Gut microbial metabolite targets HDAC3-FOXK1-interferon axis in fibroblast-like synoviocytes to ameliorate rheumatoid arthritis

Hongzhen Chen , Xuekun Fu , Xiaohao Wu , Junyi Zhao , Fang Qiu , Zhenghong Wang , Zhuqian Wang , Xinxin Chen , Duoli Xie , Jie Huang , Junyu Fan , Xu Yang , Yi Song , Jie Li , Dongyi He , Guozhi Xiao , Aiping Lu , Chao Liang

Bone Research ›› 2024, Vol. 12 ›› Issue (1) : 31

PDF
Bone Research ›› 2024, Vol. 12 ›› Issue (1) : 31 DOI: 10.1038/s41413-024-00336-6
Article

Gut microbial metabolite targets HDAC3-FOXK1-interferon axis in fibroblast-like synoviocytes to ameliorate rheumatoid arthritis

Author information +
History +
PDF

Abstract

Rheumatoid arthritis (RA) is an autoimmune disease. Early studies hold an opinion that gut microbiota is environmentally acquired and associated with RA susceptibility. However, accumulating evidence demonstrates that genetics also shape the gut microbiota. It is known that some strains of inbred laboratory mice are highly susceptible to collagen-induced arthritis (CIA), while the others are resistant to CIA. Here, we show that transplantation of fecal microbiota of CIA-resistant C57BL/6J mice to CIA-susceptible DBA/1J mice confer CIA resistance in DBA/1J mice. C57BL/6J mice and healthy human individuals have enriched B. fragilis than DBA/1J mice and RA patients. Transplantation of B. fragilis prevents CIA in DBA/1J mice. We identify that B. fragilis mainly produces propionate and C57BL/6J mice and healthy human individuals have higher level of propionate. Fibroblast-like synoviocytes (FLSs) in RA are activated to undergo tumor-like transformation. Propionate disrupts HDAC3-FOXK1 interaction to increase acetylation of FOXK1, resulting in reduced FOXK1 stability, blocked interferon signaling and deactivation of RA-FLSs. We treat CIA mice with propionate and show that propionate attenuates CIA. Moreover, a combination of propionate with anti-TNF etanercept synergistically relieves CIA. These results suggest that B. fragilis or propionate could be an alternative or complementary approach to the current therapies.

[graphic not available: see fulltext]

Cite this article

Download citation ▾
Hongzhen Chen, Xuekun Fu, Xiaohao Wu, Junyi Zhao, Fang Qiu, Zhenghong Wang, Zhuqian Wang, Xinxin Chen, Duoli Xie, Jie Huang, Junyu Fan, Xu Yang, Yi Song, Jie Li, Dongyi He, Guozhi Xiao, Aiping Lu, Chao Liang. Gut microbial metabolite targets HDAC3-FOXK1-interferon axis in fibroblast-like synoviocytes to ameliorate rheumatoid arthritis. Bone Research, 2024, 12(1): 31 DOI:10.1038/s41413-024-00336-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet, 2016, 388: 2023-2038

[2]

Guo Q et al. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res., 2018, 6: 15

[3]

Brown EM, Garneau KL, Tsao H, Solomon DH. DMARD non-use in low-income, elderly rheumatoid arthritis patients: results of 86 structured interviews. Arthritis. Res. Ther., 2014, 16: R30

[4]

Petrelli F, Mariani FM, Alunno A, Puxeddu I. Pathogenesis of rheumatoid arthritis: one year in review 2022. Clin. Exp. Rheumatol., 2022, 40: 475-482

[5]

Huang J et al. Promising therapeutic targets for treatment of rheumatoid arthritis. Front. Immunol., 2021, 12

[6]

Huang, Y. et al. CRISPRa engineered Elite macrophages enable adoptive cell therapy for rheumatoid arthritis. Innov. Med. 2, 100050 (2024).

[7]

Dedmon LE. The genetics of rheumatoid arthritis. Rheumatology, 2020, 59: 2661-2670

[8]

Ishigaki K et al. Multi-ancestry genome-wide association analyses identify novel genetic mechanisms in rheumatoid arthritis. Nat. Genet., 2022, 54: 1640-1651

[9]

Westra HJ et al. Fine-mapping and functional studies highlight potential causal variants for rheumatoid arthritis and type 1 diabetes. Nat. Genet., 2018, 50: 1366-1374

[10]

Okada Y, Eyre S, Suzuki A, Kochi Y, Yamamoto K. Genetics of rheumatoid arthritis: 2018 status. Ann. Rheum. Dis., 2019, 78: 446-453

