Gut microbial metabolite targets HDAC3-FOXK1-interferon axis in fibroblast-like synoviocytes to ameliorate rheumatoid arthritis

Hongzhen Chen1, Xuekun Fu1,2, Xiaohao Wu3,4,5, Junyi Zhao1, Fang Qiu1,2, Zhenghong Wang6, Zhuqian Wang1,2, Xinxin Chen1, Duoli Xie1,2, Jie Huang1,2, Junyu Fan7, Xu Yang8, Yi Song6, Jie Li9, Dongyi He7, Guozhi Xiao3, Aiping Lu2,10,11, Chao Liang1,2,12

Bone Research ›› 2024, Vol. 12 ›› Issue (0) : 31. DOI: 10.1038/s41413-024-00336-6

Gut microbial metabolite targets HDAC3-FOXK1-interferon axis in fibroblast-like synoviocytes to ameliorate rheumatoid arthritis

  • Hongzhen Chen1, Xuekun Fu1,2, Xiaohao Wu3,4,5, Junyi Zhao1, Fang Qiu1,2, Zhenghong Wang6, Zhuqian Wang1,2, Xinxin Chen1, Duoli Xie1,2, Jie Huang1,2, Junyu Fan7, Xu Yang8, Yi Song6, Jie Li9, Dongyi He7, Guozhi Xiao3, Aiping Lu2,10,11, Chao Liang1,2,12
Author information +
History +

Abstract

Rheumatoid arthritis (RA) is an autoimmune disease. Early studies hold an opinion that gut microbiota is environmentally acquired and associated with RA susceptibility. However, accumulating evidence demonstrates that genetics also shape the gut microbiota. It is known that some strains of inbred laboratory mice are highly susceptible to collagen-induced arthritis (CIA), while the others are resistant to CIA. Here, we show that transplantation of fecal microbiota of CIA-resistant C57BL/6J mice to CIA-susceptible DBA/1J mice confer CIA resistance in DBA/1J mice. C57BL/6J mice and healthy human individuals have enriched B. fragilis than DBA/1J mice and RA patients. Transplantation of B. fragilis prevents CIA in DBA/1J mice. We identify that B. fragilis mainly produces propionate and C57BL/6J mice and healthy human individuals have higher level of propionate. Fibroblast-like synoviocytes (FLSs) in RA are activated to undergo tumor-like transformation. Propionate disrupts HDAC3-FOXK1 interaction to increase acetylation of FOXK1, resulting in reduced FOXK1 stability, blocked interferon signaling and deactivation of RA-FLSs. We treat CIA mice with propionate and show that propionate attenuates CIA. Moreover, a combination of propionate with anti-TNF etanercept synergistically relieves CIA. These results suggest that B. fragilis or propionate could be an alternative or complementary approach to the current therapies.

Cite this article

Download citation ▾
Hongzhen Chen, Xuekun Fu, Xiaohao Wu, Junyi Zhao, Fang Qiu, Zhenghong Wang, Zhuqian Wang, Xinxin Chen, Duoli Xie, Jie Huang, Junyu Fan, Xu Yang, Yi Song, Jie Li, Dongyi He, Guozhi Xiao, Aiping Lu, Chao Liang. Gut microbial metabolite targets HDAC3-FOXK1-interferon axis in fibroblast-like synoviocytes to ameliorate rheumatoid arthritis. Bone Research, 2024, 12(0): 31 https://doi.org/10.1038/s41413-024-00336-6

