New insights into inflammatory osteoclast precursors as therapeutic targets for rheumatoid arthritis and periodontitis

Emilie Hascoët , Frédéric Blanchard , Claudine Blin-Wakkach , Jérôme Guicheux , Philippe Lesclous , Alexandra Cloitre

Bone Research ›› 2023, Vol. 11 ›› Issue (1) : 26

PDF
Bone Research ›› 2023, Vol. 11 ›› Issue (1) : 26 DOI: 10.1038/s41413-023-00257-w
Review Article

New insights into inflammatory osteoclast precursors as therapeutic targets for rheumatoid arthritis and periodontitis

Author information +
History +
PDF

Abstract

Rheumatoid arthritis (RA) and periodontitis are chronic inflammatory diseases leading to increased bone resorption. Preventing this inflammatory bone resorption is a major health challenge. Both diseases share immunopathogenic similarities and a common inflammatory environment. The autoimmune response or periodontal infection stimulates certain immune actors, leading in both cases to chronic inflammation that perpetuates bone resorption. Moreover, RA and periodontitis have a strong epidemiological association that could be explained by periodontal microbial dysbiosis. This dysbiosis is believed to be involved in the initiation of RA via three mechanisms. (i) The dissemination of periodontal pathogens triggers systemic inflammation. (ii) Periodontal pathogens can induce the generation of citrullinated neoepitopes, leading to the generation of anti-citrullinated peptide autoantibodies. (iii) Intracellular danger-associated molecular patterns accelerate local and systemic inflammation. Therefore, periodontal dysbiosis could promote or sustain bone resorption in distant inflamed joints. Interestingly, in inflammatory conditions, the existence of osteoclasts distinct from “classical osteoclasts” has recently been reported. They have proinflammatory origins and functions. Several populations of osteoclast precursors have been described in RA, such as classical monocytes, a dendritic cell subtype, and arthritis-associated osteoclastogenic macrophages. The aim of this review is to synthesize knowledge on osteoclasts and their precursors in inflammatory conditions, especially in RA and periodontitis. Special attention will be given to recent data related to RA that could be of potential value in periodontitis due to the immunopathogenic similarities between the two diseases. Improving our understanding of these pathogenic mechanisms should lead to the identification of new therapeutic targets involved in the pathological inflammatory bone resorption associated with these diseases.

Cite this article

Download citation ▾
Emilie Hascoët, Frédéric Blanchard, Claudine Blin-Wakkach, Jérôme Guicheux, Philippe Lesclous, Alexandra Cloitre. New insights into inflammatory osteoclast precursors as therapeutic targets for rheumatoid arthritis and periodontitis. Bone Research, 2023, 11(1): 26 DOI:10.1038/s41413-023-00257-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Silman AJ, Pearson JE. Epidemiology and genetics of rheumatoid arthritis. Arthritis Res., 2002, 4: S265-S272

[2]

Mikuls TR, Payne JB, Deane KD, Thiele GM. Autoimmunity of the lung and oral mucosa in a multisystem inflammatory disease: The spark that lights the fire in rheumatoid arthritis? J. Allergy Clin. Immunol., 2016, 137: 28-34

[3]

Potempa J, Mydel P, Koziel J. The case for periodontitis in the pathogenesis of rheumatoid arthritis. Nat. Rev. Rheumatol., 2017, 13: 606-620

[4]

Papapanou PN et al. Periodontitis: consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol., 2018, 45: S162-S170

[5]

Eke PI et al. Periodontitis in US adults: National Health and Nutrition Examination Survey 2009–2014. J. Am. Dent. Assoc., 2018, 149: 576-588.e6

[6]

Kassebaum NJ et al. Global burden of severe periodontitis in 1990–2010: a systematic review and meta-regression. J. Dent. Res., 2014, 93: 1045-1053

[7]

Costa FO et al. Surgical and non-surgical procedures associated with recurrence of periodontitis in periodontal maintenance therapy: 5-year prospective study. PLoS One, 2015, 10: e0140847

[8]