[11]

Amariuta T, Luo Y, Knevel R, Okada Y, Raychaudhuri S. Advances in genetics toward identifying pathogenic cell states of rheumatoid arthritis. Immunol. Rev., 2020, 294: 188-204

[12]

Kurko J et al. Genetics of rheumatoid arthritis - a comprehensive review. Clin. Rev. Allergy Immunol., 2013, 45: 170-179

[13]

Kim K, Bang SY, Lee HS, Bae SC. Update on the genetic architecture of rheumatoid arthritis. Nat. Rev. Rheumatol., 2017, 13: 13-24

[14]

de Moel EC et al. Geo-epidemiology of autoantibodies in rheumatoid arthritis: comparison between four ethnically diverse populations. Arthritis. Res. Ther., 2023, 25: 37

[15]

Finckh A et al. Global epidemiology of rheumatoid arthritis. Nat. Rev. Rheumatol., 2022, 18: 591-602

[16]

Ha E et al. Genetic variants shape rheumatoid arthritis-specific transcriptomic features in CD4+ T cells through differential DNA methylation, explaining a substantial proportion of heritability. Ann. Rheum. Dis., 2021, 80: 876-883

[17]

Suzuki A, Terao C, Yamamoto K. Linking of genetic risk variants to disease-specific gene expression via multi-omics studies in rheumatoid arthritis. Semin. Arthritis. Rheum., 2019, 49: S49-S53

[18]

Horta-Baas G et al. Intestinal dysbiosis and rheumatoid arthritis: a link between gut microbiota and the pathogenesis of rheumatoid arthritis. J. Immunol. Res., 2017, 2017

[19]

Wang DW et al. Gut microbial dysbiosis in rheumatoid arthritis: a systematic review protocol of case-control studies. BMJ Open, 2022, 12: e052021

[20]

Afzaal M et al. Human gut microbiota in health and disease: unveiling the relationship. Front. Microbiol., 2022, 13

[21]

Taneja V. Arthritis susceptibility and the gut microbiome. FEBS Lett., 2014, 588: 4244-4249

[22]

Boccuto L, Tack J, Ianiro G, Abenavoli L, Scarpellini E. Human genes involved in the interaction between host and gut microbiome: regulation and pathogenic mechanisms. Genes, 2023, 14: 857

[23]

Goodrich JK et al. Human genetics shape the gut microbiome. Cell, 2014, 159: 789-799

[24]

Wells PM et al. Associations between gut microbiota and genetic risk for rheumatoid arthritis in the absence of disease: a cross-sectional study. Lancet Rheumatol., 2020, 2: e418-e427

[25]

Qin Y et al. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat. Genet., 2022, 54: 134-142

[26]

Zhernakova DV et al. Host genetic regulation of human gut microbial structural variation. Nature, 2024, 625: 813-821

[27]

Sellers RS, Clifford CB, Treuting PM, Brayton C. Immunological variation between inbred laboratory mouse strains: points to consider in phenotyping genetically immunomodified mice. Vet. Pathol., 2012, 49: 32-43

[28]

Brand DD, Latham KA, Rosloniec EF. Collagen-induced arthritis. Nat. Protoc., 2007, 2: 1269-1275

[29]

Inglis JJ et al. Collagen-induced arthritis in C57BL/6 mice is associated with a robust and sustained T-cell response to type II collagen. Arthritis. Res. Ther., 2007, 9: R113

[30]

Walter W, Loos M, Maeurer MJ. H2-M polymorphism in mice susceptible to collagen-induced arthritis involves the peptide binding groove. Immunogenetics, 1996, 44: 19-26

[31]

Guo J et al. Characteristics of gut microbiota in representative mice strains: implications for biological research. Anim. Model Exp. Med., 2022, 5: 337-349

[32]

Vaahtovuo J, Toivanen P, Eerola E. Study of murine faecal microflora by cellular fatty acid analysis; effect of age and mouse strain. Antonie Van. Leeuwenhoek, 2001, 80: 35-42

[33]

Kim CH. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cell Mol. Immunol., 2021, 18: 1161-1171

[34]

Nemeth T, Nagy G, Pap T. Synovial fibroblasts as potential drug targets in rheumatoid arthritis, where do we stand and where shall we go? Ann. Rheum. Dis., 2022, 81: 1055-1064

[35]

Chu CQ. Fibroblasts in rheumatoid arthritis. N. Engl. J. Med., 2020, 383: 1679-1681

[36]

