Piezo1 expression in chondrocytes controls endochondral ossification and osteoarthritis development
- Laura J. Brylka1, Assil-Ramin Alimy2, Miriam E. A. Tschaffon-Müller3, Shan Jiang2, Tobias Malte Ballhause2, Anke Baranowsky2, Simon von Kroge1,2, Julian Delsmann2, Eva Pawlus1, Kian Eghbalian1, Klaus Püschel4, Astrid Schoppa3, Melanie Haffner-Luntzer3, David J. Beech5, Frank Timo Beil2, Michael Amling1, Johannes Keller2, Anita Ignatius3, Timur A. Yorgan1, Tim Rolvien2, Thorsten Schinke1
Author information
+
1Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
2Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
3Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Baden- Württemberg, 89081 Ulm, Germany;
4Department Legal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
5Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, LS2 9JT Leeds, UK
Show less
History
+
Received |
Revised |
Published |
18 Jul 2023 |
18 Dec 2023 |
10 Jul 2024 |
Issue Date |
|
10 Jul 2024 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
1. Martino F., Perestrelo A. R., Vinarsky V., Pagliari S.& Forte, G. Cellular mechanotransduction: from tension to function. Front. Physiol. 9, 824(2018).
2. Stewart S., Darwood A., Masouros S., Higgins C.& Ramasamy, A. Mechanotransduction in osteogenesis. Bone Joint Res. 9, 1-14 (2020).
3. Zhao, Z.et al.Mechanotransduction pathways in the regulation of cartilage chondrocyte homoeostasis. J. Cell Mol. Med. 24, 5408-5419 (2020).
4. Syeda R.Physiology and pathophysiology of mechanically activated PIEZO channels. Annu. Rev. Neurosci. 44, 383-402 (2021).
5. Qin, L.et al.Roles of mechanosensitive channel Piezo1/2 proteins in skeleton and other tissues. Bone Res. 9, 44(2021).
6. Coste, B.et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55-60 (2010).
7. Ge, J.et al. Architecture of the mammalian mechanosensitive Piezo1 channel. Nature 527, 64-69 (2015).
8. Wang, L.et al. Structure and mechanogating of the mammalian tactile channel PIEZO2. Nature 573, 225-229 (2019).
9. Gudipaty, S. A.et al. Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature 543, 118-121 (2017).
10. Li, J.et al. Piezo1 integration of vascular architecture with physiological force. Nature 515, 279-282 (2014).
11. Nonomura, K.et al. Piezo2 senses airway stretch and mediates lung inflationinduced apnoea. Nature 541, 176-181 (2017).
12. Ranade, S. S.et al. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 516, 121-125 (2014).
13. Martinac B.2021 Nobel Prize for mechanosensory transduction. Biophys. Rev. 14, 15-20 (2022).
14. Syeda, R.et al.Chemical activation of the mechanotransduction channel Piezo1. Elife 4, e07369 (2015).
15. Gnanasambandam, R.et al.GsMTx4: mechanism of inhibiting mechanosensitive ion channels. Biophys. J. 112, 31-45 (2017).
16. Bae, C., Sachs, F. & Gottlieb, P. A. The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4. Biochemistry 50, 6295-6300 (2011).
17. Alcaino C., Knutson K., Gottlieb P. A., Farrugia G.& Beyder, A.Mechanosensitive ion channel Piezo2 is inhibited by D-GsMTx4. Channels (Austin) 11, 245-253 (2017).
18. Aghajanian P.& Mohan, S. The art of building bone: emerging role of chondrocyte-to-osteoblast transdifferentiation in endochondral ossification. Bone Res. 6, 19(2018).
19. Long F.& Ornitz, D. M. Development of the endochondral skeleton. Cold Spring Harb. Perspect. Biol. 5, a008334(2013).
20. Zaidi M.Skeletal remodeling in health and disease. Nat. Med. 13, 791-801 (2007).
21. Sun, W.et al.The mechanosensitive Piezo1 channel is required for bone formation. Elife 8, e47454 (2019).
22. Li, X.et al.Stimulation of Piezo1 by mechanical signals promotes bone anabolism. Elife 8, e49631 (2019).
23. Zhou, T.et al.Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT-YAP1-ss-catenin. Elife 9, e52779 (2020).
24. Wang, L.et al.Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk. Nat. Commun. 11, 282(2020).
25. Hendrickx, G.et al.Piezo1 inactivation in chondrocytes impairs trabecular bone formation. J. Bone Miner. Res. 36, 369-384 (2021).
26. Takarada, T.et al.An analysis of skeletal development in osteoblast-specific and chondrocyte-specific runt-related transcription factor-2 (Runx2) knockout mice. J. Bone Miner. Res. 28, 2064-2069 (2013).
27. Takeda S., Bonnamy J. P., Owen M. J., Ducy P.& Karsenty, G. Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1- deficient mice. Genes Dev. 15, 467-481 (2001).
28. Mizuhashi, K.et al. Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature 563, 254-258 (2018).
29. Lee, W.et al. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage. Proc. Natl. Acad. Sci. USA 111, E5114-E5122 (2014).
30. Wang, S.et al.Mechanical overloading induces GPX4-regulated chondrocyte ferroptosis in osteoarthritis via Piezo1 channel facilitated calcium influx. J. Adv. Res. 41, 63-75 (2022).
31. Young, C. & Kobayashi, T. Limited roles of Piezo mechanosensing channels in articular cartilage development and osteoarthritis progression. Osteoarthritis Cartilage 31, 775-779 (2023).
