes-their associations with low back pain and activity limitation: A systematic literature review and meta-analysis PLoS One, 2018, 13: e0200677.
CrossRef Google scholar
[180.]
Wang G, et al.. Lycorine suppresses endplate-chondrocyte degeneration and prevents intervertebral disc degeneration by inhibiting NF-κB signalling pathway Cell Physiol. Biochem., 2018, 45: 1252-1269.
CrossRef Google scholar
[181.]
Shao Y, et al.. Icariin protects vertebral endplate chondrocytes against apoptosis and degeneration via activating Nrf-2/HO-1 pathway Front. Pharm., 2022, 13. 937502
CrossRef Google scholar
[182.]
Huang B, et al.. Activation of Nrf2 signaling by 4-octyl itaconate attenuates the cartilaginous endplate degeneration by inhibiting E3 ubiquitin ligase ZNF598 Osteoarthr. Cartil., 2023, 31: 213-227.
CrossRef Google scholar
[183.]
Aboushaala K, et al.. Discovery of circulating blood biomarkers in patients with and without Modic changes of the lumbar spine: a preliminary analysis Eur. Spine J., 2024, 33: 1398-1406.
CrossRef Google scholar
[184.]
Xiong C, Huang B, Cun Y, Aghdasi BG, Zhou Y. Migration inhibitory factor enhances inflammation via CD74 in cartilage end plates with Modic type 1 changes on MRI Clin. Orthop. Relat. Res, 2014, 472: 1943-1954.
CrossRef Google scholar
[185.]
Sumaiya K, Langford D, Natarajaseenivasan K, Shanmughapriya S. Macrophage migration inhibitory factor (MIF): a multifaceted cytokine regulated by genetic and physiological strategies Pharm. Ther., 2022, 233: 108024.
CrossRef Google scholar
[186.]
Bilsborrow JB, Doherty E, Tilstam PV, Bucala R. Macrophage migration inhibitory factor (MIF) as a therapeutic target for rheumatoid arthritis and systemic lupus erythematosus Expert Opin. Ther. Targets, 2019, 23: 733-744.
CrossRef Google scholar
[187.]
Gjefsen E, et al.. Macrophage migration inhibitory factor: a potential biomarker for chronic low back pain inpatients with Modic changes RMD Open, 2021, 7: e001726.
CrossRef Google scholar
[188.]
Dudli S, et al.. Propionibacterium acnes infected intervertebral discs cause vertebral bone marrow lesions consistent with Modic changes J. Orthop. Res., 2016, 34: 1447-1455.
CrossRef Google scholar
[189.]
Shan Z, et al.. Propionibacterium acnes incubation in the discs can result in time-dependent modic changes: a long-term Rabbit model Spine (Philos. Pa 1976), 2017, 42: 1595-1603.
CrossRef Google scholar
[190.]
Heggli I, et al.. Low back pain patients with Modic type 1 changes exhibit distinct bacterial and non-bacterial subtypes Osteoarthr. Cartil. Open, 2024, 6. 100434
CrossRef Google scholar
[191.]
Zhang Y, et al.. Propionibacterium acnes induces cartilaginous endplate degeneration by promoting MIF expression via the NF-κB pathway J. Orthop. Surg. Res., 2020, 15: 213.
CrossRef Google scholar
[192.]
Wang J, et al.. Osteal tissue macrophages are involved in endplate osteosclerosis through the OSM-STAT3/YAP1 signaling axis in modic changes J. Immunol., 2020, 205: 968-980.
CrossRef Google scholar
[193.]
Wang Y, Videman T, Battié MC. Lumbar vertebral endplate lesions: prevalence, classification, and association with age Spine (Philos. Pa 1976), 2012, 37: 1432-1439.
CrossRef Google scholar
[194.]
Zehra U, et al.. Mechanisms and clinical implications of intervertebral disc calcification Nat. Rev. Rheumatol., 2022, 18: 352-362.
CrossRef Google scholar
[195.]
Illien-Jünger S, et al.. AGEs induce ectopic endochondral ossification in intervertebral discs Eur. Cell Mater., 2016, 32: 257-270.
CrossRef Google scholar
[196.]
Ikeda K, et al.. Macrophages play a unique role in the plaque calcification by enhancing the osteogenic signals exerted by vascular smooth muscle cells Biochem Biophys. Res. Commun., 2012, 425: 39-44.
CrossRef Google scholar
[197.]
