Interorgan communication in neurogenic heterotopic ossification: the role of brain-derived extracellular vesicles

Weicheng Lu1, Jianfei Yan1, Chenyu Wang2, Wenpin Qin1, Xiaoxiao Han1, Zixuan Qin1, Yu Wei1, Haoqing Xu1, Jialu Gao1, Changhe Gao1, Tao Ye2, Franklin R. Tay3, Lina Niu2, Kai Jiao1

Bone Research ›› 2024, Vol. 12 ›› Issue (0) : 11. DOI: 10.1038/s41413-023-00310-8
ARTICLE

Interorgan communication in neurogenic heterotopic ossification: the role of brain-derived extracellular vesicles

  • Weicheng Lu1, Jianfei Yan1, Chenyu Wang2, Wenpin Qin1, Xiaoxiao Han1, Zixuan Qin1, Yu Wei1, Haoqing Xu1, Jialu Gao1, Changhe Gao1, Tao Ye2, Franklin R. Tay3, Lina Niu2, Kai Jiao1
Author information +
History +

Abstract

Brain-derived extracellular vesicles participate in interorgan communication after traumatic brain injury by transporting pathogens to initiate secondary injury. Inflammasome-related proteins encapsulated in brain-derived extracellular vesicles can cross the blood‒brain barrier to reach distal tissues. These proteins initiate inflammatory dysfunction, such as neurogenic heterotopic ossification. This recurrent condition is highly debilitating to patients because of its relatively unknown pathogenesis and the lack of effective prophylactic intervention strategies. Accordingly, a rat model of neurogenic heterotopic ossification induced by combined traumatic brain injury and achillotenotomy was developed to address these two issues. Histological examination of the injured tendon revealed the coexistence of ectopic calcification and fibroblast pyroptosis. The relationships among brain-derived extracellular vesicles, fibroblast pyroptosis and ectopic calcification were further investigated in vitro and in vivo. Intravenous injection of the pyroptosis inhibitor Ac-YVAD-cmk reversed the development of neurogenic heterotopic ossification in vivo. The present work highlights the role of brain-derived extracellular vesicles in the pathogenesis of neurogenic heterotopic ossification and offers a potential strategy for preventing neurogenic heterotopic ossification after traumatic brain injury.

Cite this article

Download citation ▾
Weicheng Lu, Jianfei Yan, Chenyu Wang, Wenpin Qin, Xiaoxiao Han, Zixuan Qin, Yu Wei, Haoqing Xu, Jialu Gao, Changhe Gao, Tao Ye, Franklin R. Tay, Lina Niu, Kai Jiao. Interorgan communication in neurogenic heterotopic ossification: the role of brain-derived extracellular vesicles. Bone Research, 2024, 12(0): 11 https://doi.org/10.1038/s41413-023-00310-8

