Cross-talk of inflammation and cellular senescence: a new insight into the occurrence and progression of osteoarthritis

Zeyu Han , Ketao Wang , Shenglong Ding , Mingzhu Zhang

Bone Research ›› 2024, Vol. 12 ›› Issue (1) : 69

PDF
Bone Research ›› 2024, Vol. 12 ›› Issue (1) : 69 DOI: 10.1038/s41413-024-00375-z
Review Article

Cross-talk of inflammation and cellular senescence: a new insight into the occurrence and progression of osteoarthritis

Author information +
History +
PDF

Abstract

Osteoarthritis (OA) poses a significant challenge in orthopedics. Inflammatory pathways are regarded as central mechanisms in the onset and progression of OA. Growing evidence suggests that senescence acts as a mediator in inflammation-induced OA. Given the lack of effective treatments for OA, there is an urgent need for a clearer understanding of its pathogenesis. In this review, we systematically summarize the cross-talk between cellular senescence and inflammation in OA. We begin by focusing on the mechanisms and hallmarks of cellular senescence, summarizing evidence that supports the relationship between cellular senescence and inflammation. We then discuss the mechanisms of interaction between cellular senescence and inflammation, including senescence-associated secretory phenotypes (SASP) and the effects of pro- and anti-inflammatory interventions on cellular senescence. Additionally, we focus on various types of cellular senescence in OA, including senescence in cartilage, subchondral bone, synovium, infrapatellar fat pad, stem cells, and immune cells, elucidating their mechanisms and impacts on OA. Finally, we highlight the potential of therapies targeting senescent cells in OA as a strategy for promoting cartilage regeneration.

Cite this article

Download citation ▾
Zeyu Han, Ketao Wang, Shenglong Ding, Mingzhu Zhang. Cross-talk of inflammation and cellular senescence: a new insight into the occurrence and progression of osteoarthritis. Bone Research, 2024, 12(1): 69 DOI:10.1038/s41413-024-00375-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

NewgardCB, SharplessNE. Coming of age: molecular drivers of aging and therapeutic opportunities. J. Clin. Investig., 2013, 123: 946-950

[2]

TsujiT, AoshibaK, NagaiA. Alveolar cell senescence exacerbates pulmonary inflammation in patients with chronic obstructive pulmonary disease. Respiration Int. Rev. Thorac. Dis., 2010, 80: 59-70

[3]

CavanaghMM, WeyandCM, GoronzyJJ. Chronic inflammation and aging: DNA damage tips the balance. Curr. Opin. Immunol., 2012, 24: 488-493

[4]

Del PintoR, FerriCJI. Inflammation-accelerated senescence and the cardiovascular system: mechanisms and perspectives. Int. J. Mol. Sci., 2018, 19: 3701

[5]

AriffinH, et al. . Young adult survivors of childhood acute lymphoblastic leukemia show evidence of chronic inflammation and cellular aging. Cancer, 2017, 123: 4207-4214

[6]

HayflickL, MoorheadPS. The serial cultivation of human diploid cell strains. Exp. Cell Res., 1961, 25: 585-621 J. E. c. r

[7]

ChildsBG, DurikM, BakerDJ, Van DeursenJM. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat. Med., 2015, 21: 1424-1435

[8]

Muñoz-EspínD, et al. . Programmed cell senescence during mammalian embryonic development. Cell, 2013, 155: 1104-1118

[9]

BektasA, SchurmanSH, SenR, FerrucciLJ. Aging, inflammation and the environment. Exp. Gerontol., 2018, 105: 10-18

[10]

AoshibaK, NagaiAJ. Chronic lung inflammation in aging mice. FEBS Lett., 2007, 581: 3512-3516

[11]

LumengCN, et al. . Aging is associated with an increase in T cells and inflammatory macrophages in visceral adipose tissue. J. Immunol., 2011, 187: 6208-6216

[12]

SarkarD, FisherPB. Molecular mechanisms of aging-associated inflammation. Cancer Lett., 2006, 236: 13-23

[13]

Hy, C. et al. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res. Rev. 8, 18–30 (2009).

[14]

FranceschiC, et al. . Inflamm‐aging: an evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci., 2000, 908: 244-254

[15]

SellamJ, BerenbaumF. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat. Rev. Rheumatol., 2010, 6: 625-635

[16]

PonchelF, et al. . Changes in peripheral blood immune cell composition in osteoarthritis. Osteoarthr. Cartil., 2015, 23: 1870-1878

[17]

Zhang, W., Ouyang, H., Dass, C. R. & Xu, Jr. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res. 4, 15040 (2016).

[18]

RoosEM, ArdenNK. Strategies for the prevention of knee osteoarthritis. Nat. Rev. Rheumatol., 2016, 12: 92-101

[19]

XiongW, et al. . In situ remodeling of efferocytosis via lesion‐localized microspheres to reverse cartilage senescence. Adv. Sci., 2024, 11 2400345

[20]

López-OtínC, BlascoMA, PartridgeL, SerranoM, KroemerG. The hallmarks of aging. Cell, 2013, 153: 1194-1217

[21]

KrishnamurthyJ, et al. . Ink4a/Arf expression is a biomarker of aging. J. Clin. Investig., 2004, 114: 1299-1307

[22]

ScudellariM. To stay young, kill zombies. Nature, 2017, 550: 448-450

[23]

KuilmanT, MichaloglouC, MooiWJ, PeeperDSJG development.. The essence of senescence. Genes Dev., 2010, 24: 2463-2479

[24]