Illien-Junger S, et al.. Combined anti-inflammatory and anti-AGE drug treatments have a protective effect on intervertebral discs in mice with diabetes PLoS One, 2013, 8: e64302.
CrossRef Google scholar
[198.]
Zuo R, et al.. Rapamycin induced autophagy inhibits inflammation-mediated endplate degeneration by enhancing Nrf2/Keap1 signaling of cartilage endplate stem cells Stem Cells, 2019, 37: 828-840.
CrossRef Google scholar
[199.]
Grant MP, et al.. Human cartilaginous endplate degeneration is induced by calcium and the extracellular calcium-sensing receptor in the intervertebral disc Eur. Cell Mater., 2016, 32: 137-151.
CrossRef Google scholar
[200.]
Quan H, et al.. A systematic morphology study on the effect of high glucose on intervertebral disc endplate degeneration in mice Heliyon, 2023, 9. e13295
CrossRef Google scholar
[201.]
Liu J, et al.. Association between Modic changes and endplate sclerosis: Evidence from a clinical radiology study and a rabbit model J. Orthop. Transl., 2019, 16: 71-77
[202.]
Desmoulin GT, Pradhan V, Milner TE. Mechanical aspects of intervertebral disc injury and implications on biomechanics Spine (Philos. Pa 1976), 2020, 45: E457-e464.
CrossRef Google scholar
[203.]
Wang D, et al.. Lumbar endplate microfracture injury induces Modic-like changes, intervertebral disc degeneration and spinal cord sensitization - an in vivo rat model Spine J., 2023, 23: 1375-1388.
CrossRef Google scholar
[204.]
Lai A, et al.. Spinal cord sensitization and spinal inflammation from an in vivo rat endplate injury associated with painful intervertebral disc degeneration Int. J. Mol. Sci., 2023, 24: 3425.
CrossRef Google scholar
[205.]
Luo L, et al.. Cartilage endplate stem cells inhibit intervertebral disc degeneration by releasing exosomes to nucleus pulposus cells to activate Akt/autophagy Stem Cells, 2021, 39: 467-481.
CrossRef Google scholar
[206.]
Yao Y, et al.. MIF plays a key role in regulating tissue-specific chondro-osteogenic differentiation fate of human cartilage endplate stem cells under hypoxia Stem Cell Rep., 2016, 7: 249-262.
CrossRef Google scholar
[207.]
Luo L, et al.. Cartilage endplate stem cells transdifferentiate into nucleus pulposus cells via autocrine exosomes Front. Cell Dev. Biol., 2021, 9. 648201
CrossRef Google scholar
[208.]
Huang B, et al.. Damage to the human lumbar cartilage endplate and its clinical implications J. Anat., 2021, 238: 338-348.
CrossRef Google scholar
[209.]
Li W, et al.. New evidence on the controversy over the correlation between vertebral osteoporosis and intervertebral disc degeneration: a systematic review of relevant animal studies Eur. Spine J., 2024, 33: 2354-2379.
CrossRef Google scholar
[210.]
Wang L, Cui W, Kalala JP, Hoof TV, Liu BG. To investigate the effect of osteoporosis and intervertebral disc degeneration on the endplate cartilage injury in rats Asian Pac. J. Trop. Med., 2014, 7: 796-800.
CrossRef Google scholar
[211.]
Ding Y, et al.. The effects of osteoporosis and disc degeneration on vertebral cartilage endplate lesions in rats Eur. Spine J., 2014, 23: 1848-1855.
CrossRef Google scholar
[212.]
Ling Z, et al.. Parathyroid hormone treatment partially reverses endplate remodeling and attenuates low back pain in animal models of spine degeneration Sci. Transl. Med., 2023, 15. eadg8982
CrossRef Google scholar
[213.]
Xue P, et al.. PGE2/EP4 skeleton interoception activity reduces vertebral endplate porosity and spinal pain with low-dose celecoxib Bone Res, 2021, 9: 36.
CrossRef Google scholar
[214.]
Ni S, et al.. Sensory innervation in porous endplates by Netrin-1 from osteoclasts mediates PGE2-induced spinal hypersensitivity in mice Nat. Commun., 2019, 10. 5643
CrossRef Google scholar
[215.]
Bar-Shavit Z. The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell J. Cell Biochem., 2007, 102: 1130-1139.
CrossRef Google scholar
[216.]
Yao Y, et al.. The macrophage-osteoclast axis in osteoimmunity and osteo-related diseases Front. Immunol., 2021, 12. 664871
CrossRef Google scholar
[217.]