References

1. Smolen, J. S., Aletaha, D. & McInnes, I. B. Rheumatoid arthritis. Lancet 388, 2023-2038 (2016).
2. Guo, Q.et al.Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 6, 15(2018).
3. Brown E. M., Garneau K. L., Tsao H.& Solomon, D. H. DMARD non-use in lowincome, elderly rheumatoid arthritis patients: results of 86 structured interviews. Arthritis. Res. Ther. 16, R30(2014).
4. Petrelli F., Mariani F. M., Alunno A.& Puxeddu, I. Pathogenesis of rheumatoid arthritis: one year in review 2022. Clin. Exp. Rheumatol. 40, 475-482 (2022).
5. Huang, J.et al.Promising therapeutic targets for treatment of rheumatoid arthritis. Front. Immunol. 12, 686155(2021).
6. Huang, Y.et al.CRISPRa engineered Elite macrophages enable adoptive cell therapy for rheumatoid arthritis. Innov. Med. 2, 100050(2024).
7. Dedmon, L. E. The genetics of rheumatoid arthritis. Rheumatology 59, 2661-2670 (2020).
8. Ishigaki, K.et al.Multi-ancestry genome-wide association analyses identify novel genetic mechanisms in rheumatoid arthritis. Nat. Genet. 54, 1640-1651 (2022).
9. Westra, H. J.et al.Fine-mapping and functional studies highlight potential causal variants for rheumatoid arthritis and type 1 diabetes. Nat. Genet. 50, 1366-1374 (2018).
10. Okada Y., Eyre S., Suzuki A., Kochi Y.& Yamamoto, K. Genetics of rheumatoid arthritis: 2018 status. Ann. Rheum. Dis. 78, 446-453 (2019).
11. Amariuta T., Luo Y., Knevel R., Okada Y.& Raychaudhuri, S. Advances in genetics toward identifying pathogenic cell states of rheumatoid arthritis. Immunol. Rev. 294, 188-204 (2020).
12. Kurko, J.et al.Genetics of rheumatoid arthritis - a comprehensive review. Clin. Rev. Allergy Immunol. 45, 170-179 (2013).
13. Kim K., Bang S. Y., Lee H. S.& Bae, S. C. Update on the genetic architecture of rheumatoid arthritis. Nat. Rev. Rheumatol. 13, 13-24 (2017).
14. de Moel, E. C.et al. Geo-epidemiology of autoantibodies in rheumatoid arthritis: comparison between four ethnically diverse populations. Arthritis. Res. Ther. 25, 37(2023).
15. Finckh, A.et al.Global epidemiology of rheumatoid arthritis. Nat. Rev. Rheumatol. 18, 591-602 (2022).
16. Ha, E.et al.Genetic variants shape rheumatoid arthritis-specific transcriptomic features in CD4+ T cells through differential DNA methylation, explaining a substantial proportion of heritability. Ann. Rheum. Dis. 80, 876-883 (2021).
17. Suzuki, A., Terao, C.& Yamamoto, K. Linking of genetic risk variants to diseasespecific gene expression via multi-omics studies in rheumatoid arthritis. Semin. Arthritis. Rheum. 49, S49-S53 (2019).
18. Horta-Baas, G. et al. Intestinal dysbiosis and rheumatoid arthritis: a link between gut microbiota and the pathogenesis of rheumatoid arthritis. J. Immunol. Res. 2017, 4835189(2017).
19. Wang, D. W.et al.Gut microbial dysbiosis in rheumatoid arthritis: a systematic review protocol of case-control studies. BMJ Open 12, e052021 (2022).
20. Afzaal, M.et al.Human gut microbiota in health and disease: unveiling the relationship. Front. Microbiol. 13, 999001(2022).
21. Taneja V.Arthritis susceptibility and the gut microbiome. FEBS Lett. 588, 4244-4249 (2014).
22. Boccuto L., Tack J., Ianiro G., Abenavoli L.& Scarpellini, E. Human genes involved in the interaction between host and gut microbiome: regulation and pathogenic mechanisms. Genes 14, 857 (2023).
23. Goodrich, J. K.et al. Human genetics shape the gut microbiome. Cell 159, 789-799 (2014).
24. Wells, P. M.et al.Associations between gut microbiota and genetic risk for rheumatoid arthritis in the absence of disease: a cross-sectional study. Lancet Rheumatol. 2, e418-e427 (2020).
25. Qin, Y.et al.Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat. Genet. 54, 134-142 (2022).
26. Zhernakova, D. V.et al. Host genetic regulation of human gut microbial structural variation. Nature 625, 813-821 (2024).
27. Sellers R. S., Clifford C. B., Treuting P. M.& Brayton, C. Immunological variation between inbred laboratory mouse strains: points to consider in phenotyping genetically immunomodified mice. Vet. Pathol. 49, 32-43 (2012).
28. Brand, D. D., Latham, K. A.& Rosloniec, E. F. Collagen-induced arthritis. Nat. Protoc. 2, 1269-1275 (2007).
29. Inglis, J. J.et al.Collagen-induced arthritis in C57BL/6 mice is associated with a robust and sustained T-cell response to type II collagen. Arthritis. Res. Ther. 9, R113(2007).
30. Walter, W., Loos, M. & Maeurer, M. J. H2-M polymorphism in mice susceptible to collagen-induced arthritis involves the peptide binding groove. Immunogenetics 44, 19-26 (1996).