32. Gan, D.et al. Piezo1 activation accelerates osteoarthritis progression and the targeted therapy effect of artemisinin. J. Adv. Res. 25, S2090-1232(23)00289-8 (2023).
33. Long, H.et al.Prevalence trends of site-specific osteoarthritis from 1990 to 2019: Findings From the Global Burden of Disease Study 2019. Arthritis Rheumatol. 74, 1172-1183 (2022).
34. Goldring M. B.& Berenbaum, F. The regulation of chondrocyte function by proinflammatory mediators: prostaglandins and nitric oxide. Clin. Orthop. Relat. Res. 427, S37-46 (2004).
35. Arnott, J. A.et al.The role of connective tissue growth factor (CTGF/CCN2) in skeletogenesis. Crit. Rev. Eukaryot Gene Expr. 21, 43-69 (2011).
36. Ivkovic, S.et al. Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130, 2779-2791 (2003).
37. Lefebvre, V., Angelozzi, M.& Haseeb, A. SOX9 in cartilage development and disease. Curr. Opin. Cell Biol. 61, 39-47 (2019).
38. Tu M., Yao Y., Qiao F. H.& Wang, L. The pathogenic role of connective tissue growth factor in osteoarthritis. Biosci. Rep. 39, BSR20191374 (2019).
39. Tang, X.et al.Connective tissue growth factor contributes to joint homeostasis and osteoarthritis severity by controlling the matrix sequestration and activation of latent TGFbeta. Ann. Rheum Dis. 77, 1372-1380 (2018).
40. Chen, Y. J.et al.Systematic analysis of transcriptomic profile of chondrocytes in osteoarthritic knee using next-generation sequencing and bioinformatics. J. Clin. Med. 7, 535(2018).
41. Tschaffon, M. E. A.et al. A novel in vitro assay to study chondrocyte-to-osteoblast transdifferentiation. Endocrine 75, 266-275 (2022).
42. Katz, J. N., Arant, K. R. & Loeser, R. F. Diagnosis and treatment of hip and knee osteoarthritis: a review. JAMA 325, 568-578 (2021).
43. Henkel, C.et al.Genome-wide association meta-analysis of knee and hip osteoarthritis uncovers genetic differences between patients treated with joint replacement and patients without joint replacement. Ann. Rheum. Dis. 82, 384-392 (2023).
44. Fukai, A.et al.Lack of a chondroprotective effect of cyclooxygenase 2 inhibition in a surgically induced model of osteoarthritis in mice. Arthritis Rheum. 64, 198-203 (2012).
45. Sgalla G., Franciosa C., Simonetti, J. & Richeldi, L. Pamrevlumab for the treatment of idiopathic pulmonary fibrosis. Expert Opin. Investig. Drugs 29, 771-777 (2020).
46. Yang Z., Li W., Song C.& Leng, H. CTGF as a multifunctional molecule for cartilage and a potential drug for osteoarthritis. Front. Endocrinol. (Lausanne) 13, 1040526(2022).
47. Obeidat, A. M.et al.Piezo2 expressing nociceptors mediate mechanical sensitization in experimental osteoarthritis. Nat. Commun. 14, 2479(2023).
48. Chen, S.et al.Piezo1-mediated mechanotransduction promotes entheseal pathological new bone formation in ankylosing spondylitis. Ann. Rheum. Dis. 82, 533-545 (2023).
49. Nakamura, E., Nguyen, M. T.& Mackem, S. Kinetics of tamoxifen-regulated Cre activity in mice using a cartilage-specific CreER(T) to assay temporal activity windows along the proximodistal limb skeleton. Dev. Dyn. 235, 2603-2612 (2006).
50. Doherty H. E., Kim H. S., Hiller S., Sulik K. K.& Maeda, N. A mouse strain where basal connective tissue growth factor gene expression can be switched from low to high. PLoS One 5, e12909 (2010).
51. Woo, S. H.et al. Piezo2 is required for Merkel-cell mechanotransduction. Nature 509, 622-626 (2014).
52. Ovchinnikov D. A., Deng J. M., Ogunrinu, G. & Behringer, R. R. Col2a1-directed expression of Cre recombinase in differentiating chondrocytes in transgenic mice. Genesis 26, 145-146 (2000).
53. Glasson, S. S., Blanchet, T. J. & Morris, E. A. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthritis Cartilage 15, 1061-1069 (2007).
54. Hissnauer, T. N.et al. Identification of molecular markers for articular cartilage. Osteoarthritis Cartilage 18, 1630-1638 (2010).
55. Albers, J.et al.Canonical Wnt signaling inhibits osteoclastogenesis independent of osteoprotegerin. J. Cell Biol. 200, 537-549 (2013).
56. Appelt, J.et al.Mice lacking the calcitonin receptor do not display improved bone healing. Cells 10, 2304 (2021).
57. Glasson S. S., Chambers M. G., Van Den Berg, W. B. & Little, C. B. The OARSI histopathology initiative—recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthritis Cartilage 18(Suppl 3), S17-S23 (2010).
58. Lewis, J. S.et al. Acute joint pathology and synovial inflammation is associated with increased intra-articular fracture severity in the mouse knee. Osteoarthritis Cartilage 19, 864-873 (2011).
59. Little, C. B.et al.Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. 60, 3723-3733 (2009).
60. Schinke, T.et al.Impaired gastric acidification negatively affects calcium homeostasis and bone mass. Nat. Med. 15, 674-681 (2009).
61. Dempster, D. W.et al.Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 28, 2-17 (2013).
Funding
Tim Rolvien (t.rolvien@uke.de) or Thorsten Schinke (schinke@uke.de)