HouY, et al. . Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol., 2019, 15: 565-581

[25]

ZhuX, et al. . Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduct. Target. Ther., 2021, 6: 245

[26]

López-OtínC, BlascoMA, PartridgeL, SerranoM, KroemerGJC. Hallmarks of aging: an expanding universe. Cell, 2023, 186: 243-278

[27]

KrtolicaA, ParrinelloS, LockettS, DesprezP-Y, CampisiJ. S. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl. Acad. Sci. USA, 2001, 98: 12072-12077

[28]

HerranzN, GilJJ. Mechanisms and functions of cellular senescence. J. Clin. Investig., 2018, 128: 1238-1246

[29]

GreeneMA, LoeserRF. Aging-related inflammation in osteoarthritis. Osteoarthr. Cartil., 2015, 23: 1966-1971

[30]

BarcenaML, et al. . Sex and age differences in AMPK phosphorylation, mitochondrial homeostasis, and inflammation in hearts from inflammatory cardiomyopathy patients. Aging Cell, 2023, 22: 13894 e13894

[31]

Gardner, S. E., Humphry, M., Bennett, M. R., & Clarke, M. C. Senescent vascular smooth muscle cells drive inflammation through an interleukin-1α–dependent senescence-associated secretory phenotype. Arteriosclerosis Thrombosis Vasc. Biol. 35, 1963–1974 (2015).

[32]

FreundA, PatilCK, CampisiJJ. p38MAPK is a novel DNA damage response‐independent regulator of the senescence‐associated secretory phenotype. EMBO J., 2011, 30: 1536-1548

[33]

LoeserRF, CollinsJA, DiekmanBO. Ageing and the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol., 2016, 12: 412-420

[34]

FreundA, OrjaloAV, DesprezP-Y, CampisiJJ. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol. Med., 2010, 16: 238-246

[35]

SturmlechnerI, et al. . p21 produces a bioactive secretome that places stressed cells under immunosurveillance. Science, 2021, 374: eabb3420

[36]

SunY, CoppéJ-P, LamEW-F. Cellular senescence: the sought or the unwanted?. Trends Mol. Med., 2018, 24: 871-885

[37]

KangC, et al. . The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science, 2015, 349: aaa5612

[38]

VizioliMG, et al. . Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence. Genes Dev., 2020, 34: 428-445

[39]

FulopT, et al. . Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes?. Front. Immunol., 2017, 8: 1960

[40]

ZhaoB, et al. . Topoisomerase 1 cleavage complex enables pattern recognition and inflammation during senescence. Nat. Commun., 2020, 11 908

[41]

LanYY, et al. . Extranuclear DNA accumulates in aged cells and contributes to senescence and inflammation. Aging Cell, 2019, 18: 12901

[42]

VictorelliS, et al. . Apoptotic stress causes mtDNA release during senescence and drives the. Nature, 2023, 622: 627-636 SASP.

[43]

YasudaT, et al. . Inflammation-driven senescence-associated secretory phenotype in cancer-associated fibroblasts enhances peritoneal dissemination. Cell Rep., 2021, 34: 108779

[44]

OngS-M, et al. . The pro-inflammatory phenotype of the human non-classical monocyte subset is attributed to senescence. Cell Death Dis., 2018, 9: 266

[45]

AraiY, et al. . Inflammation, but not telomere length, predicts successful ageing at extreme old age: a longitudinal study of semi-supercentenarians. EBioMedicine, 2015, 2: 1549-1558

[46]

IskeJ, et al. . Senolytics prevent mt-DNA-induced inflammation and promote the survival of aged organs following transplantation. Nat. Commun., 2020, 11 4289

[47]

KlingKM, Lopez-RodriguezE, PfarrerC, MühlfeldC, BrandenbergerC. Aging exacerbates acute lung injury-induced changes of the air-blood barrier, lung function, and inflammation in the mouse. Am. J. Physiol. Lung Cell. Mol. Physiol., 2017, 312: 1

[48]

StorciG, et al. . Genomic stability, anti-inflammatory phenotype, and up-regulation of the RNAseH2 in cells from centenarians. Cell Death Differ., 2019, 26: 1845-1858

[49]

HuangY, et al. . Longevity-associated transcription factor ATF7 promotes healthspan by suppressing cellular senescence and systematic inflammation. Aging Dis., 2023, 14: 1374-1389

[50]

GlückS, et al. . Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol., 2017, 19: 1061-1070

[51]

BussePJ, MathurSK. Age-related changes in immune function: effect on airway inflammation. J. Allergy Clin. Immunol., 2010, 126: 690-699

[52]

Ribeiro, A., et al. Uremic toxin indoxyl sulfate promotes macrophage-associated low-grade inflammation and epithelial cell senescence. Int. J. Mol. Sci. 24, 8031 (2023).

[53]

Lavandoski, P., et al. Eotaxin-1/CCL11 promotes cellular senescence in human-derived fibroblasts through pro-oxidant and pro-inflammatory pathways. Front. Immunol. 14, 1243537, (2023).

[54]

MitchellCA, et al. . Stromal niche inflammation mediated by IL-1 signalling is a targetable driver of haematopoietic ageing. Nat. Cell Biol., 2023, 25: 30-41

[55]

Ortiz-Montero, P., Londoño-Vallejo, A. & Vernot, J.-P. Senescence-associated IL-6 and IL-8 cytokines induce a self-and cross-reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line. Cell Communi. Signal. 15, 17 (2017).