Singh V, Naldi A, Soliman S, Niarakis A. A large-scale Boolean model of the rheumatoid arthritis fibroblast-like synoviocytes predicts drug synergies in the arthritic joint. NPJ Syst. Biol. Appl., 2023, 9

[37]

Yang L et al. Histone deacetylase 3 contributes to the antiviral innate immunity of macrophages by interacting with FOXK1 to regulate STAT1/2 transcription. Cell Rep., 2022, 38

[38]

Sakaguchi M et al. FoxK1 and FoxK2 in insulin regulation of cellular and mitochondrial metabolism. Nat. Commun., 2019, 10

[39]

Sukonina V et al. FOXK1 and FOXK2 regulate aerobic glycolysis. Nature, 2019, 566: 279-283

[40]

Silva LG, Ferguson BS, Avila AS, Faciola AP. Sodium propionate and sodium butyrate effects on histone deacetylase (HDAC) activity, histone acetylation, and inflammatory gene expression in bovine mammary epithelial cells. J. Anim. Sci., 2018, 96: 5244-5252

[41]

Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol., 2014, 6: a018713

[42]

Gallinari P, Di Marco S, Jones P, Pallaoro M, Steinkuhler C. HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res., 2007, 17: 195-211

[43]

Tong J, Liu C, Summanen P, Xu H, Finegold SM. Application of quantitative real-time PCR for rapid identification of Bacteroides fragilis group and related organisms in human wound samples. Anaerobe, 2011, 17: 64-68

[44]

Jean S, Wallace MJ, Dantas G, Burnham CD. Time for some group therapy: update on identification, antimicrobial resistance, taxonomy, and clinical significance of the bacteroides fragilis group. J. Clin. Microbiol., 2022, 60: e0236120

[45]

Zafar H, Saier MH Jr. Comparative genomics of transport proteins in seven Bacteroides species. PLoS One, 2018, 13: e0208151

[46]

Dziarski R, Park SY, Kashyap DR, Dowd SE, Gupta D. Pglyrp-regulated gut microflora prevotella falsenii, parabacteroides distasonis and bacteroides eggerthii enhance and alistipes finegoldii attenuates colitis in mice. PLoS One, 2016, 11: e0146162

[47]

Lucas C, Barnich N, Nguyen HTT. Microbiota, inflammation and colorectal cancer. Int. J. Mol. Sci., 2017, 18: 1310

[48]

Wu S et al. GMrepo: a database of curated and consistently annotated human gut metagenomes. Nucleic Acids Res., 2020, 48: D545-D553

[49]

Piwowarek K, Lipinska E, Hac-Szymanczuk E, Kieliszek M, Scibisz I. Propionibacterium spp.-source of propionic acid, vitamin B12, and other metabolites important for the industry. Appl. Microbiol. Biotechnol., 2018, 102: 515-538

[50]

Reichardt N et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J., 2014, 8: 1323-1335

[51]

Hoyles, L. et al. Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome 6, 55 (2018).

[52]

Bi, X. et al. LncRNA PICSAR promotes cell proliferation, migration and invasion of fibroblast-like synoviocytes by sponging miRNA-4701-5p in rheumatoid arthritis. EBioMedicine 50, 408–420 (2019).

[53]

Tu, J. A.-O. et al. PU.1 promotes development of rheumatoid arthritis via repressing FLT3 in macrophages and fibroblast-like synoviocytes. Ann. Rheum. Dis. 82, 198–211 (2023).

[54]

Glehr, M. et al. The influence of resveratrol on the synovial expression of matrix metalloproteinases and receptor activator of NF-kappaB ligand in rheumatoid arthritis fibroblast-like synoviocytes. Z. Naturforsch. C. J. Biosci. 68, 336–342 (2013).

[55]

Szklarczyk D et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49: D605-D612

[56]

Furumai R et al. Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc. Natl. Acad. Sci. USA, 2001, 98: 87-92

[57]

Rangan P, Mondino A. Microbial short-chain fatty acids: a strategy to tune adoptive T cell therapy. J. Immunother. Cancer, 2022, 10: e004147

[58]

Ho RH et al. In silico and in vitro interactions between short chain fatty acids and human histone deacetylases. Biochemistry, 2017, 56: 4871-4878

[59]

Wu J et al. TNF antagonist sensitizes synovial fibroblasts to ferroptotic cell death in collagen-induced arthritis mouse models. Nat. Commun., 2022, 13

[60]

Popivanova BK et al. Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J. Clin. Investig., 2008, 118: 560-570

[61]

