β-Receptor blocker enhances the anabolic effect of PTH after osteoporotic fracture

Jie Huang1, Tong Wu1, Yi-Rong Jiang1, Xuan-Qi Zheng1, Huan Wang1, Hao Liu1, Hong Wang1,2,3, Hui-Jie Leng1,2,3, Dong-Wei Fan1,2,3, Wan-Qiong Yuan1,2,3, Chun-Li Song1,2,3

Bone Research ›› 2024, Vol. 12 ›› Issue (0) : 18. DOI: 10.1038/s41413-024-00321-z
ARTICLE

β-Receptor blocker enhances the anabolic effect of PTH after osteoporotic fracture

  • Jie Huang1, Tong Wu1, Yi-Rong Jiang1, Xuan-Qi Zheng1, Huan Wang1, Hao Liu1, Hong Wang1,2,3, Hui-Jie Leng1,2,3, Dong-Wei Fan1,2,3, Wan-Qiong Yuan1,2,3, Chun-Li Song1,2,3
Author information +
History +

Abstract

The autonomic nervous system plays a crucial role in regulating bone metabolism, with sympathetic activation stimulating bone resorption and inhibiting bone formation. We found that fractures lead to increased sympathetic tone, enhanced osteoclast resorption, decreased osteoblast formation, and thus hastened systemic bone loss in ovariectomized (OVX) mice. However, the combined administration of parathyroid hormone (PTH) and the β-receptor blocker propranolol dramatically promoted systemic bone formation and osteoporotic fracture healing in OVX mice. The effect of this treatment is superior to that of treatment with PTH or propranolol alone. In vitro, the sympathetic neurotransmitter norepinephrine (NE) suppressed PTH-induced osteoblast differentiation and mineralization, which was rescued by propranolol. Moreover, NE decreased the PTH-induced expression of Runx2 but enhanced the expression of Rankl and the effect of PTH-stimulated osteoblasts on osteoclastic differentiation, whereas these effects were reversed by propranolol. Furthermore, PTH increased the expression of the circadian clock gene Bmal1, which was inhibited by NE-βAR signaling. Bmal1 knockdown blocked the rescue effect of propranolol on the NE-induced decrease in PTH-stimulated osteoblast differentiation. Taken together, these results suggest that propranolol enhances the anabolic effect of PTH in preventing systemic bone loss following osteoporotic fracture by blocking the negative effects of sympathetic signaling on PTH anabolism.

Cite this article

Download citation ▾
Jie Huang, Tong Wu, Yi-Rong Jiang, Xuan-Qi Zheng, Huan Wang, Hao Liu, Hong Wang, Hui-Jie Leng, Dong-Wei Fan, Wan-Qiong Yuan, Chun-Li Song. β-Receptor blocker enhances the anabolic effect of PTH after osteoporotic fracture. Bone Research, 2024, 12(0): 18 https://doi.org/10.1038/s41413-024-00321-z