References

1. Karsenty G.& Olson, E. N. Bone and muscle endocrine functions: unexpected paradigms of inter-organ communication. Cell. 164, 1248-1256 (2016).
2. Castillo-Armengol, J., Fajas, L. & Lopez-Mejia, I. C. Inter-organ communication: a gatekeeper for metabolic health. EMBO Rep. 20, e47903(2019).
3. Droujinine I. A.& Perrimon, N. Interorgan communication pathways in physiology: focus on Drosophila. Annu. Rev. Genet. 50, 539-570 (2016).
4. Dutta D., Khan N., Wu J.& Jay, S. M. Extracellular vesicles as an emerging frontier in spinal cord injury pathobiology and therapy. Trends Neurosci. 44, 492-506 (2021).
5. Flamant S.& Tamarat, R. Extracellular vesicles and vascular injury: new insights for radiation exposure. Radiat. Res. 186, 203-218 (2016).
6. Liu, B.et al.Extracellular vesicles from lung tissue drive bone marrow neutrophil recruitment in inflammation. J. Extracell Vesicles. 11, e12223(2022).
7. Sun, M. K.et al.Extracellular vesicles mediate neuroprotection and functional recovery after traumatic brain injury. J. Neurotrauma. 37, 1358-1369 (2020).
8. Zhang C. N., Li F. J., Zhao Z. L.& Zhang, J. N. The role of extracellular vesicles in traumatic brain injury-induced acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 321, L885-L891 (2021).
9. Rachfalska, N., Putowski, Z.& Krzych, Ł. J. Distant organ damage in acute brain injury. Brain Sci. 10, 1019(2020).
10. Huh J. R.& Veiga-Fernandes, H. Neuroimmune circuits in inter-organ communication. Nat. Rev. Immunol. 20, 217-228 (2020).
11. Wong, K. R.et al.Neurological heterotopic ossification: novel mechanisms, prognostic biomarkers and prophylactic therapies. Bone Res. 8, 42(2020).
12. Brady R. D., Shultz S. R., McDonald, S. J. & O'Brien, T. J. Neurological heterotopic ossification: current understanding and future directions. Bone. 109, 35-42 (2018).
13. Genêt, F.et al.Troublesome heterotopic ossification after central nervous system damage: a survey of 570 surgeries. PLoS One 6, e16632 (2011).
14. Davis E. L., Davis A. R., Gugala, Z. & Olmsted-Davis, E. A. Is heterotopic ossification getting nervous?: the role of the peripheral nervous system in heterotopic ossification. Bone 109, 22-27 (2018).
15. Sullivan M. P., Torres S. J., Mehta S.& Ahn, J. Heterotopic ossification after central nervous system trauma: a current review. Bone Joint Res. 3, 51-57 (2013).
16. Kerr, N. A.et al.Traumatic brain injury-induced acute lung injury: evidence for activation and inhibition of a neural-respiratory-inflammasome axis. J. Neurotrauma. 35, 2067-2076 (2018).
17. Tseng, H. W.et al.Interleukin-1 is overexpressed in injured muscles following spinal cord injury and promotes neurogenic heterotopic ossification. J. Bone Miner. Res. 37, 531-546 (2022).
18. Yu, A. Y.et al.Characteristics of a rat model of an open craniocerebral injury at simulated high altitude. Neuroreport. 25, 1272-1280 (2014).
19. Irrera, N.et al.The role of NLRP3 inflammasome in the pathogenesis of traumatic brain injury. Int. J. Mol. Sci. 21, 6204(2020).
20. Bohner, M.et al.Sustained local ionic homeostatic imbalance caused by calcification modulates inflammation to trigger heterotopic ossification. Acta Biomater. 145, 1-24 (2022).
21. Yates A. G., Anthony D. C., Ruitenberg M. J.& Couch, Y. Systemic immune response to traumatic cns injuries-are extracellular vesicles the missing link? Front. Immunol. 10, 2723(2019).
22. Lässer, C.et al.The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles. J. Extracell Vesicles. 5, 34299(2016).
23. Yin, K., Wang, S.& Zhao, R. C. Exosomes from mesenchymal stem/stromal cells: a new therapeutic paradigm. Biomark. Res. 7, 8(2019).
24. Reichelt W. N., Waldschitz D., Herwig C.& Neutsch, L. Bioprocess monitoring: minimizing sample matrix effects for total protein quantification with bicinchoninic acid assay. J. Ind. Microbiol. Biotechnol. 43, 1271-1280 (2016).
