Schnurri-3 inhibition rescues skeletal fragility and vascular skeletal stem cell niche pathology in the OIM model of osteogenesis imperfecta

Na Li , Baohong Shi , Zan Li , Jie Han , Jun Sun , Haitao Huang , Alisha R. Yallowitz , Seoyeon Bok , Shuang Xiao , Zuoxing Wu , Yu Chen , Yan Xu , Tian Qin , Rui Huang , Haiping Zheng , Rong Shen , Lin Meng , Matthew B. Greenblatt , Ren Xu

Bone Research ›› 2024, Vol. 12 ›› Issue (1) : 46

PDF
Bone Research ›› 2024, Vol. 12 ›› Issue (1) : 46 DOI: 10.1038/s41413-024-00349-1
Article

Schnurri-3 inhibition rescues skeletal fragility and vascular skeletal stem cell niche pathology in the OIM model of osteogenesis imperfecta

Author information +
History +
PDF

Abstract

Osteogenesis imperfecta (OI) is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding type I collagen. While it is well known that OI reflects defects in the activity of bone-forming osteoblasts, it is currently unclear whether OI also reflects defects in the many other cell types comprising bone, including defects in skeletal vascular endothelium or the skeletal stem cell populations that give rise to osteoblasts and whether correcting these broader defects could have therapeutic utility. Here, we find that numbers of skeletal stem cells (SSCs) and skeletal arterial endothelial cells (AECs) are augmented in Col1a2 oim/oim mice, a well-studied animal model of moderate to severe OI, suggesting that disruption of a vascular SSC niche is a feature of OI pathogenesis. Moreover, crossing Col1a2 oim/oim mice to mice lacking a negative regulator of skeletal angiogenesis and bone formation, Schnurri 3 (SHN3), not only corrected the SSC and AEC phenotypes but moreover robustly corrected the bone mass and spontaneous fracture phenotypes. As this finding suggested a strong therapeutic utility of SHN3 inhibition for the treatment of OI, a bone-targeting AAV was used to mediate Shn3 knockdown, rescuing the Col1a2 oim/oim phenotype and providing therapeutic proof-of-concept for targeting SHN3 for the treatment of OI. Overall, this work both provides proof-of-concept for inhibition of the SHN3 pathway and more broadly addressing defects in the stem/osteoprogenitor niche as is a strategy to treat OI.

Cite this article

Download citation ▾
Na Li, Baohong Shi, Zan Li, Jie Han, Jun Sun, Haitao Huang, Alisha R. Yallowitz, Seoyeon Bok, Shuang Xiao, Zuoxing Wu, Yu Chen, Yan Xu, Tian Qin, Rui Huang, Haiping Zheng, Rong Shen, Lin Meng, Matthew B. Greenblatt, Ren Xu. Schnurri-3 inhibition rescues skeletal fragility and vascular skeletal stem cell niche pathology in the OIM model of osteogenesis imperfecta. Bone Research, 2024, 12(1): 46 DOI:10.1038/s41413-024-00349-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Marini JC et al. Osteogenesis imperfecta. Nat. Rev. Dis. Prim., 2017, 3: 17052

[2]

Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet, 2004, 363: 1377-1385

[3]

Palomo T et al. Intravenous bisphosphonate therapy of young children with osteogenesis imperfecta: skeletal findings during follow up throughout the growing years. J. Bone Miner. Res., 2015, 30: 2150-2157

[4]

Glorieux FH et al. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N. Engl. J. Med., 1998, 339: 947-952

[5]

Orwoll ES et al. Evaluation of teriparatide treatment in adults with osteogenesis imperfecta. J. Clin. Investig., 2014, 124: 491-498

[6]

Sinder BP et al. Sclerostin antibody improves skeletal parameters in a Brtl/+ mouse model of osteogenesis imperfecta. J. Bone Miner. Res., 2013, 28: 73-80

[7]

Bradbury LA et al. Risedronate in adults with osteogenesis imperfecta type I: increased bone mineral density and decreased bone turnover, but high fracture rate persists. Osteoporos. Int., 2012, 23: 285-294

[8]

Munns CF, Rauch F, Zeitlin L, Fassier F, Glorieux FH. Delayed osteotomy but not fracture healing in pediatric osteogenesis imperfecta patients receiving pamidronate. J. Bone Miner. Res., 2004, 19: 1779-1786

[9]

Rajzbaum G et al. Treatment persistence and changes in fracture risk, back pain, and quality of life amongst patients treated with teriparatide in routine clinical care in France: results from the European Forsteo Observational Study. Jt. Bone Spine, 2014, 81: 69-75

[10]

Cardinal M et al. Sclerostin antibody reduces long bone fractures in the oim/oim model of osteogenesis imperfecta. Bone, 2019, 124: 137-147

[11]

Dwan K, Phillipi CA, Steiner RD, Basel D. Bisphosphonate therapy for osteogenesis imperfecta. Cochrane Database Syst. Rev., 2016, 10: Cd005088

[12]

Song, I. W. et al. Targeting TGF-β for treatment of osteogenesis imperfecta. J. Clin. Invest. 132, e152571 (2022).