References

1. Compston, J. E., McClung, M. R. & Leslie, W. D. Osteoporosis. Lancet 393, 364-376 (2019).
2. Reid, I. R. & Billington, E. O. Drug therapy for osteoporosis in older adults. Lancet 399, 1080-1092 (2022).
3. Gorter E. A., Reinders C. R., Krijnen P., Appelman-Dijkstra, N. M. & Schipper, I. B. The effect of osteoporosis and its treatment on fracture healing a systematic review of animal and clinical studies. Bone Rep. 15, 101117(2021).
4. Emami, A. J.et al.Age dependence of systemic bone loss and recovery following femur fracture in mice. J. Bone Miner. Res. 34, 157-170 (2019).
5. Zhang, C.et al.Effect of single versus multiple fractures on systemic bone loss in mice. J. Bone Miner. Res. 36, 567-578 (2021).
6. Zheng X. Q., Huang J., Lin J. L.& Song, C. L. Pathophysiological mechanism of acute bone loss after fracture. J. Adv. Res. 49, 63-80 (2023).
7. Jorgensen N. R.& Schwarz, P. Effects of anti-osteoporosis medications on fracture healing. Curr. Osteoporos. Rep. 9, 149-155 (2011).
8. Peichl P., Holzer L. A., Maier R.& Holzer, G. Parathyroid hormone 1-84 accelerates fracture-healing in pubic bones of elderly osteoporotic women. J. Bone Joint. Surg. Am. 93, 1583-1587 (2011).
9. Zhang, W.et al.Comparison of the effects of once-weekly and once-daily rhPTH (1-34) injections on promoting fracture healing in rodents. J. Orthop. Res. 36, 1145-1152 (2018).
10. Elefteriou F.Impact of the autonomic nervous system on the skeleton. Physiol. Rev. 98, 1083-1112 (2018).
11. Guan, Z.et al.Bone mass loss in chronic heart failure is associated with sympathetic nerve activation. Bone 166, 116596 (2023).
12. Sato T., Arai M., Goto S.& Togari, A. Effects of propranolol on bone metabolism in spontaneously hypertensive rats. J. Pharmacol. Exp. Ther. 334, 99-105 (2010).
13. Yirmiya, R.et al. Depression induces bone loss through stimulation of the sympathetic nervous system. Proc. Natl. Acad. Sci. USA 103, 16876-16881 (2006).
14. Hanyu, R.et al. Anabolic action of parathyroid hormone regulated by the beta2- adrenergic receptor. Proc. Natl. Acad. Sci. USA 109, 7433-7438 (2012).
15. Luo, B.et al.Circadian rhythms affect bone reconstruction by regulating bone energy metabolism. J. Transl. Med. 19, 410(2021).
16. Song, C.et al.Insights into the role of circadian rhythms in bone metabolism: a promising intervention target? Biomed. Res. Int. 2018, 9156478(2018).
17. Luchavova, M.et al.The effect of timing of teriparatide treatment on the circadian rhythm of bone turnover in postmenopausal osteoporosis. Eur. J. Endocrinol. 164, 643-648 (2011).
18. Kajimura, D.et al.Genetic determination of the cellular basis of the sympathetic regulation of bone mass accrual. J. Exp. Med. 208, 841-851 (2011).
19. Ko, D. T.et al. Beta-blocker therapy and symptoms of depression, fatigue,sexual dysfunction. JAMA 288, 351-357 (2002).
20. Langley A.& Pope, E. Propranolol and central nervous system function: potential implications for paediatric patients with infantile haemangiomas. Br. J. Dermatol. 172, 13-23 (2015).
21. Lacey, D. L.et al.Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. Nat. Rev. Drug Discov. 11, 401-419 (2012).
22. Diemar, S. S.et al.A systematic review of the circadian rhythm of bone markers in blood. Calcif. Tissue Int. 112, 126-147 (2023).
23. Leach S.& Suzuki, K. Adrenergic signaling in circadian control of immunity. Front. Immunol. 11, 1235(2020).
24. Guzon-Illescas, O. et al. Mortality after osteoporotic hip fracture: incidence, trends, and associated factors. J. Orthop. Surg. Res. 14, 203(2019).
25. Christiansen B. A., Harrison S. L., Fink H. A.& Lane, N. E. Incident fracture is associated with a period of accelerated loss of hip BMD: the study of osteoporotic fractures. Osteoporos. Int. 29, 2201-2209 (2018).
