Multimodal analyses of immune cells during bone repair identify macrophages as a therapeutic target in musculoskeletal trauma

Yasmine Hachemi , Simon Perrin , Maria Ethel , Anais Julien , Julia Vettese , Blandine Geisler , Christian Göritz , Céline Colnot

Bone Research ›› 2024, Vol. 12 ›› Issue (1) : 56

PDF
Bone Research ›› 2024, Vol. 12 ›› Issue (1) : 56 DOI: 10.1038/s41413-024-00347-3
Article

Multimodal analyses of immune cells during bone repair identify macrophages as a therapeutic target in musculoskeletal trauma

Author information +
History +
PDF

Abstract

Hachemi et al. report the immune cell atlas of bone repair revealing macrophages as pro-fibrotic regulators and a therapeutic target for musculoskeletal regeneration. Genetic depletion or pharmacological inhibition of macrophages improves bone healing in musculoskeletal trauma.

Cite this article

Download citation ▾
Yasmine Hachemi, Simon Perrin, Maria Ethel, Anais Julien, Julia Vettese, Blandine Geisler, Christian Göritz, Céline Colnot. Multimodal analyses of immune cells during bone repair identify macrophages as a therapeutic target in musculoskeletal trauma. Bone Research, 2024, 12(1): 56 DOI:10.1038/s41413-024-00347-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CiezaA, et al. . Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, 2020, 396: 2006-2017

[2]

MockC, CherianMN. The global burden of musculoskeletal injuries: challenges and solutions. Clin. Orthop. Relat. Res., 2008, 466: 2306-2316

[3]

JulienA, et al. . Skeletal stem/progenitor cells in periosteum and skeletal muscle share a common molecular response to bone injury. J. Bone Miner. Res., 2022, 37: 1545-1561

[4]

PerrinS, et al. . Single nuclei transcriptomics reveal the differentiation trajectories of periosteal skeletal/stem progenitor cells in bone regeneration. eLife, 2024, 13: RP92519

[5]

LemosDR, DuffieldJS. Tissue-resident mesenchymal stromal cells: implications for tissue-specific antifibrotic therapies. Sci. Transl. Med., 2018, 10: eaan5174

[6]

Di CarloSE, PedutoL. The perivascular origin of pathological fibroblasts. J. Clin. Invest., 2018, 128: 54-63

[7]

Duchamp de LagenesteO, et al. . Periosteum contains skeletal stem cells with high bone regenerative potential controlled by periostin. Nat. Commun., 2018, 9

[8]

JulienA, et al. . Direct contribution of skeletal muscle mesenchymal progenitors to bone repair. Nat. Commun., 2021, 12

[9]

MatsushitaY, et al. . A Wnt-mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration. Nat. Commun., 2020, 11

[10]

JefferyEC, MannTLA, PoolJA, ZhaoZ, MorrisonSJ. Bone marrow and periosteal skeletal stem/progenitor cells make distinct contributions to bone maintenance and repair. Cell Stem Cell., 2022, 29: 1547-1561

[11]

MatthewsBG, et al. . Heterogeneity of murine periosteum progenitors involved in fracture healing. Elife, 2021, 10: e58534

[12]

ViL, et al. . Macrophages promote osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis. J. Bone Min. Res., 2015, 30: 1090-1102

[13]

BatoonL, et al. . CD169+ macrophages are critical for osteoblast maintenance and promote intramembranous and endochondral ossification during bone repair. Biomaterials, 2019, 196: 51-66

[14]

XingZ, et al. . Multiple roles for CCR2 during fracture healing. Dis. Models Mech., 2010, 3: 451-458

[15]

Abou-KhalilR, et al. . Delayed bone regeneration is linked to chronic inflammation in murine muscular dystrophy. J. Bone Min. Res., 2014, 29: 304-315

[16]

AlexanderKA, et al. . Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J. Bone Min. Res., 2011, 26: 1517-1532

[17]

GaoB, et al. . Macrophage-lineage TRAP+ cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration. J. Clin. Investig., 2019, 129: 2578-2594

[18]

ViL, et al. . Macrophage cells secrete factors including LRP1 that orchestrate the rejuvenation of bone repair in mice. Nat. Commun., 2018, 9

[19]