[56]

Ortiz-Montero, P., Londoño-Vallejo, A., & Vernot, J.-P. Senescence-associated IL-6 and IL-8 cytokines induce a self-and cross-reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line. Cell Commun. Signal. 15, 1–18 (2017).

[57]

RodierF, et al. . Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat. Cell Biol., 2009, 11: 973-979

[58]

YagiM, EndoK, KomoriK, SekiyaI. Comparison of the effects of oxidative and inflammatory stresses on rat chondrocyte senescence. Sci. Rep., 2023, 13 7697

[59]

PonnappanS, PonnappanU. Aging and immune function: molecular mechanisms to interventions. Antioxid. Redox Signal., 2011, 14: 1551-1585

[60]

JurkD, et al. . Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat. Commun., 2014, 2 4172

[61]

WuD, et al. . Aging up-regulates expression of inflammatory mediators in mouse adipose tissue. J. Immunol., 2007, 179: 4829-4839

[62]

LinL, et al. . Ghrelin receptor regulates adipose tissue inflammation in aging. Aging, 2016, 8: 178-191

[63]

MazurekT, et al. . Human epicardial adipose tissue is a source of inflammatory mediators. Circulation, 2003, 108: 2460-2466

[64]

KarakasiliotiI, et al. . DNA damage triggers a chronic autoinflammatory response, leading to fat depletion in NER progeria. Cell Metab., 2013, 18: 403-415

[65]

AulinasA, et al. . Dyslipidemia and chronic inflammation markers are correlated with telomere length shortening in Cushing’s syndrome. PLoS One, 2015, 10: 0120185

[66]

FrascaD, BlombergBB. Adipose tissue inflammation induces B cell inflammation and decreases B cell function in aging. Front. Immunol., 2017, 8: 274580

[67]

ShirakawaK, et al. . Obesity accelerates T cell senescence in murine visceral adipose tissue. J. Clin. Investig., 2016, 126: 4626-4639

[68]

MatacchioneG, et al. . Senescent macrophages in the human adipose tissue as a source of inflammaging. Geroscience, 2022, 44: 1941-1960

[69]

PetkeviciusK, et al. . Accelerated phosphatidylcholine turnover in macrophages promotes adipose tissue inflammation in obesity. Elife, 2019, 8 e47990

[70]

MengF, et al. . JAZF1 inhibits adipose tissue macrophages and adipose tissue inflammation in diet-induced diabetic mice. BioMed. Res. Int., 2018, 2018: 4507659

[71]

StrongR, et al. . Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell, 2008, 7: 641-650

[72]

KirklandJL, TchkoniaT. Cellular senescence: a translational perspective. EBioMedicine, 2017, 21: 21-28

[73]

Schroer, A. B. et al. Platelet factors attenuate inflammation and rescue cognition in ageing. Nature 620, 1071–1079 (2023).

[74]

Zhang, Z., et al. Increased hyaluronan by naked mole-rat HAS2 extends lifespan in mice. Nature 621, 196–205 (2023).

[75]

LinJ-Y, et al. . Swimming exercise stimulates IGF1/PI3K/Akt and AMPK/SIRT1/PGC1α survival signaling to suppress apoptosis and inflammation in aging hippocampus. Aging, 2020, 12: 6852-6864

[76]

García-CalzónS, et al. . Dietary inflammatory index and telomere length in subjects with a high cardiovascular disease risk from the PREDIMED-NAVARRA study: cross-sectional and longitudinal analyses over 5 y. Am. J. Clin. Nutr., 2015, 102: 897-904

[77]

ShivappaN, et al. . Association of proinflammatory diet with low-grade inflammation: results from the Moli-sani study. Nutrition, 2018, 54: 182-188

[78]

MedzhitovR. Origin and physiological roles of inflammation. Nature, 2008, 454: 428-435

[79]

Gudkov, A. V. & Komarova, E. A. p53 and the carcinogenicity of chronic inflammation. Cold Spring Harb. Perspect. Med. 6, a026161 (2016).

[80]

ZhaoH, et al. . Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct. Target. Ther., 2021, 6: 263

[81]

KongP, et al. . Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct. Target. Ther., 2022, 7: 131

[82]

ChenL, et al. . Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2018, 9: 7204-7218

[83]

ButterfieldTA, BestTM, MerrickMA. The dual roles of neutrophils and macrophages in inflammation: a critical balance between tissue damage and repair. J. Athl. Train., 2006, 41: 457-465

[84]

LiXL, ZhaoCL, DongQ, SunLR. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Int. Immunopharmacol., 2013, 15: 1-12

[85]

BelluzziE, et al. . Contribution of infrapatellar fat pad and synovial membrane to knee osteoarthritis pain. BioMed. Res. Int., 2019, 2019: 6390182

[86]

HsuehMF, ZhangX, WellmanSS, BolognesiMP, KrausVB. Synergistic roles of macrophages and neutrophils in osteoarthritis progression. Arthritis Rheumatol., 2021, 73: 89-99

[87]

GriffinTM, ScanzelloCRJC rheumatology, e.. Innate inflammation and synovial macrophages in osteoarthritis pathophysiology. Clin. Exp. Rheumatol., 2019, 37: 57-63

[88]

RaiV, DilisioMF, SamadiF, AgrawalDK. Counteractive effects of IL-33 and IL-37 on inflammation in osteoarthritis. Int. J. Environ. Res. Public Health, 2022, 19: 5690

[89]

MillerandM, BerenbaumF, JacquesC. Danger signals and inflammaging in osteoarthritis. Clin. Exp. Rheumatol., 2019, 37(Suppl 120): 48-56