He J et al. Intestinal butyrate-metabolizing species contribute to autoantibody production and bone erosion in rheumatoid arthritis. Sci. Adv., 2022, 8

[62]

Hvatum M, Kanerud L, Hallgren R, Brandtzaeg P. The gut-joint axis: cross reactive food antibodies in rheumatoid arthritis. Gut, 2006, 55: 1240-1247

[63]

Jiang ZM et al. Sinomenine ameliorates rheumatoid arthritis by modulating tryptophan metabolism and activating aryl hydrocarbon receptor via gut microbiota regulation. Sci. Bull., 2023, 68: 1540-1555

[64]

Tajik N et al. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat. Commun., 2020, 11

[65]

Rudi K, Zhao L. Grand challenges in understanding gut microbes. Front. Microbiol., 2021, 12: 752829

[66]

Wang AJ, Song D, Hong YM, Liu NN. Multi-omics insights into the interplay between gut microbiota and colorectal cancer in the “microworld” age. Mol. Omics, 2023, 19: 283-296

[67]

Mikhaylenko DS et al. Genetic polymorphisms associated with rheumatoid arthritis development and antirheumatic therapy response. Int. J. Mol. Sci., 2020, 21: 4911

[68]

Scher JU et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife, 2013, 2

[69]

Rogier R et al. Alteration of the intestinal microbiome characterizes preclinical inflammatory arthritis in mice and its modulation attenuates established arthritis. Sci. Rep., 2017, 7

[70]

Kim D, Kim WU. Editorial: can prevotella copri be a causative pathobiont in rheumatoid arthritis? Arthritis. Rheumatol., 2016, 68: 2565-2567

[71]

Marietta EV et al. Suppression of inflammatory arthritis by human gut-derived prevotella histicola in humanized mice. Arthritis. Rheumatol., 2016, 68: 2878-2888

[72]

Xu X et al. The bridge of the gut-joint axis: gut microbial metabolites in rheumatoid arthritis. Front. Immunol., 2022, 13

[73]

Chambers ES, Preston T, Frost G, Morrison DJ. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr. Nutr. Rep., 2018, 7: 198-206

[74]

Bottini N, Firestein GS. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat. Rev. Rheumatol., 2013, 9: 24-33

[75]

Sanchez HN et al. B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nat. Commun., 2020, 11

[76]

Han KA et al. Histone deacetylase 3 promotes RCAN1 stability and nuclear translocation. PLoS One, 2014, 9: e105416

[77]

Vidal-Laliena M et al. Histone deacetylase 3 regulates cyclin a stability. J. Biol. Chem., 2013, 288: 21096-21104

[78]

Liang C et al. Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma. Biomaterials, 2017, 147: 68-85

[79]

Hong P et al. Echinatin suppresses esophageal cancer tumor growth and invasion through inducing AKT/mTOR-dependent autophagy and apoptosis. Cell Death Dis., 2020, 11: 524

[80]

Varnavides G et al. In search of a universal method: a comparative survey of bottom- up proteomics sample preparation methods. J. Proteome Res., 2022, 21: 2397-2411

[81]

Bruderer R et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol. Cell. Proteom., 2015, 14: 1400-1410

[82]

Lei Y et al. LIM domain proteins Pinch1/2 regulate chondrogenesis and bone mass in mice. Bone Res., 2020, 8: 37

[83]

Liang C et al. HIF1 alpha inhibition facilitates Leflunomide-AHR-CRP signaling to attenuate bone erosion in CRP-aberrant rheumatoid arthritis. Nat. Commun., 2019, 10

[84]

Douglas GM et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol., 2020, 38: 685-688

[85]

Bokulich NA et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2‘s q2-feature-classifier plugin. Microbiome, 2018, 6

[86]

Zheng X et al. A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids. Metabolomics, 2013, 9: 818-827

[87]

Barupal DK et al. MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity. BMC Bioinforma., 2012, 13

[88]

Hayer S et al. SMASH’ recommendations for standardised microscopic arthritis scoring of histological sections from inflammatory arthritis animal models. Ann. Rheum. Dis., 2021, 80: 714-726

Funding

National Natural Science Foundation of China (National Science Foundation of China)(82172386)

Department of Education of Guangdong Province (Guangdong Province Education Department)(2021KTSCX104)

Guangdong Basic and Applied Basic Research Foundation (2022A1515012164 to CL) the Science, Technology and Innovation Commission of Shenzhen (JCYJ20210324104201005 to CL

the Guangdong Basic and Applied Basic Research Foundation (2023A1515012000 to XF)

AI Summary AI Mindmap
PDF

315

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/