WuAC, RaggattLJ, AlexanderKA, PettitAR. Unraveling macrophage contributions to bone repair. Bonekey Rep., 2013, 2: 373

[20]

ClaesL, RecknagelS, IgnatiusA. Fracture healing under healthy and inflammatory conditions. Nat. Rev. Rheumatol., 2012, 8: 133-143

[21]

PariharA, EubankTD, DoseffAI. Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. J. Innate Immun., 2010, 2: 204-215

[22]

KovtunA, et al. . The crucial role of neutrophil granulocytes in bone fracture healing. eCM, 2016, 32: 152-162

[23]

ReinkeS, et al. . Terminally differentiated CD8+ T cells negatively affect bone regeneration in humans. Sci. Transl. Med., 2013, 5: 177ra36

[24]

GodwinJW, PintoAR, RosenthalNA. Macrophages are required for adult salamander limb regeneration. Proc. Natl. Acad. Sci. USA, 2013, 110: 9415-9420

[25]

ShookB, XiaoE, KumamotoY, IwasakiA, HorsleyV. CD301b+ macrophages are essential for effective skin wound healing. J. Investig. Dermatol., 2016, 136: 1885-1891

[26]

AranD, et al. . Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol., 2019, 20: 163-172

[27]

HurtgenBJ, et al. . Severe muscle trauma triggers heightened and prolonged local musculoskeletal inflammation and impairs adjacent tibia fracture healing. J. Musculoskelet. Neuronal Interact., 2016, 16: 122-134

[28]

JoshiN, et al. . A spatially restricted fibrotic niche in pulmonary fibrosis is sustained by M-CSF/M-CSFR signalling in monocyte-derived alveolar macrophages. Eur. Respir. J., 2020, 55: 1900646

[29]

GschwandtnerM, DerlerR, MidwoodKS. More Than Just Attractive: How CCL2 Influences Myeloid Cell Behavior Beyond Chemotaxis. Front. Immunol., 2019, 10: 2759

[30]

Arango DuqueG, DescoteauxA. Macrophage Cytokines: Involvement in Immunity and Infectious Diseases. Front. Immunol., 2014, 5: 491

[31]

MosserDM, HamidzadehK, GoncalvesR. Macrophages and the maintenance of homeostasis. Cell Mol. Immunol., 2021, 18: 579-587

[32]

UeshimaE, et al. . Macrophage-secreted TGF-β1 contributes to fibroblast activation and ureteral stricture after ablation injury. Am. J. Physiol. Ren. Physiol., 2019, 317: F52-F64

[33]

ArnoldL, et al. . CX3CR1 deficiency promotes muscle repair and regeneration by enhancing macrophage ApoE production. Nat. Commun., 2015, 6

[34]

ZhangL, et al. . Chemokine CXCL16 regulates neutrophil and macrophage infiltration into injured muscle, promoting muscle regeneration. Am. J. Pathol., 2009, 175: 2518-2527

[35]

WatanabeS, AlexanderM, MisharinAV, BudingerGRS. The role of macrophages in the resolution of inflammation. J. Clin. Investig., 2019, 129: 2619-2628

[36]

SpadaroO, et al. . IGF1 Shapes macrophage activation in response to immunometabolic challenge. Cell Rep., 2017, 19: 225-234

[37]

JinS, et al. . Inference and analysis of cell-cell communication using CellChat. Nat. Commun., 2021, 12

[38]

AibarS, et al. . SCENIC: single-cell regulatory network inference and clustering. Nat. Methods, 2017, 14: 1083-1086

[39]

WangS, et al. . Meis1 controls the differentiation of eye progenitor cells and the formation of posterior poles during planarian regeneration. IJMS, 2023, 24: 3505

[40]

Le GrandF, et al. . Six1 regulates stem cell repair potential and self-renewal during skeletal muscle regeneration. J. Cell Biol., 2012, 198: 815-832

[41]

GuoX, et al. . ETV1 inhibition depressed M2 polarization of tumor-associated macrophage and cell process in gastrointestinal stromal tumor via down-regulating PDE3A. J. Clin. Biochem. Nutr., 2023, 72: 139-146

[42]

MartinH. Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutat. Res., 2010, 690: 57-63

[43]

BoringL, et al. . Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J. Clin. Investig., 1997, 100: 2552-2561

[44]