[90]

YangS, WangJ, BrandDD, ZhengSGJFII. Role of TNF–TNF receptor 2 signal in regulatory T cells and its therapeutic implications. Front. Immunol., 2018, 9: 784

[91]

WicovskyA, et al. . Tumor necrosis factor receptor-associated factor-1 enhances proinflammatory TNF receptor-2 signaling and modifies TNFR1–TNFR2 cooperation. Oncogene, 2009, 28: 1769-1781

[92]

RauertH, et al. . Membrane tumor necrosis factor (TNF) induces p100 processing via TNF receptor-2 (TNFR2). J. Biol. Chem., 2010, 285: 7394-7404

[93]

Cheng, A. W. M., Stabler, T. V., Bolognesi, M. & Kraus, V. B. Selenomethionine inhibits IL-1β inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2) expression in primary human chondrocytes. Osteoarthr. Cartil. 19, 118–125 (2011).

[94]

Ya Sklyarov, A., Panasyuk, N., & Fomenko, I. S. Role of nitric oxide-synthase and cyclooxygenase/lipooxygenase systems in development of experimental ulcerative colitis. J. Physiol. Pharmacol. 62, 65 (2011).

[95]

ur RashidH, XuY, AhmadN, MuhammadY, WangL. Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities. Bioorg. Chem., 2019, 87: 335-365

[96]

CathelineSE, et al. . IKKβ–NF-κB signaling in adult chondrocytes promotes the onset of age-related osteoarthritis in mice. Sci. Signal., 2021, 14: 3535

[97]

ArraM, et al. . LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis. Nat. Commun., 2020, 11 3427

[98]

XieZ, et al. . Taraxasterol inhibits inflammation in osteoarthritis rat model by regulating miRNAs and NF-κB signaling pathway. Acta Biochimica Polonica, 2022, 69: 811-818

[99]

Tang, L., Sim, I., Moqbel, S., Wu, L. J. H. & Toxicology, E. Dapansutrile ameliorated chondrocyte inflammation and osteoarthritis through suppression of MAPK signaling pathway. Hum. Exp. Toxicol. 41, 09603271221145401 (2022).

[100]

YaoM, et al. . Cepharanthine ameliorates chondrocytic inflammation and osteoarthritis via regulating the MAPK/NF-κB-Autophagy pathway. Front. Pharmacol., 2022, 13: 854239

[101]

CalabreseG, et al. . Phytochemical analysis and anti-inflammatory and anti-osteoarthritic bioactive potential of Verbascum thapsus L.(Scrophulariaceae) leaf extract evaluated in two in vitro models of inflammation and osteoarthritis. Molecules, 2021, 26: 5392

[102]

MoqbelS, et al. . Rat chondrocyte inflammation and osteoarthritis are ameliorated by madecassoside. Oxid. Med. Cell. Longev., 2020, 2020: 7540197

[103]

JiaY, et al. . Morusin ameliorates IL-1β-induced chondrocyte inflammation and osteoarthritis via NF-κB signal pathway. Drug Des. Dev. Ther., 2020, 14: 1227-1240

[104]

JiaY, et al. . Garcinol suppresses IL-1β-induced chondrocyte inflammation and osteoarthritis via inhibition of the NF-κB signaling pathway. Inflammation, 2019, 42: 1754-1766

[105]

RanJ, et al. . Schisandrin B ameliorated chondrocytes inflammation and osteoarthritis via suppression of NF-κB and MAPK signal pathways. Drug Des. Dev. Ther., 2018, 12: 1195-1204

[106]

TakeuchiK, et al. . Downregulation of aquaporin 9 decreases catabolic factor expression through nuclear factor‑κB signaling in chondrocytes. Int. J. Mol. Med., 2018, 42: 1548-1558

[107]

XieW, et al. . Achyranthoside D attenuates chondrocyte loss and inflammation in osteoarthritis via targeted regulation of Wnt3a. Phytomed. Int. J. Phytother. Phytopharmacol., 2023, 111: 154663

[108]

WangW, ChenZ, HuaYJB. Bioinformatics prediction and experimental validation identify a novel cuproptosis-related gene signature in human synovial inflammation during osteoarthritis progression. Biomolecules, 2023, 13: 127

[109]

Delmonico M. J. et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am. J. Clin. Nutr. 90, 1579–1585 (2009).

[110]

Coppé, J.-P., Desprez, P.-Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

[111]

IzquierdoMC, et al. . Klotho, phosphate and inflammation/ageing in chronic kidney disease. Nephrol. Dial. Transplant., 2012, 27: 6-10

[112]

Zeng, Y., Wang, P.-H., Zhang, M., & Du, J.-R.. Aging-related renal injury and inflammation are associated with downregulation of Klotho and induction of RIG-I/NF-κB signaling pathway in senescence-accelerated mice. Aging Clin. Exp. Res. 28, 69–76 (2016).