Sun Y, et al.. Macrophage-osteoclast associations: origin, polarization, and subgroups Front. Immunol., 2021, 12: 778078.
CrossRef Google scholar
[218.]
Schlundt C, et al.. Macrophages in bone fracture healing: their essential role in endochondral ossification Bone, 2018, 106: 78-89.
CrossRef Google scholar
[219.]
Weivoda MM, Bradley EW. Macrophages and bone remodeling J. Bone Miner. Res., 2023, 38: 359-369.
CrossRef Google scholar
[220.]
Batoon L, et al.. CD169+ macrophages are critical for osteoblast maintenance and promote intramembranous and endochondral ossification during bone repair Biomaterials, 2019, 196: 51-66.
CrossRef Google scholar
[221.]
Chou PH, et al.. Small molecule antagonist of C-C chemokine receptor 1 (CCR1) reduces disc inflammation in the rabbit model Spine J., 2020, 20: 2025-2036.
CrossRef Google scholar
[222.]
Nizami S, et al.. Inhibition of the NLRP3 inflammasome by HSP90 inhibitors Immunology, 2021, 162: 84-91.
CrossRef Google scholar
[223.]
Ambade A, et al.. Inhibition of heat shock protein 90 alleviates steatosis and macrophage activation in murine alcoholic liver injury J. Hepatol., 2014, 61: 903-911.
CrossRef Google scholar
[224.]
Kadena M, et al.. Microarray and gene co-expression analysis reveals that melatonin attenuates immune responses and modulates actin rearrangement in macrophages Biochem. Biophys. Res. Commun., 2017, 485: 414-420.
CrossRef Google scholar
[225.]
Ding S, et al.. Melatonin stabilizes rupture-prone vulnerable plaques via regulating macrophage polarization in a nuclear circadian receptor RORα-dependent manner J. Pineal Res., 2019, 67. e12581
CrossRef Google scholar
[226.]
Dou X, et al.. Medical prospect of melatonin in the intervertebral disc degeneration through inhibiting M1-type macrophage polarization via SIRT1/Notch signaling pathway Biomedicines, 2023, 11: 1615.
CrossRef Google scholar
[227.]
Li Y, et al.. Cordycepin inhibits LPS-induced inflammatory and matrix degradation in the intervertebral disc PeerJ, 2016, 4. e1992
CrossRef Google scholar
[228.]
Zhao F, et al.. Magnoflorine alleviates “M1” polarized macrophage-induced intervertebral disc degeneration through repressing the HMGB1/Myd88/NF-κB pathway and NLRP3 inflammasome Front. Pharm., 2021, 12. 701087
CrossRef Google scholar
[229.]
DiStefano TJ, et al.. Extracellular vesicles as an emerging treatment option for intervertebral disc degeneration: therapeutic potential, translational pathways, and regulatory considerations Adv. Health Mater., 2022, 11. e2100596
CrossRef Google scholar
[230.]
Hingert D, Ekström K, Aldridge J, Crescitelli R, Brisby H. Extracellular vesicles from human mesenchymal stem cells expedite chondrogenesis in 3D human degenerative disc cell cultures Stem Cell Res. Ther., 2020, 11: 323.
CrossRef Google scholar
[231.]
Qian J, et al.. Platelet-rich plasma-derived exosomes attenuate intervertebral disc degeneration by promoting NLRP3 autophagic degradation in macrophages Int. Immunopharmacol., 2022, 110. 108962
CrossRef Google scholar
[232.]
Cazzanelli P, Wuertz-Kozak K. MicroRNAs in intervertebral disc degeneration, apoptosis, inflammation, and mechanobiology Int. J. Mol. Sci., 2020, 21: 3601.
CrossRef Google scholar
[233.]
Cui, S. & Zhang, L. microRNA-129-5p shuttled by mesenchymal stem cell-derived extracellular vesicles alleviates intervertebral disc degeneration via blockade of LRG1-mediated p38 MAPK activation. J. Tissue Eng. 12, 20417314211021679 (2021).
[234.]
Li W, Xu Y, Chen W. Bone mesenchymal stem cells deliver exogenous lncRNA CAHM via exosomes to regulate macrophage polarization and ameliorate intervertebral disc degeneration Exp. Cell Res., 2022, 421: 113408.
CrossRef Google scholar
[235.]
Zhang Y, et al.. Advances in therapeutic applications of extracellular vesicles Int. J. Nanomed., 2023, 18: 3285-3307.
CrossRef Google scholar
[236.]