FujiwaraT, et al. . CSF1/CSF1R signaling inhibitor pexidartinib (PLX3397) reprograms tumor-associated macrophages and stimulates T-cell infiltration in the sarcoma microenvironment. Mol. Cancer Therapeutics, 2021, 20: 1388-1399

[45]

FradeBB, DiasRB, Gemini PiperniS, BonfimDC. The role of macrophages in fracture healing: a narrative review of the recent updates and therapeutic perspectives. Stem Cell Investig., 2023, 10: 4-4

[46]

HuKH, et al. . Transcriptional space-time mapping identifies concerted immune and stromal cell patterns and gene programs in wound healing and cancer. Cell Stem Cell, 2023, 30: 885-903.e10

[47]

JoyceME, JingushiS, BolanderME. Transforming growth factor-beta in the regulation of fracture repair. Orthop. Clin. North Am., 1990, 21: 199-209

[48]

WangJ, et al. . Bone marrow-derived IGF-1 orchestrates maintenance and regeneration of the adult skeleton. Proc. Natl. Acad. Sci. USA, 2023, 120: e2203779120

[49]

HelblingPM, et al. . Global transcriptomic profiling of the bone marrow stromal microenvironment during postnatal development, aging, and inflammation. Cell Rep., 2019, 29: 3313-3330.e4

[50]

WangY, FangJ, LiuB, ShaoC, ShiY. Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell, 2022, 29: 1515-1530

[51]

SinhaS, et al. . Fibroblast inflammatory priming determines regenerative versus fibrotic skin repair in reindeer. Cell, 2022, 185: 4717-4736.e25

[52]

CaetanoAJ, et al. . Spatially resolved transcriptomics reveals pro-inflammatory fibroblast involved in lymphocyte recruitment through CXCL8 and CXCL10. eLife, 2023, 12: e81525

[53]

YaghiOK, et al. . A discrete ‘early-responder’ stromal-cell subtype orchestrates immunocyte recruitment to injured tissue. Nat. Immunol., 2023, 24: 2053-2067

[54]

NawazA, et al. . Depletion of CD206+ M2-like macrophages induces fibro-adipogenic progenitors activation and muscle regeneration. Nat. Commun., 2022, 13

[55]

ClarkD, et al. . Age-related changes to macrophages are detrimental to fracture healing in mice. Aging Cell, 2020, 19: e13112

[56]

DuC, et al. . High fluoride ingestion impairs bone fracture healing by attenuating m2 macrophage differentiation. Front. Bioeng. Biotechnol., 2022, 10: 791433

[57]

TapWD, et al. . Pexidartinib versus placebo for advanced tenosynovial giant cell tumour (ENLIVEN): a randomised phase 3 trial. Lancet, 2019, 394: 478-487

[58]

WangM, et al. . Microglia-mediated neuroimmune response regulates cardiac remodeling after myocardial infarction. J. Am. Heart Assoc., 2023, 12: e029053

[59]

JungS, et al. . Analysis of fractalkine receptor cx3cr1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol., 2000, 20: 4106-4114

[60]

ClausenBE, BurkhardtC, ReithW, RenkawitzR, FörsterI. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res., 1999, 8: 265-277

[61]

MadisenL, et al. . A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci., 2010, 13: 133-140

[62]

BuchT, et al. . A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat. Methods, 2005, 2: 419-426

[63]

PerrinS, JulienA, Duchamp de LagenesteO, Abou-KhalilR, ColnotC. Mouse periosteal cell culture, in vitro differentiation, and in vivo transplantation in tibial fractures. Bio Protocol., 2021, 11: e4107

[64]

BankheadP, et al. . QuPath: open source software for digital pathology image analysis. Sci. Rep., 2017, 7

[65]

StuartT, et al. . Comprehensive integration of single-cell data. Cell, 2019, 177: 1888-1902.e21

[66]

ButlerA, HoffmanP, SmibertP, PapalexiE, SatijaR. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol., 2018, 36: 411-420

[67]

CaoJ, et al. . The single-cell transcriptional landscape of mammalian organogenesis. Nature, 2019, 566: 496-502

[68]

RaredonMSB, et al. . Computation and visualization of cell–cell signaling topologies in single-cell systems data using Connectome. Sci. Rep., 2022, 12

AI Summary AI Mindmap
PDF

293

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/