25. Xia, W.et al.Damaged brain accelerates bone healing by releasing small extracellular vesicles that target osteoprogenitors. Nat. Commun. 12, 6043(2021).
26. Jayathirtha, M.et al.Mass spectrometric (MS) analysis of proteins and peptides. Curr. Protein Pept. Sci. 22, 92-120 (2021).
27. Prasad, R.et al.HMGB1 is a cofactor in mammalian base excision repair. Mol. Cell. 27, 829-841 (2007).
28. Wang, G.et al.LPS-induced macrophage HMGB1-loaded extracellular vesicles trigger hepatocyte pyroptosis by activating the NLRP3 inflammasome. Cell Death Discov. 7, 337(2021).
29. Yang, H., Wang, H.& Andersson, U. Targeting inflammation driven by HMGB1. Front. Immunol. 11, 484(2020).
30. Evavold, C. L.et al. Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway. Cell. 184, 4495-4511.e19 (2021).
31. Lu, J.et al.The functions and mechanisms of basic fibroblast growth factor in tendon repair. Front. Physiol. 13, 852795(2022).
32. Qian, Z.et al.Pyroptosis in the initiation and progression of atherosclerosis. Front. Pharmacol. 12, 652963(2021).
33. Crewe C.& Scherer, P. E. Intercellular and interorgan crosstalk through adipocyte extracellular vesicles. Rev. Endocr. Metab. Disord. 23, 61-69 (2022).
34. Hanayama R.Emerging roles of extracellular vesicles in physiology and disease. J. Biochem. 169, 135-138 (2021).
35. Alexander, K. A.et al.Inhibition of JAK1/2 tyrosine kinases reduces neurogenic heterotopic ossification after spinal cord injury. Front. Immunol. 10, 377(2019).
36. Yang, C.et al.The effect of traumatic brain injury on bone healing from a novel exosome centered perspective in a mice model. J. Orthop. Translat. 30, 70-81 (2021).
37. Chen M. Q.& Luan, J. J. HMGB1 promotes bone fracture healing through activation of ERK signaling pathway in a rat tibial fracture model. Kaohsiung. J. Med. Sci. 35, 550-558 (2019).
38. Lin F., Xue D., Xie T.& Pan, Z. HMGB1 promotes cellular chemokine synthesis and potentiates mesenchymal stromal cell migration via Rap1 activation. Mol. Med. Rep. 14, 1283-1289 (2016).
39. Lin, F.et al.Signaling pathways involved in the effects of HMGB1 on mesenchymal stem cell migration and osteoblastic differentiation. Int. J. Mol. Med. 37, 789-797 (2016).
40. Kerr N., de Rivero Vaccari, J. P., Dietrich, W. D. & Keane, R. W. Neural-respiratory inflammasome axis in traumatic brain injury. Exp. Neurol. 323, 113080(2020).
41. Zhang, X.et al.Trimethylamine-N-oxide promotes vascular calcification through activation of NLRP3 (Nucleotide-Binding Domain, Leucine-Rich-Containing Family, Pyrin Domain-Containing-3) inflammasome and NF-κB (Nuclear Factor κB) signals. Arterioscler. Thromb. Vasc. Biol. 40, 751-765 (2020).
42. Kumar S., Fritz Z., Sulakhiya K., Theis T.& Berthiaume, F. Transcriptional factors and protein biomarkers as target therapeutics in traumatic spinal cord and brain injury. Curr. Neuropharmacol. 18, 1092-1105 (2020).
43. Huang, H.et al.Relationship between heterotopic ossification and traumatic brain injury: Why severe traumatic brain injury increases the risk of heterotopic ossification. J. Orthop. Translat. 12, 16-25 (2017).
44. van Kampen, P. J.et al. Potential risk factors for developing heterotopic ossification in patients with severe traumatic brain injury. J. Head Trauma Rehabil. 26, 384-391 (2011).
45. Cao, H.et al.In vivo tracking of mesenchymal stem cell-derived extracellular vesicles improving mitochondrial function in renal ischemia-reperfusion injury. ACS Nano. 14, 4014-4026 (2020).
46. Zhang, G.et al.Extracellular vesicles: natural liver-accumulating drug delivery vehicles for the treatment of liver diseases. J. Extracell Vesicles. 10, e12030(2020).