Aslani S, et al.. Evaluation of DNMT1 gene expression profile and methylation of its promoter region in patients with ankylosing spondylitis Clin. Rheumatol., 2016, 35: 2723-2731.
CrossRef Google scholar
[237.]
Hou Y, Shi J, Guo Y, Shi G. DNMT1 regulates polarization of macrophage-induced intervertebral disc degeneration by modulating SIRT6 expression and promoting pyroptosis in vivo Aging (Albany NY), 2023, 15: 4288-4303.
CrossRef Google scholar
[238.]
Bai J, et al.. Reactive oxygen species-scavenging scaffold with rapamycin for treatment of intervertebral disk degeneration Adv. Health Mater., 2020, 9. e1901186
CrossRef Google scholar
[239.]
Li, W. et al. Disc regeneration by injectable fucoidan-methacrylated dextran hydrogels through mechanical transduction and macrophage immunomodulation. J. Tissue Eng. 14, 20417314231180050 (2023).
[240.]
Cheng H, et al.. An injectable hydrogel scaffold loaded with dual-drug/sustained-release PLGA microspheres for the regulation of macrophage polarization in the treatment of intervertebral disc degeneration Int. J. Mol. Sci., 2022, 24: 390.
CrossRef Google scholar
[241.]
Kreiner DS, et al.. An evidence-based clinical guideline for the diagnosis and treatment of lumbar disc herniation with radiculopathy Spine J., 2014, 14: 180-191.
CrossRef Google scholar
[242.]
Kreiner DS, et al.. Guideline summary review: an evidence-based clinical guideline for the diagnosis and treatment of low back pain Spine J., 2020, 20: 998-1024.
CrossRef Google scholar
[243.]
Chinese Orthopaedic Association of Spinal Surgery, G. & Chinese Orthopaedic Association of Orthopaedic Rehabilitation, G. Clinical practice guideline for diagnosis and treatment of lumbar disc herniation. Chin. J. Orthopedics 40, 477–487 (2020).
[244.]
Zhang Y, et al.. MAPK8 and CAPN1 as potential biomarkers of intervertebral disc degeneration overlapping immune infiltration, autophagy, and ceRNA Front. Immunol., 2023, 14. 1188774
CrossRef Google scholar
[245.]
Guo S, et al.. Single-cell RNA-seq analysis reveals that immune cells induce human nucleus pulposus ossification and degeneration Front. Immunol., 2023, 14: 1224627.
CrossRef Google scholar
[246.]
Rohanifar M, et al.. Single Cell RNA-sequence analyses reveal uniquely expressed genes and heterogeneous immune cell involvement in the Rat model of intervertebral disc degeneration Appl. Sci. (Basel), 2022, 12: 8244.
CrossRef Google scholar
[247.]
Zhang TL, et al.. Single-cell RNA sequencing reveals the MIF/ACKR3 receptor-ligand interaction between neutrophils and nucleus pulposus cells in intervertebral disc degeneration Transl. Res., 2024, 272: 1-18.
CrossRef Google scholar
[248.]
Murai K, et al.. Primary immune system responders to nucleus pulposus cells: evidence for immune response in disc herniation Eur. Cell Mater., 2010, 19: 13-21.
CrossRef Google scholar
[249.]
Zhao M, et al.. Bacterial protoplast-derived nanovesicles carrying CRISPR-Cas9 tools re-educate tumor-associated macrophages for enhanced cancer immunotherapy Nat. Commun., 2024, 15. 950
CrossRef Google scholar
[250.]
Li X, et al.. In situ sustained macrophage-targeted nanomicelle-hydrogel microspheres for inhibiting osteoarthritis Res. (Wash. D. C.), 2023, 6 0131
[251.]
Wan Z, et al.. Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium Theranostics, 2020, 10: 218-230.
CrossRef Google scholar
[252.]
Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas J. Clin. Invest., 2012, 122: 787-795.
CrossRef Google scholar
[253.]
Bai X, et al.. Cyanidin attenuates the apoptosis of rat nucleus pulposus cells and the degeneration of intervertebral disc via the JAK2/STAT3 signal pathway in vitro and in vivo Pharm. Biol., 2022, 60: 427-436.
CrossRef Google scholar
[254.]
Yang X, et al.. Interleukin-1β induces apoptosis in annulus fibrosus cells through the extracellular signal-regulated kinase pathway Connect Tissue Res, 2018, 59: 593-600.
CrossRef Google scholar
[255.]