[113]

Bailey-DownsLC, et al. . Aging exacerbates obesity-induced oxidative stress and inflammation in perivascular adipose tissue in mice: a paracrine mechanism contributing to vascular redox dysregulation and inflammation. J. Gerontol. Ser. A Biol. Sci. Med. Sci., 2013, 68: 780-792

[114]

OgrodnikM, et al. . Whole‐body senescent cell clearance alleviates age‐related brain inflammation and cognitive impairment in mice. Aging Cell, 2021, 20: 13296

[115]

LabergeR-M, et al. . MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol., 2015, 17: 1049-1061

[116]

PassosJF, et al. . Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol., 2010, 6: 347

[117]

HerranzN, et al. . mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol., 2015, 17: 1205-1217

[118]

AtturM, et al. . Low‐grade inflammation in symptomatic knee osteoarthritis: prognostic value of inflammatory plasma lipids and peripheral blood leukocyte biomarkers. Arthritis Rheumatol., 2015, 67: 2905-2915

[119]

BusseB, et al. . Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell, 2010, 9: 1065-1075

[120]

CoryellPR, DiekmanBO, LoeserRF. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat. Rev. Rheumatol., 2021, 17: 47-57

[121]

WangK, et al. . Chondrogenic progenitor cells exhibit superiority over mesenchymal stem cells and chondrocytes in platelet-rich plasma scaffold-based cartilage regeneration. Am. J. Sports Med., 2019, 47: 2200-2215

[122]

LotzMK, et al. . Cartilage cell clusters. Arthritis Rheumatism, 2010, 62: 2206-2218

[123]

ArraM, SwarnkarG, AlippeY, MbalavieleG, Abu-AmerY. IκB-ζ signaling promotes chondrocyte inflammatory phenotype, senescence, and erosive joint pathology. Bone Res., 2022, 10: 12

[124]

CoryellPR, et al. . Autophagy regulates the localization and degradation of p16(INK4a). Aging Cell, 2020, 19 e13171

[125]

MartinJA, BuckwalterJA. Telomere erosion and senescence in human articular cartilage chondrocytes. J. Gerontol. Ser. A Biol. Sci. Med. Sci., 2001, 56: B172-179

[126]

LoeserRF. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthr. Cartil., 2009, 17: 971-979

[127]

EngelandK. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ., 2018, 25: 114-132

[128]

Hernandez-SeguraA, NehmeJ, DemariaM. Hallmarks of cellular senescence. Trends Cell Biol., 2018, 28: 436-453

[129]

HeS, SharplessNE. Senescence in health and disease. Cell, 2017, 169: 1000-1011

[130]

DiekmanBO, et al. . Expression of p16(INK)(4a) is a biomarker of chondrocyte aging but does not cause osteoarthritis. Aging Cell, 2018, 17 e12771

[131]

JiML-l, et al. . Sirt6 attenuates chondrocyte senescence and osteoarthritis progression. Nat. Commun., 2022, 13 7658

[132]

Varela-EirínM, et al. . Targeting of chondrocyte plasticity via connexin43 modulation attenuates cellular senescence and fosters a pro-regenerative environment in osteoarthritis. Cell Death Dis., 2018, 9: 1166

[133]

HorváthE, SólyomÁ, SzékelyJ, NagyEE, PopoviciuH. Inflammatory and Metabolic Signaling Interfaces of the Hypertrophic and Senescent Chondrocyte Phenotypes Associated with Osteoarthritis. Int. J. Mol. Sci., 2023, 24: 16468

[134]

BirchHL. Extracellular matrix and ageing. Subcell. Biochem., 2018, 90: 169-190

[135]

SunK, JingX, GuoJ, YaoX, GuoF. Mitophagy in degenerative joint diseases. Autophagy, 2021, 17: 2082-2092

[136]

GuoQ, et al. . STING promotes senescence, apoptosis, and extracellular matrix degradation in osteoarthritis via the NF-κB signaling pathway. Cell Death Dis., 2021, 12: 13

[137]

LuH, et al. . Fibroblast growth factor 21 (FGF21) alleviates senescence, apoptosis, and extracellular matrix degradation in osteoarthritis via the SIRT1-mTOR signaling pathway. Cell Death Dis., 2021, 12: 865

[138]

RohK, et al. . Lysosomal control of senescence and inflammation through cholesterol partitioning. Nat. Metab., 2023, 5: 398-413

[139]

ArraM, Abu-AmerY. Cross-talk of inflammation and chondrocyte intracellular metabolism in osteoarthritis. Osteoarthr. Cartil., 2023, 31: 1012-1021

[140]

BakerDJ, AlimirahF, van DeursenJM, CampisiJ, HildesheimJ. Oncogenic senescence: a multi-functional perspective. Oncotarget, 2017, 8: 27661-27672

[141]

Del ReyMJ, et al. . Senescent synovial fibroblasts accumulate prematurely in rheumatoid arthritis tissues and display an enhanced inflammatory phenotype. Immun. Ageing, 2019, 16: 29

[142]

JeonOH, et al. . Senescence cell-associated extracellular vesicles serve as osteoarthritis disease and therapeutic markers. JCI Insight, 2019, 4: e125019

[143]

ZhuY, et al. . The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 2015, 14: 644-658

[144]

XuM, et al. . Transplanted senescent cells induce an osteoarthritis-like condition in mice. J. Gerontol. Ser. A Biol. Sci. Med. Sci., 2017, 72: 780-785

[145]

LiuX, et al. . Oxylipin-PPARγ-initiated adipocyte senescence propagates secondary senescence in the bone marrow. Cell Metab., 2023, 35: 667-684.e6

[146]

NelsonG, et al. . A senescent cell bystander effect: senescence-induced senescence. Aging Cell, 2012, 11: 345-349

[147]

WatersDW, et al. . A senescence bystander effect in human lung fibroblasts. Biomedicines, 2021, 9: 1162

[148]

RizzoMG, et al. . Therapeutic perspectives for inflammation and senescence in osteoarthritis using mesenchymal stem cells, mesenchymal stem cell-derived extracellular vesicles and senolytic agents. Cells, 2023, 12: 1421

