MicroRNA-146a-loaded magnesium silicate nanospheres promote bone regeneration in an inflammatory microenvironment

Jiakang Yang1, Jing Shuai1, Lixuen Siow1, Jingyi Lu1, Miao Sun1, Wenyue An1, Mengfei Yu1, Baixiang Wang1, Qianming Chen1

Bone Research ›› 2024, Vol. 12 ›› Issue (0) : 2. DOI: 10.1038/s41413-023-00299-0
ARTICLE

MicroRNA-146a-loaded magnesium silicate nanospheres promote bone regeneration in an inflammatory microenvironment

  • Jiakang Yang1, Jing Shuai1, Lixuen Siow1, Jingyi Lu1, Miao Sun1, Wenyue An1, Mengfei Yu1, Baixiang Wang1, Qianming Chen1
Author information +
History +

Abstract

Reconstruction of irregular oral-maxillofacial bone defects with an inflammatory microenvironment remains a challenge, as chronic local inflammation can largely impair bone healing. Here, we used magnesium silicate nanospheres (MSNs) to load microRNA-146a-5p (miR-146a) to fabricate a nanobiomaterial, MSN+miR-146a, which showed synergistic promoting effects on the osteogenic differentiation of human dental pulp stem cells (hDPSCs). In addition, miR-146a exhibited an anti-inflammatory effect on mouse bone marrow-derived macrophages (BMMs) under lipopolysaccharide (LPS) stimulation by inhibiting the NF-κB pathway via targeting tumor necrosis factor receptor-associated factor 6 (TRAF6), and MSNs could simultaneously promote M2 polarization of BMMs. MiR-146a was also found to inhibit osteoclast formation. Finally, the dual osteogenic-promoting and immunoregulatory effects of MSN+miR-146a were further validated in a stimulated infected mouse mandibular bone defect model via delivery by a photocuring hydrogel. Collectively, the MSN+miR-146a complex revealed good potential in treating inflammatory irregular oral-maxillofacial bone defects.

Cite this article

Download citation ▾
Jiakang Yang, Jing Shuai, Lixuen Siow, Jingyi Lu, Miao Sun, Wenyue An, Mengfei Yu, Baixiang Wang, Qianming Chen. MicroRNA-146a-loaded magnesium silicate nanospheres promote bone regeneration in an inflammatory microenvironment. Bone Research, 2024, 12(0): 2 https://doi.org/10.1038/s41413-023-00299-0