47. Zhang, C.et al.Intercellular mitochondrial component transfer triggers ischemic cardiac fibrosis. Sci. Bull. (Beijing). 68, 1784-1799 (2023).
48. Choi, D.et al.Oncogenic RAS drives the CRAF-dependent extracellular vesicle uptake mechanism coupled with metastasis. J. Extracell Vesicles. 10, e12091(2021).
49. Proudfoot, D.et al.Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies. Circ. Res. 87, 1055-1062 (2000).
50. Ceccherini, E.et al.Vascular calcification: in vitro models under the magnifying glass. Biomedicines. 10, 2491(2022).
51. Fujita, H.et al.Necrotic and apoptotic cells serve as nuclei for calcification on osteoblastic differentiation of human mesenchymal stem cells in vitro. Cell. Biochem. Funct. 32, 77-86 (2014).
52. Wang, Y.et al.Mitochondrial ROS promote macrophage pyroptosis by inducing GSDMD oxidation. J. Mol. Cell Biol. 11, 1069-1082 (2019).
53. Zorov, D. B., Juhaszova, M.& Sollott, S. J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94, 909-950 (2014).
54. Maetzler, W.et al.Microcalcification after excitotoxicity is enhanced in transgenic mice expressing parvalbumin in all neurones, may commence in neuronal mitochondria and undergoes structural modifications over time. Neuropathol. Appl. Neurobiol. 35, 165-177 (2009).
55. Neven E.,De Schutter, T. M., De Broe, M. E. & D' Haese, P. C. Cell biological and physicochemical aspects of arterial calcification. Kidney Int. 79, 1166-1177 (2011).
56. Ewence, A. E.et al.Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: a potential mechanism in atherosclerotic plaque destabilization. Circ. Res. 103, e28-e34 (2008).
57. Sage A. P., Lu J., Tintut Y.& Demer, L. L. Hyperphosphatemia-induced nanocrystals upregulate the expression of bone morphogenetic protein-2 and osteopontin genes in mouse smooth muscle cells in vitro. Kidney Int. 79, 414-422 (2011).
58. Li, J.et al.Matrix stiffening by self-mineralizable guided bone regeneration. Acta Biomater. 125, 112-125 (2021).
59. Huang, Y.et al.Macrophages in heterotopic ossification: from mechanisms to therapy. NPJ Regen. Med. 1, 70(2021).
60. Xu, J.et al.The effects of calcitonin gene-related peptide on bone homeostasis and regeneration. Curr. Osteoporos. Rep. 18, 621-632 (2020).
61. Mi, J.et al.Implantable electrical stimulation at dorsal root ganglions accelerates osteoporotic fracture healing via calcitonin gene-related peptide. Adv. Sci. (Weinh). 9, e2103005(2022).
62. Sun, Y.et al.Suprascapular nerve injury affects rotator cuff healing: a paired controlled study in a rat model. J. Orthop. Translat. 27, 153-160 (2020).
63. Niedermair, T.et al.Absence of substance P and the sympathetic nervous system impact on bone structure and chondrocyte differentiation in an adult model of endochondral ossification. Matrix Biol. 38, 22-35 (2014).
64. Washington, P. M.et al.The effect of injury severity on behavior: a phenotypic study of cognitive and emotional deficits after mild, moderate, and severe controlled cortical impact injury in mice. J. Neurotrauma. 13, 2283-2296 (2012).
65. Sun, B.et al.Irisin reduces bone fracture by facilitating osteogenesis and antagonizing TGF-β/Smad signaling in a growing mouse model of osteogenesis imperfecta. J. Orthop. Translat. 38, 175-189 (2023).
66. Gadomski, S.et al.A cholinergic neuroskeletal interface promotes bone formation during postnatal growth and exercise. Cell Stem Cell. 29, 528-544 (2022).
67. Qin W.& Dallas, S. L. Exosomes and extracellular RNA in muscle and bone aging and crosstalk. Curr. Osteoporos. Rep. 17, 548-559 (2019).
68. Mullins, W.et al.The Segond fracture occurs at the site of lowest sub-entheseal trabecular bone volume fraction on the tibial plateau. J. Anat. 237, 1040-1048 (2020).
Funding
Kai Jiao (kjiao1@163.com)

Accesses

Citations

Detail

Sections
Recommended

/