[149]

HartingMT, et al. . Inflammation-stimulated mesenchymal stromal cell-derived extracellular vesicles attenuate inflammation. Stem Cells, 2018, 36: 79-90

[150]

BačenkováD, et al. . Interaction between mesenchymal stem cells and the immune system in rheumatoid arthritis. Pharmaceuticals, 2022, 15: 941

[151]

CavalloC, et al. . Small extracellular vesicles from adipose derived stromal cells significantly attenuate in vitro the NF-κB dependent inflammatory/catabolic environment of osteoarthritis. Sci. Rep., 2021, 11 1053

[152]

YangY, et al. . Secretive derived from hypoxia preconditioned mesenchymal stem cells promote cartilage regeneration and mitigate joint inflammation via extracellular vesicles. Bioact. Mater., 2023, 27: 98-112

[153]

YamanakaS. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell, 2020, 27: 523-531

[154]

WeiP, BaoR. Intra-articular mesenchymal stem cell injection for knee osteoarthritis: mechanisms and clinical evidence. Int. J. Mol. Sci., 2022, 24: 59

[155]

JoCH, et al. . Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells, 2014, 32: 1254-1266

[156]

YeG, et al. . ALKBH5 facilitates CYP1B1 mRNA degradation via m6A demethylation to alleviate MSC senescence and osteoarthritis progression. Exp. Mol. Med., 2023, 55: 1743-1756

[157]

ČamernikK, et al. . Increased exhaustion of the subchondral bone-derived mesenchymal stem/ stromal cells in primary versus dysplastic osteoarthritis. Stem Cell Rev. Rep., 2020, 16: 742-754

[158]

CaoX, et al. . Intraarticular senescent chondrocytes impair the cartilage regeneration capacity of mesenchymal stem cells. Stem Cell Res. Ther., 2019, 10: 86

[159]

WengZ, et al. . Mesenchymal stem/stromal cell senescence: hallmarks, mechanisms, and combating strategies. Stem Cells Transl. Med., 2022, 11: 356-371

[160]

ZhuJ, et al. . Stem cell-homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model. Sci. Adv., 2022, 8 eabk0011

[161]

ZhangJ, RongY, LuoC, CuiW. Bone marrow mesenchymal stem cell-derived exosomes prevent osteoarthritis by regulating synovial macrophage polarization. Aging, 2020, 12: 25138-25152

[162]

XieJ, et al. . Cellular senescence in knee osteoarthritis: molecular mechanisms and therapeutic implications. Ageing Res. Rev., 2021, 70 101413

[163]

LoeserRF, GoldringSR, ScanzelloCR, GoldringMB rheumatism.. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheumatism, 2012, 64: 1697-1707

[164]

DragooJL, JohnsonC, McConnellJM. Evaluation and treatment of disorders of the infrapatellar fat pad. Sports Med., 2012, 42: 51-67

[165]

FaveroM, et al. . Infrapatellar fat pad features in osteoarthritis: a histopathological and molecular study. Rheumatology, 2017, 56: 1784-1793

[166]

Ioan-Facsinay, A., Kloppenburg, M. An emerging player in knee osteoarthritis: the infrapatellar fat pad. Arthritis. Res. Ther. 15, 1–9 (2013).

[167]

Reyes-FariasM, Fos-DomenechJ, SerraD, HerreroL, Sánchez-InfantesDP. White adipose tissue dysfunction in obesity and aging. Biochemical Pharmacol., 2021, 192: 114723

[168]

Xie, C. & Chen, Q. J. C. r. r. Adipokines: new therapeutic target for osteoarthritis? Curr. Rheumatol. Rep. 21, 71 (2019).

[169]

BelluzziE, et al. . Systemic and local adipose tissue in knee osteoarthritis. J. Cell. Physiol., 2017, 232: 1971-1978

[170]

ZengN, YanZ-P, ChenX-Y, NiGX. Infrapatellar fat pad and knee osteoarthritis. Aging Dis., 2020, 11: 1317-1328 amp; disease

[171]

EymardF, ChevalierX. Inflammation of the infrapatellar fat pad. Jt. Bone Spine, 2016, 83: 389-393

[172]

LiuZ, et al. . Immunosenescence: molecular mechanisms and diseases. Signal Transduct. Target. Ther., 2023, 8: 200

[173]

BrubakerSW, BonhamKS, ZanoniI, KaganJC. Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol., 2015, 33: 257-290

[174]

LianJ, YueY, YuW, ZhangY. Immunosenescence: a key player in cancer development. J. Hematol. Oncol., 2020, 13: 151

[175]

ShiveC, PandiyanP. Inflammation, immune senescence, and dysregulated immune regulation in the elderly. Front. Aging, 2022, 3: 840827

[176]

MottaF, BaroneE, SicaA, SelmiCJ. Inflammaging and osteoarthritis. Clin. Rev. Allergy Immunol., 2023, 64: 222-238

[177]

HuangK, CaiH-l, BaoJ-p, WuLD. Dehydroepiandrosterone and age-related musculoskeletal diseases: Connections and therapeutic implications. Ageing Res. Rev., 2020, 62: 101132

[178]

MobasheriA, MattaC, ZákányR, MusumeciG. Chondrosenescence: definition, hallmarks and potential role in the pathogenesis of osteoarthritis. Maturitas, 2015, 80: 237-244

[179]

Bondeson, J. et al. The role of synovial macrophages and macrophage-produced mediators in driving inflammatory and destructive responses in osteoarthritis (INTECH Open Access Publisher, 2012).