31. Guo, J.et al.Characteristics of gut microbiota in representative mice strains: implications for biological research. Anim. Model Exp. Med. 5, 337-349 (2022).
32. Vaahtovuo, J., Toivanen, P. & Eerola, E. Study of murine faecal microflora by cellular fatty acid analysis; effect of age and mouse strain. Antonie Van. Leeuwenhoek 80, 35-42 (2001).
33. Kim C. H.Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cell Mol. Immunol. 18, 1161-1171 (2021).
34. Nemeth, T., Nagy, G.& Pap, T. Synovial fibroblasts as potential drug targets in rheumatoid arthritis, where do we stand and where shall we go? Ann. Rheum. Dis. 81, 1055-1064 (2022).
35. Chu C. Q.Fibroblasts in rheumatoid arthritis. N. Engl. J. Med. 383, 1679-1681 (2020).
36. Singh V., Naldi A., Soliman S.& Niarakis, A. A large-scale Boolean model of the rheumatoid arthritis fibroblast-like synoviocytes predicts drug synergies in the arthritic joint. NPJ Syst. Biol. Appl. 9, 33(2023).
37. Yang, L.et al.Histone deacetylase 3 contributes to the antiviral innate immunity of macrophages by interacting with FOXK1 to regulate STAT1/2 transcription. Cell Rep. 38, 110302(2022).
38. Sakaguchi, M.et al.FoxK1 and FoxK2 in insulin regulation of cellular and mitochondrial metabolism. Nat. Commun. 10, 1582(2019).
39. Sukonina, V.et al. FOXK1 and FOXK2 regulate aerobic glycolysis. Nature 566, 279-283 (2019).
40. Silva L. G., Ferguson B. S., Avila A. S.& Faciola, A. P. Sodium propionate and sodium butyrate effects on histone deacetylase (HDAC) activity, histone acetylation, and inflammatory gene expression in bovine mammary epithelial cells. J. Anim. Sci. 96, 5244-5252 (2018).
41. Seto E.& Yoshida, M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 6, a018713(2014).
42. Gallinari P.,Di Marco, S., Jones, P., Pallaoro, M. & Steinkuhler, C. HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res. 17, 195-211 (2007).
43. Tong J., Liu C., Summanen P., Xu, H. & Finegold, S. M. Application of quantitative real-time PCR for rapid identification of Bacteroides fragilis group and related organisms in human wound samples. Anaerobe 17, 64-68 (2011).
44. Jean S., Wallace M. J., Dantas G.& Burnham, C. D. Time for some group therapy: update on identification, antimicrobial resistance, taxonomy, and clinical significance of the bacteroides fragilis group. J. Clin. Microbiol. 60, e0236120(2022).
45. Zafar H.& Saier, M. H. Jr Comparative genomics of transport proteins in seven Bacteroides species. PLoS One 13, e0208151 (2018).
46. Dziarski R., Park S. Y., Kashyap D. R., Dowd S. E.& Gupta, D. Pglyrp-regulated gut microflora prevotella falsenii, parabacteroides distasonis and bacteroides eggerthii enhance and alistipes finegoldii attenuates colitis in mice. PLoS One 11, e0146162 (2016).
47. Lucas, C., Barnich, N.& Nguyen, H. T. T. Microbiota, inflammation and colorectal cancer. Int. J. Mol. Sci. 18, 1310(2017).
48. Wu, S.et al.GMrepo: a database of curated and consistently annotated human gut metagenomes. Nucleic Acids Res. 48, D545-D553 (2020).
49. Piwowarek K., Lipinska E., Hac-Szymanczuk, E., Kieliszek, M. & Scibisz, I. Propionibacterium spp.-source of propionic acid, vitamin B12, and other metabolites important for the industry. Appl. Microbiol. Biotechnol. 102, 515-538 (2018).
50. Reichardt, N.et al.Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 8, 1323-1335 (2014).
51. Hoyles, L.et al.Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome 6, 55 (2018).
52. Bi, X.et al. LncRNA PICSAR promotes cell proliferation, migration and invasion of fibroblast-like synoviocytes by sponging miRNA-4701-5p in rheumatoid arthritis. EBioMedicine 50, 408-420 (2019).
53. Tu J. A.-O. et al. PU.1 promotes development of rheumatoid arthritis via repressing FLT3 in macrophages and fibroblast-like synoviocytes. Ann. Rheum. Dis. 82, 198-211 (2023).
54. Glehr, M.et al.The influence of resveratrol on the synovial expression of matrix metalloproteinases and receptor activator of NF-kappaB ligand in rheumatoid arthritis fibroblast-like synoviocytes. Z. Naturforsch. C. J. Biosci. 68, 336-342 (2013).
55. Szklarczyk, D.et al.The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49, D605-D612 (2021).
56. Furumai, R.et al. Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc. Natl. Acad. Sci. USA 98, 87-92 (2001).
57. Rangan P.& Mondino, A. Microbial short-chain fatty acids: a strategy to tune adoptive T cell therapy. J. Immunother. Cancer 10, e004147 (2022).
58. Ho, R. H.et al. In silico and in vitro interactions between short chain fatty acids and human histone deacetylases. Biochemistry 56, 4871-4878 (2017).