[13]

Fukuda T et al. Sema3A regulates bone-mass accrual through sensory innervations. Nature, 2013, 497: 490-493

[14]

Xu R et al. Targeting skeletal endothelium to ameliorate bone loss. Nat. Med., 2018, 24: 823-833

[15]

Ben Shoham A et al. Deposition of collagen type I onto skeletal endothelium reveals a new role for blood vessels in regulating bone morphology. Development, 2016, 143: 3933-3943

[16]

Sivaraj KK, Adams RH. Blood vessel formation and function in bone. Development, 2016, 143: 2706-2715

[17]

Chan CK et al. Identification and specification of the mouse skeletal stem cell. Cell, 2015, 160: 285-298

[18]

Debnath S et al. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature, 2018, 562: 133-139

[19]

Jones DC et al. Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science, 2006, 312: 1223-1227

[20]

Morris JA et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat. Genet., 2019, 51: 258-266

[21]

Li N et al. Osteoclasts are not a source of SLIT3. Bone Res., 2020, 8: 11

[22]

Chipman SD et al. Defective pro alpha 2(I) collagen synthesis in a recessive mutation in mice: a model of human osteogenesis imperfecta. Proc. Natl. Acad. Sci. USA, 1993, 90: 1701-1705

[23]

Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature, 2014, 507: 323-328

[24]

Helbling PM et al. Global transcriptomic profiling of the bone marrow stromal microenvironment during postnatal development, aging, and inflammation. Cell Rep., 2019, 29: 3313-3330.e14

[25]

Xu C et al. Stem cell factor is selectively secreted by arterial endothelial cells in bone marrow. Nat. Commun., 2018, 9

[26]

Roelofs AJ et al. Identification of the skeletal progenitor cells forming osteophytes in osteoarthritis. Ann. Rheum. Dis., 2020, 79: 1625-1634

[27]

Ambrosi TH et al. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature, 2021, 597: 256-262

[28]

Mizuhashi K et al. Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature, 2018, 563: 254-258

[29]

Worthley DL et al. Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell, 2015, 160: 269-284

[30]

Marom R, Lee YC, Grafe I, Lee B. Pharmacological and biological therapeutic strategies for osteogenesis imperfecta. Am. J. Med. Genet. C Semin. Med. Genet., 2016, 172: 367-383

[31]

Shim JH et al. Schnurri-3 regulates ERK downstream of WNT signaling in osteoblasts. J. Clin. Investig., 2013, 123: 4010-4022

[32]

Ambrosi, T. H. et al. Distinct skeletal stem cell types orchestrate long bone skeletogenesis. eLife. 10, e66063 (2021).

[33]

Amoasii L et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science, 2018, 362: 86-91

[34]

Chemello F, Bassel-Duby R, Olson EN. Correction of muscular dystrophies by CRISPR gene editing. J. Clin. Investig., 2020, 130: 2766-2776

[35]

Frangoul H et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med., 2021, 384: 252-260

[36]

Yang YS et al. Bone-targeting AAV-mediated silencing of Schnurri-3 prevents bone loss in osteoporosis. Nat. Commun., 2019, 10

[37]

Tevlin, R. et al. Pharmacological rescue of diabetic skeletal stem cell niches. Sci. Transl. Med. 9, eaag2809 (2017).

[38]

Murphy MP et al. Articular cartilage regeneration by activated skeletal stem cells. Nat. Med., 2020, 26: 1583-1592

[39]

Alcorta-Sevillano, N., Infante, A., Macías, I. & Rodríguez, C. I. Murine animal models in osteogenesis imperfecta: the quest for improving the quality of life. Int. J. Mol. Sci. 24, 184 (2023).

[40]

Shen B et al. A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature, 2021, 591: 438-444

[41]

Matsushita Y et al. A Wnt-mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration. Nat. Commun., 2020, 11

[42]

Xie H et al. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat. Med., 2014, 20: 1270-1278

[43]

Xu R et al. c-Jun N-terminal kinases (JNKs) are critical mediators of osteoblast activity in vivo. J. Bone Miner. Res., 2017, 32: 1811-1815

[44]

Kusumbe AP, Ramasamy SK, Starsichova A, Adams RH. Sample preparation for high-resolution 3D confocal imaging of mouse skeletal tissue. Nat. Protoc., 2015, 10: 1904-1914

[45]

Nudell V et al. HYBRiD: hydrogel-reinforced DISCO for clearing mammalian bodies. Nat. Methods, 2022, 19: 479-485

[46]

Wang Q, Liu K, Yang L, Wang H, Yang J. BoneClear: whole-tissue immunolabeling of the intact mouse bones for 3D imaging of neural anatomy and pathology. Cell Res., 2019, 29: 870-872

Funding

National Natural Science Foundation of China (National Science Foundation of China)(92068104)

National Key R&D Program of China (2020YFA0112900 to R.X.)

U.S. Department of Health & Human Services | National Institutes of Health (NIH)(R01AR075585)

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/