References

1. Marsell, R. & Einhorn, T. A. The biology of fracture healing. Injury 42, 551-555 (2011).
2. Bahney, C. S.et al.Cellular biology of fracture healing. J. Orthop. Res. 37, 35-50 (2019).
3. Zura, R.et al.Epidemiology of fracture nonunion in 18 human bones. JAMA Surg. 151, e162775(2016).
4. Arweiler N. B.& Netuschil, L. The oral microbiota. Adv. Exp. Med. Biol. 902, 45-60 (2016).
5. Candotto, V.et al. Complication in third molar extractions. J. Biol. Regul. Homeost. Agents 33, 169-172 (2019).
6. Bartel, D. P. Metazoan microRNAs. Cell 173, 20-51 (2018).
7. Ma X.,Becker Buscaglia, L. E., Barker, J. R. & Li, Y. MicroRNAs in NF-kappaB signaling. J. Mol. Cell Biol. 3, 159-166 (2011).
8. Asa'ad F.,Garaicoa-Pazmiño, C., Dahlin, C. & Larsson, L. Expression of microRNAs in periodontal and peri-implant diseases: a systematic review and meta-analysis. Int. J. Mol. Sci. 21, 4147(2020).
9. Saferding, V.et al.microRNA-146a controls age-related bone loss. Aging Cell 19, e13244 (2020).
10. Jones, T. L.et al.Osteoporosis, fracture, osteoarthritis & sarcopenia: a systematic review of circulating microRNA association. Bone 152, 116068 (2021).
11. Yang Y.& Wang, J.-K. The functional analysis of MicroRNAs involved in NF-κB signaling. Eur. Rev. Med. Pharmacol. Sci. 20, 1764-1774 (2016).
12. Peng, X.et al.miR-146a promotes M2 macrophage polarization and accelerates diabetic wound healing by inhibiting the TLR4/NF-κB axis. J. Mol. Endocrinol. 69, 315-327 (2022).
13. Di G., Kong L., Zhao Q.& Ding, T. MicroRNA-146a knockdown suppresses the progression of ankylosing spondylitis by targeting dickkopf 1. Biomed. Pharmacother. 97, 1243-1249 (2018).
14. Tan Y. F., Lao L. L., Xiong G. M.& Venkatraman, S. Controlled-release nanotherapeutics: state of translation. J. Control. Release. 284, 39-48 (2018).
15. Lei, L.et al. Injectable colloidal hydrogel with mesoporous silica nanoparticles for sustained co-release of microRNA-222 and aspirin to achieve innervated bone regeneration in rat mandibular defects. J. Mater. Chem. B 7, 2722-2735 (2019).
16. Wang, B.et al.Uniform magnesium silicate hollow spheres as high drug-loading nanocarriers for cancer therapy with low systemic toxicity. Dalton Trans. 42, 8918-8925 (2013).
17. Wang, B.et al.Achieving accelerated osteogenic differentiation via novel magnesium silicate hollow spheres. N. J. Chem. 39, 9722-9728 (2015).
18. Lu, J.et al.Benidipine-loaded nanoflower-like magnesium silicate improves bone regeneration. Bio-Des. Manuf. 6, 507-521 (2023).
19. Yoshizawa S., Brown A., Barchowsky A.& Sfeir, C. Role of magnesium ions on osteogenic response in bone marrow stromal cells. Connect. Tissue Res. 55, 155-159 (2014).
20. Zhou, X.et al.Orthosilicic acid, Si(OH)4, stimulates osteoblast differentiation in vitro by upregulating miR-146a to antagonize NF-κB activation. Acta Biomater. 39, 192-202 (2016).
21. Xie, C.et al.Hierarchical nanoclusters with programmed disassembly for mitochondria-targeted tumor therapy with MR imaging. Biomater. Sci. 9, 8189-8201 (2021).
22. Zhao, F.et al. Cellular uptake, intracellular trafficking,cytotoxicity of nanomaterials. Small 7, 1322-1337 (2011).
23. Gronthos S., Mankani M., Brahim J., Robey P. G.& Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA. 97, 13625-13630 (2000).
24. Aghajani, F.et al.Comparative immunophenotypic characteristics, proliferative features, and osteogenic differentiation of stem cells isolated from human permanent and deciduous teeth with bone marrow. Mol. Biotechnol. 58, 415-427 (2016).
25. Lorusso, F.et al.Synthetic scaffold/dental pulp stem cell (DPSC) tissue engineering constructs for bone defect treatment: an animal studies literature review. Int. J. Mol. Sci. 21, 9765(2020).
26. Safarova Y., Umbayev B., Hortelano G.& Askarova, S. Mesenchymal stem cells modifications for enhanced bone targeting and bone regeneration. Regen. Med. 15, 1579-1594 (2020).
27. Anitua, E., Troya, M. & Zalduendo, M. Progress in the use of dental pulp stem cells in regenerative medicine. Cytotherapy 20, 479-498 (2018).
28. Riccio, M.et al.Human dental pulp stem cells produce mineralized matrix in 2D and 3D cultures. Eur. J. Histochem. 54, e46(2010).
29. Demircan, P. C.et al. Immunoregulatory effects of human dental pulp-derived stem cells on T cells: comparison of transwell co-culture and mixed lymphocyte reaction systems. Cytotherapy 13, 1205-1220 (2011).
30. Du, F.et al.Metformin coordinates with mesenchymal cells to promote VEGFmediated angiogenesis in diabetic wound healing through Akt/mTOR activation. Metabolism 140, 155398 (2023).
31. Pajarinen, J.et al. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials 196, 80-89 (2019).
32. Taganov K. D., Boldin M. P., Chang K. J.& Baltimore, D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA. 103, 12481-12486 (2006).
33. Murray, P. J.et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14-20 (2014).
34. Sheikh Z., Brooks P. J., Barzilay O., Fine N.& Glogauer, M. Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials (Basel) 8, 5671-5701 (2015).
35. Qiao, W.et al.Sequential activation of heterogeneous macrophage phenotypes is essential for biomaterials-induced bone regeneration. Biomaterials 276, 121038 (2021).
36. Newman, H., Shih, Y. V.& Varghese, S. Resolution of inflammation in bone regeneration: from understandings to therapeutic applications. Biomaterials 277, 121114 (2021).
37. Gao Y., Wang B., Shen C.& Xin, W. Overexpression of miR?146a blocks the effect of LPS on RANKL?induced osteoclast differentiation. Mol. Med. Rep. 18, 5481-5488 (2018).
38. Qu, Z.et al.Receptor activator of nuclear factor-κB ligand-mediated osteoclastogenesis signaling pathway and related therapeutic natural compounds. Front. Pharmacol. 13, 1043975(2022).
39. Wang, B.et al. Osteogenic effects of antihypertensive drug benidipine on mouse MC3T3-E1 cells in vitro. J. Zhejiang Univ. Sci. B 22, 410-420 (2021).
40. Spath, L.et al.Explant-derived human dental pulp stem cells enhance differentiation and proliferation potentials. J. Cell. Mol. Med. 14, 1635-1644 (2010).
Funding
Baixiang Wang (wangbaixiang@zju.edu.cn) or Qianming Chen (qmchen@zju.edu.cn)

Accesses

Citations

Detail

Sections
Recommended

/