59. Wu, J.et al.TNF antagonist sensitizes synovial fibroblasts to ferroptotic cell death in collagen-induced arthritis mouse models. Nat. Commun. 13, 676(2022).
60. Popivanova, B. K.et al.Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J. Clin. Investig. 118, 560-570 (2008).
61. He, J.et al.Intestinal butyrate-metabolizing species contribute to autoantibody production and bone erosion in rheumatoid arthritis. Sci. Adv. 8, eabm1511 (2022).
62. Hvatum M., Kanerud L., Hallgren, R. & Brandtzaeg, P. The gut-joint axis: cross reactive food antibodies in rheumatoid arthritis. Gut 55,1240-1247 (2006).
63. Jiang, Z. M.et al.Sinomenine ameliorates rheumatoid arthritis by modulating tryptophan metabolism and activating aryl hydrocarbon receptor via gut microbiota regulation. Sci. Bull. 68, 1540-1555 (2023).
64. Tajik, N.et al.Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat. Commun. 11, 1995(2020).
65. Rudi K.& Zhao, L. Grand challenges in understanding gut microbes. Front. Microbiol. 12, 752829(2021).
66. Wang A. J., Song D., Hong, Y. M. & Liu, N. N. Multi-omics insights into the interplay between gut microbiota and colorectal cancer in the “microworld” age. Mol. Omics 19, 283-296 (2023).
67. Mikhaylenko, D. S.et al.Genetic polymorphisms associated with rheumatoid arthritis development and antirheumatic therapy response. Int. J. Mol. Sci. 21, 4911(2020).
68. Scher, J. U.et al.Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife 2, e01202 (2013).
69. Rogier, R.et al.Alteration of the intestinal microbiome characterizes preclinical inflammatory arthritis in mice and its modulation attenuates established arthritis. Sci. Rep. 7, 15613(2017).
70. Kim D.& Kim, W. U. Editorial: can prevotella copri be a causative pathobiont in rheumatoid arthritis? Arthritis. Rheumatol. 68, 2565-2567 (2016).
71. Marietta, E. V.et al.Suppression of inflammatory arthritis by human gut-derived prevotella histicola in humanized mice. Arthritis. Rheumatol. 68, 2878-2888 (2016).
72. Xu, X.et al.The bridge of the gut-joint axis: gut microbial metabolites in rheumatoid arthritis. Front. Immunol. 13, 1007610(2022).
73. Chambers E. S., Preston T., Frost G.& Morrison, D. J. Role of gut microbiotagenerated short-chain fatty acids in metabolic and cardiovascular health. Curr. Nutr. Rep. 7, 198-206 (2018).
74. Bottini N.& Firestein, G. S. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat. Rev. Rheumatol. 9, 24-33 (2013).
75. Sanchez, H. N.et al.B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nat. Commun. 11, 60(2020).
76. Han, K. A.et al.Histone deacetylase 3 promotes RCAN1 stability and nuclear translocation. PLoS One 9, e105416 (2014).
77. Vidal-Laliena, M. et al. Histone deacetylase 3 regulates cyclin a stability. J. Biol. Chem. 288, 21096-21104 (2013).
78. Liang, C.et al. Tumor cell-targeted delivery of CRISPR/Cas9 by aptamerfunctionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma. Biomaterials 147, 68-85 (2017).
79. Hong, P.et al.Echinatin suppresses esophageal cancer tumor growth and invasion through inducing AKT/mTOR-dependent autophagy and apoptosis. Cell Death Dis. 11, 524(2020).
80. Varnavides, G.et al.In search of a universal method: a comparative survey of bottom- up proteomics sample preparation methods. J. Proteome Res. 21, 2397-2411 (2022).
81. Bruderer, R.et al.Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated threedimensional liver microtissues. Mol. Cell. Proteom. 14, 1400-1410 (2015).
82. Lei, Y.et al.LIM domain proteins Pinch1/2 regulate chondrogenesis and bone mass in mice. Bone Res. 8, 37(2020).
83. Liang, C.et al.HIF1 alpha inhibition facilitates Leflunomide-AHR-CRP signaling to attenuate bone erosion in CRP-aberrant rheumatoid arthritis. Nat. Commun. 10, 4579(2019).
84. Douglas, G. M.et al.PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685-688 (2020).
85. Bokulich, N. A.et al.Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2‘s q2-feature-classifier plugin. Microbiome 6, 90 (2018).
86. Zheng, X.et al. A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids. Metabolomics 9, 818-827 (2013).
87. Barupal, D. K.et al.MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity. BMC Bioinforma. 13, 99(2012).
88. Hayer, S.et al.SMASH’ recommendations for standardised microscopic arthritis scoring of histological sections from inflammatory arthritis animal models. Ann. Rheum. Dis. 80, 714-726 (2021).
Funding
Guozhi Xiao (xiaogz@sustech.edu.cn) or Aiping Lu (aipinglu@hkbu.edu.hk) or Chao Liang (liangc@sustech.edu.cn)

Accesses

Citations

Detail

Sections
Recommended

/