[180]

Bondeson, J. et al. The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis. Arthritis. Res. Ther. 8, 1–12 (2006).

[181]

BradleyK, et al. . Synthesis of classical pathway complement components by chondrocytes. Immunology, 1996, 88: 648-656

[182]

OnumaH, et al. . Expression of the anaphylatoxin receptor C5aR (CD88) by human articular chondrocytes. Rheumatol. Int., 2002, 22: 52-55

[183]

Van den BoschM, van LentP, Van der KraanPJO Cartilage.. Identifying effector molecules, cells, and cytokines of innate immunity in OA. Osteoarthr. Cartil., 2020, 28: 532-543

[184]

MelchiorriC, et al. . Enhanced and coordinated in vivo expression of inflammatory cytokines and nitric oxide synthase by chondrocytes from patients with osteoarthritis. Arthritis. Rheumatism, 1998, 41: 2165-2174

[185]

ScanzelloCR, et al. . Local cytokine profiles in knee osteoarthritis: elevated synovial fluid interleukin-15 differentiates early from end-stage disease. Osteoarthr. Cartil., 2009, 17: 1040-1048

[186]

JotanovicZ, MihelicR, SestanB, DembicZ. Emerging pathways and promising agents with possible disease modifying effect in osteoarthritis treatment. Curr. Drug Targets, 2014, 15: 635-661

[187]

KojimaH, InoueT, KunimotoH, NakajimaK. IL-6-STAT3 signaling and premature senescence. JAK-STAT, 2013, 2: e25763

[188]

Struglics, A. et al. The complement system is activated in synovial fluid from subjects with knee injury and from patients with osteoarthritis. Arthritis. Res. Ther. 18, 223 (2016).

[189]

CorvettaA, et al. . Terminal complement complex in synovial tissue from patients affected by rheumatoid arthritis, osteoarthritis and acute joint trauma. Clin. Exp. Rheumatol., 1992, 10: 433-438

[190]

WangQ, et al. . Identification of a central role for complement in osteoarthritis. Nat. Med., 2011, 17: 1674-1679

[191]

BeekhuizenM, et al. . An explorative study comparing levels of soluble mediators in control and osteoarthritic synovial fluid. Osteoarthr. Cartil., 2013, 21: 918-922

[192]

TsuchidaAI, et al. . Cytokine profiles in the joint depend on pathology, but are different between synovial fluid, cartilage tissue and cultured chondrocytes. Arthritis Res. Ther., 2014, 16: 441

[193]

ZhaoXY, et al. . CCL3 serves as a potential plasma biomarker in knee degeneration (osteoarthritis). Osteoarthr. Cartil., 2015, 23: 1405-1411

[194]

AcostaJC, et al. . Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell, 2008, 133: 1006-1018

[195]

ZuoR, et al. . Rapamycin induced autophagy inhibits inflammation-mediated endplate degeneration by enhancing Nrf2/Keap1 signaling of cartilage endplate stem cells. Stem Cells, 2019, 37: 828-840

[196]

Chamoli, M. et al. A drug-like molecule engages nuclear hormone receptor DAF-12/FXR to regulate mitophagy and extend lifespan. Nat Aging 3, 1529–1543 (2023).

[197]

MaX, et al. . L-Glutamine alleviates osteoarthritis by regulating lncRNA-NKILA expression through the TGF-β1/SMAD2/3 signalling pathway. Clin. Sci., 2022, 136: 1053-1069

[198]

GongY, et al. . Pentacyclic triterpene oleanolic acid protects against cardiac aging through regulation of mitophagy and mitochondrial integrity. Biochim. Biophys. Acta Mol. Basis Dis., 2022, 1868: 166402

[199]

BharathLP, et al. . Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab., 2020, 32: 44-55

[200]

ChenX, et al. . Alcohol induces cellular senescence and impairs osteogenic potential in bone marrow-derived mesenchymal stem cells. Alcohol Alcohol., 2017, 52: 289-297

[201]

Xu, P. et al. Extracellular vesicles from adipose-derived stem cells ameliorate ultraviolet B-induced skin photoaging by attenuating reactive oxygen species production and inflammation. Stem Cell Res. Ther. 11, 1–14 (2020).

[202]

CaiY, et al. . Elimination of senescent cells by β-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Res., 2020, 30: 574-589

[203]

De CeccoM, et al. . L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature, 2019, 566: 73-78

[204]

RodríguezMI, et al. . Chronic melatonin treatment reduces the age‐dependent inflammatory process in senescence‐accelerated mice. J. Pineal Res., 2007, 42: 272-279

[205]

YangH, et al. . Navitoclax (ABT263) reduces inflammation and promotes chondrogenic phenotype by clearing senescent osteoarthritic chondrocytes in osteoarthritis. Aging, 2020, 12: 12750-12770

[206]

Li, Z. et al. Metformin ameliorates senescence of adipose-derived mesenchymal stem cells and attenuates osteoarthritis progression via the ampk-dependent autophagy pathway. Oxid. Med. Cell Longev. 2022, 4620254 (2022).