26. Balani, D. H., Ono, N.& Kronenberg, H. M. Parathyroid hormone regulates fates of murine osteoblast precursors in vivo. J. Clin. Invest. 127, 3327-3338 (2017).
27. Martin, T. J., Sims, N. A.& Seeman, E. Physiological and pharmacological roles of PTH and PTHrP in bone using their shared receptor, PTH1R. Endocr. Rev. 42, 383-406 (2021).
28. Yamashita J.& McCauley, L. K. Effects of intermittent administration of parathyroid hormone and parathyroid hormone-related protein on fracture healing: a narrative review of animal and human studies. JBMR Plus. 3, e10250(2019).
29. Johansson T.PTH 1-34 (teriparatide) may not improve healing in proximal humerus fractures. A randomized, controlled study of 40 patients. Acta Orthop. 87, 79-82 (2016).
30. Bhandari, M.et al.Does Teriparatide improve femoral neck fracture healing: results from a randomized placebo-controlled trial. Clin. Orthop. Relat. Res. 474, 1234-1244 (2016).
31. Obri A., Makinistoglu M. P., Zhang H.& Karsenty, G. HDAC4 integrates PTH and sympathetic signaling in osteoblasts. J. Cell Biol. 205, 771-780 (2014).
32. Delgado-Calle, J. & Bellido, T. The osteocyte as a signaling cell. Physiol. Rev. 102, 379-410 (2022).
33. Debnath, S.et al. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 562, 133-139 (2018).
34. Chen, R.et al.Sfrp4 is required to maintain Ctsk-lineage periosteal stem cell niche function. Proc. Natl. Acad. Sci. USA 120, e2312677120 (2023).
35. Yukata, K.et al. Teriparatide (human PTH(1-34)) compensates for impaired fracture healing in COX-2 deficient mice. Bone 110, 150-159 (2018).
36. Gamble K. L., Berry R., Frank S. J.& Young, M. E. Circadian clock control of endocrine factors. Nat. Rev. Endocrinol. 10, 466-475 (2014).
37. El Jamal, N., Lordan, R., Teegarden, S. L., Grosser, T. & FitzGerald, G. The circadian biology of heart failure. Circ. Res. 132, 223-237 (2023).
38. Riganello F., Prada V., Soddu A., di Perri, C. & Sannita, W. G. Circadian rhythms and measures of CNS/autonomic interaction. Int. J. Environ. Res. Public Health 16, 2336 (2019).
39. Qin, Y.et al.Circadian clock genes as promising therapeutic targets for bone loss. Biomed. Pharmacother. 157, 114019(2023).
40. Wang, K.et al. The associations of bedtime, nocturnal,daytime sleep duration with bone mineral density in pre- and post-menopausal women. Endocrine 49, 538-548 (2015).
41. Swanson, C. M.et al.Bone turnover markers after sleep restriction and circadian disruption: a mechanism for sleep-related bone loss in humans. J. Clin. Endocrinol. Metab. 102, 3722-3730 (2017).
42. Michalska, D.et al.Effects of morning vs. evening teriparatide injection on bone mineral density and bone turnover markers in postmenopausal osteoporosis. Osteoporos. Int. 23, 2885-2891 (2012).
43. Chen, G.et al.The biological function of BMAL1 in skeleton development and disorders. Life Sci. 253, 117636(2020).
44. Samsa W. E., Vasanji A., Midura, R. J. & Kondratov, R. V. Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype. Bone 84, 194-203 (2016).
45. Fu L., Patel M. S., Bradley A., Wagner, E. F. & Karsenty, G. The molecular clock mediates leptin-regulated bone formation. Cell 122, 803-815 (2005).
46. Xie, H.et al.PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat. Med. 20, 1270-1278 (2014).
47. Jin, Z.et al. Role of skeletal muscle satellite cells in the repair of osteoporotic fractures mediated by beta-catenin. J. Cachexia Sarcopenia Muscle 13, 1403-1417 (2022).
48. Soleimani M.& Nadri, S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat. Protoc. 4, 102-106 (2009).
49. Sato, M.et al.Effects of intermittent treatment with parathyroid hormone (PTH) on osteoblastic differentiation and mineralization of mouse induced pluripotent stem cells in a 3D culture model. J. Periodontal. Res. 55, 734-743 (2020).
Funding
Chun-Li Song (schl@bjmu.edu.cn)

Accesses

Citations

Detail

Sections
Recommended

/