Xiao L, et al.. METTL3 promotes IL-1β-induced degeneration of endplate chondrocytes by driving m6A-dependent maturation of miR-126-5p J. Cell Mol. Med., 2020, 24: 14013-14025.
CrossRef Google scholar
[256.]
Jiang C, et al.. Inhibition of Rac1 activity by NSC23766 prevents cartilage endplate degeneration via Wnt/β-catenin pathway J. Cell Mol. Med, 2020, 24: 3582-3592.
CrossRef Google scholar
[257.]
Chen W, et al.. Rosuvastatin suppresses TNF-α-induced matrix catabolism, pyroptosis and senescence via the HMGB1/NF-κB signaling pathway in nucleus pulposus cells Acta Biochim. Biophys. Sin. (Shanghai), 2023, 55: 795-808
[258.]
Li J, et al.. Melatonin inhibits annulus fibrosus cell senescence through regulating the ROS/NF-κB pathway in an inflammatory environment Biomed. Res. Int, 2021, 2021: 3456321.
CrossRef Google scholar
[259.]
Wu C, et al.. Resveratrol protects human nucleus pulposus cells from degeneration by blocking IL-6/JAK/STAT3 pathway Eur. J. Med. Res., 2021, 26. 81
CrossRef Google scholar
[260.]
Xue P, et al.. Unveiling the role of CXCL8/CXCR2 in intervertebral disc degeneration: a path to promising therapeutic strategies J. Orthop. Transl., 2024, 49: 119-134
[261.]
Fan C, et al.. M1 macrophage-derived exosomes promote intervertebral disc degeneration by enhancing nucleus pulposus cell senescence through LCN2/NF-κB signaling axis J. Nanobiotechnol., 2024, 22. 301
CrossRef Google scholar
[262.]
Feng C, et al.. Oxygen-sensing Nox4 generates genotoxic ROS to induce premature senescence of nucleus pulposus cells through MAPK and NF-κB pathways Oxid. Med Cell Longev., 2017, 2017. 7426458
CrossRef Google scholar
[263.]
Zhou C, et al.. Morroniside attenuates nucleus pulposus cell senescence to alleviate intervertebral disc degeneration via inhibiting ROS-Hippo-p53 pathway Front. Pharm., 2022, 13. 942435
CrossRef Google scholar
[264.]
Cai F, et al.. The paracrine effect of degenerated disc cells on healthy human nucleus pulposus cells is mediated by MAPK and NF-κB pathways and can be reduced by TGF-β1 DNA Cell Biol., 2017, 36: 143-158.
CrossRef Google scholar
[265.]
Zhang K, et al.. M2 macrophage-derived small extracellular vesicles ameliorate pyroptosis and intervertebral disc degeneration Biomater. Res., 2024, 28. 0047
CrossRef Google scholar
[266.]
Zhang K, Luo J. Role of MCP-1 and CCR2 in alcohol neurotoxicity Pharm. Res, 2019, 139: 360-366.
CrossRef Google scholar
[267.]
Nakawaki M, et al.. Sequential CCL2 expression profile after disc injury in mice J. Orthop. Res., 2020, 38: 895-901.
CrossRef Google scholar
[268.]
Tian S, et al.. Nucleus pulposus cells regulate macrophages in degenerated intervertebral discs via the integrated stress response-mediated CCL2/7-CCR2 signaling pathway Exp. Mol. Med., 2024, 56: 408-421.
CrossRef Google scholar
[269.]
Li Z, et al.. Resistin promotes CCL4 expression through toll-like receptor-4 and activation of the p38-MAPK and NF-κB signaling pathways: implications for intervertebral disc degeneration Osteoarthr. Cartil., 2017, 25: 341-350.
CrossRef Google scholar
[270.]
Ye S, Ju B, Wang H, Lee KB. Bone morphogenetic protein-2 provokes interleukin-18-induced human intervertebral disc degeneration Bone Jt. Res., 2016, 5: 412-418.
CrossRef Google scholar
Funding
National Natural Science Foundation of China (National Science Foundation of China)(82072435); Tianjin Science and Technology Plan Project “Unveiling and Directing” Major Project (21ZXJBSY00130) Beijing-Tianjin-Hebei Basic Research Cooperation Project (J230020); National Key R&D Program of China(2023YFC2416900) Applied Basic Research Multi-input Foundation of Tianjin (21JCZDJC01040) Tianjin Science and Technology Plan Project “Unveiling and Directing” Major Project (21ZXJBSY00130)

Accesses

Citations

Detail

Sections
Recommended

/