[207]

RenX, ZhuangH, JiangF, ZhangY, Zhou. Ceria Nanoparticles alleviated osteoarthritis through attenuating senescence and senescence-associated secretory phenotype in synoviocytes. Int. J. Mol. Sci., 2023, 24: 5056

[208]

ZongZ, et al. . Rejuvenated ageing mesenchymal stem cells by stepwise preconditioning ameliorates surgery-induced osteoarthritis in rabbits. Bone Jt. Res., 2021, 10: 10-21

[209]

SchaferMJ, et al. . Cellular senescence mediates fibrotic pulmonary disease. Nat. Commun., 2017, 8 14532

[210]

DhanabalanKM, et al. . Intra‐articular injection of rapamycin microparticles prevent senescence and effectively treat osteoarthritis. Bioeng. Transl. Med., 2023, 8: 10298

[211]

Dhanabalan, K. M., Gupta, V. K. & Agarwal, R. Rapamycin–PLGA microparticles prevent senescence, sustain cartilage matrix production under stress and exhibit prolonged retention in mouse joints. Biomater. Sci. 8, 4308–4321 (2020).

[212]

Wan, J. et al. Novel strategy of senescence elimination via toxicity-exempted kinome perturbations by nanoliposome-based thermosensitive hydrogel for osteoarthritis therapy. Adv. Composites Hybrid Mater. 6, 104 (2023).

[213]

CaoH, et al. . Cell-free osteoarthritis treatment with sustained-release of chondrocyte-targeting exosomes from umbilical cord-derived mesenchymal stem cells to rejuvenate aging chondrocytes. ACS Nano, 2023, 17: 13358-13376

[214]

ZhangR, ChenW, AdamsPD. Molecular dissection of formation of senescence-associated heterochromatin foci. Mol. Cell. Biol., 2007, 27: 2343-2358

[215]

ContrepoisK, et al. . Histone variant H2A. J accumulates in senescent cells and promotes inflammatory gene expression. Nat. Commun., 2017, 8 14995

[216]

Salama, R., Sadaie, M., Hoare, M. & Narita, M. Cellular senescence and its effector programs. Genes Dev. 28, 99–114 (2014).

[217]

DavalosAR, et al. . p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. J. Cell Biol., 2013, 201: 613-629

[218]

OlivieriF, et al. . MiR-146a as marker of senescence-associated pro-inflammatory status in cells involved in vascular remodelling. Age, 2013, 35: 1157-1172

[219]

BhaumikD, et al. . MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging, 2009, 1: 402-411

[220]

CollinsCJ, SedivyJMJ. Involvement of the INK4a/Arf gene locus in senescence. Aging Cell, 2003, 2: 145-150 A. c

[221]

SimboeckE, Di CroceL. p16INK4a in cellular senescence. Aging, 2013, 5: 590-591

[222]

WanM, Gray-GaillardEF, ElisseeffJH. Cellular senescence in musculoskeletal homeostasis, diseases, and regeneration. Bone Res., 2021, 9: 41

[223]

ColladoM, SerranoM. Senescence in tumours: evidence from mice and humans. Nat. Rev. Cancer, 2010, 10: 51-57

[224]

LeiQ, et al. . Microvesicles as potential biomarkers for the identification of senescence in human mesenchymal stem cells. Theranostics, 2017, 7: 2673-2689

[225]

XiaG, et al. . β-Hydroxybutyrate alleviates cartilage senescence through hnRNP A1-mediated up-regulation of PTEN. Exp. Gerontol., 2023, 175: 112140

[226]

Zhang, Y. et al. Gastrodin alleviates rat chondrocyte senescence and mitochondrial dysfunction through Sirt3. Int. Immunopharmacol. 118, 110022 (2023).

[227]

BiJ, et al. . Protective effect of vildagliptin on TNF‐α‐induced chondrocyte senescence. IUBMB life, 2019, 71: 978-985

[228]

PlatasJ, et al. . Anti-senescence and anti-inflammatory effects of the c-terminal moiety of PTHrP peptides in OA osteoblasts. J. Gerontol. Ser. A Biol. Sci. Med. Sci., 2017, 72: 624-631

[229]

ZhangC, JiangS, LuY, YuanF. Butorphanol tartrate mitigates cellular senescence against tumor necrosis factor–α (TNF-α) in human HC-A chondrocytes. Bioengineered, 2022, 13: 5434-5442

[230]

ClériguesV, et al. . Heme oxygenase-1 mediates protective effects on inflammatory, catabolic and senescence responses induced by interleukin-1β in osteoarthritic osteoblasts. Biochemical Pharmacol., 2012, 83: 395-405

[231]

DaiH, et al. . Eliminating senescent chondrogenic progenitor cells enhances chondrogenesis under intermittent hydrostatic pressure for the treatment of OA. Stem Cell Res. Ther., 2020, 11: 1-18

[232]

MiuraY, EndoK, KomoriK, SekiyaI Therapy.. Clearance of senescent cells with ABT-263 improves biological functions of synovial mesenchymal stem cells from osteoarthritis patients. Stem Cell Res. Ther., 2022, 13: 222

[233]

WangX, et al. . Conversion of senescent cartilage into a pro-chondrogenic microenvironment with antibody-functionalized copper sulfate nanoparticles for efficient osteoarthritis therapy. J. Nanobiotechnol., 2023, 21 258

[234]

SacitharanPK, LwinS, GhariosGB, EdwardsJR. Spermidine restores dysregulated autophagy and polyamine synthesis in aged and osteoarthritic chondrocytes via EP300. Exp. Mol. Med., 2018, 50: 1-10

[235]

LiaoB, DingM, WangY, XuH, ShangguanL. Strontium ion attenuates osteoarthritis through inhibiting senescence and enhancing autophagy in fibroblast-like synoviocytes. Mol. Biol. Rep., 2023, 50: 1437-1446

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

245

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/