Socransky SS, Haffajee AD. Periodontal microbial ecology. Periodontol, 2005, 38: 135-187 2000

[9]

Di Benedetto A, Gigante I, Colucci S, Grano M. Periodontal disease: linking the primary inflammation to bone loss. Clin. Dev. Immunol., 2013, 2013: 503754

[10]

Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature, 2003, 423: 337-342

[11]

Ibáñez L et al. Inflammatory osteoclasts prime TNFα-Producing CD4+ T cells and express CX3CR1. J. Bone Miner. Res., 2016, 31: 1899-1908

[12]

Madel MB et al. Immune function and diversity of osteoclasts in normal and pathological conditions. Front. Immunol., 2019, 10: 1-18

[13]

Madel MB et al. Dissecting the phenotypic and functional heterogeneity of mouse inflammatory osteoclasts by the expression of cx3cr1. Elife, 2020, 9: 1-22

[14]

Xue J et al. CD14+CD16-monocytes are the main precursors of osteoclasts in rheumatoid arthritis via expressing Tyro3TK. Arthritis Res. Ther., 2020, 22: 1-11

[15]

Rivollier A et al. Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment. Blood, 2004, 104: 4029-4037

[16]

Hasegawa T et al. Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1. Nat. Immunol., 2019, 20: 1631-1643

[17]

Marotte H et al. The association between periodontal disease and joint destruction in rheumatoid arthritis extends the link between the HLA‐DR shared epitope and severity of bone destruction. Ann. Rheum. Dis., 2006, 65: 905

[18]

Stein J, Reichert S, Gautsch A, Machulla HKG. Are there HLA combinations typical supporting for or making resistant against aggressive and/or chronic periodontitis? J. Periodontal. Res., 2003, 38: 508-517

[19]

Qiao Y et al. Rheumatoid arthritis risk in periodontitis patients: a systematic review and meta-analysis. Joint Bone Spine, 2020, 87: 556-564

[20]

Marchesan JT et al. Porphyromonas gingivalis oral infection exacerbates the development and severity of collagen-induced arthritis. Arthritis Res. Ther., 2013, 15: R186

[21]

Corrêa MG et al. Periodontitis increases rheumatic factor serum levels and citrullinated proteins in gingival tissues and alter cytokine balance in arthritic rats. PLoS One, 2017, 12: e0174442

[22]

Lübcke PM et al. Periodontal treatment prevents arthritis in mice and methotrexate ameliorates periodontal bone loss. Sci. Rep., 2019, 9: 1-9

[23]

Courbon G et al. Porphyromonas gingivalis experimentally induces periodontis and an anti-CCP2-associated arthritis in the rat. Ann. Rheum. Dis., 2019, 78: 594-599

[24]

Li Y et al. The relationship between porphyromonas gingivalis and rheumatoid arthritis: a meta-analysis. Front. Cell. Infect. Microbiol., 2022, 12: 956417

[25]

Berthelot JM et al. Another look at the contribution of oral microbiota to the pathogenesis of rheumatoid arthritis: a narrative review. Microorganisms, 2022, 10: 59

[26]

Moura MF et al. Nonsurgical periodontal therapy decreases the severity of rheumatoid arthritis and the plasmatic and salivary levels of RANKL and Survivin: a short-term clinical study. Clin. Oral. Investig., 2021, 25: 6643-6652

[27]

Oliveira SR et al. Are neutrophil extracellular traps the link for the cross-talk between periodontitis and rheumatoid arthritis physiopathology? Rheumatology, 2022, 61: 174-184

[28]

González-Febles J, Sanz M. Periodontitis and rheumatoid arthritis: what have we learned about their connection and their treatment? Periodontology, 2000, 87: 181-203

[29]

Perricone C et al. Porphyromonas gingivalis and rheumatoid arthritis. Curr. Opin. Rheumatol., 2019, 31: 517-524

[30]

Hashimoto H, Hashimoto S, Shimazaki Y. Functional impairment and periodontitis in rheumatoid arthritis. Int. Dent. J., 2022, 72: 641-647

[31]

Rodríguez-Lozano B et al. Association between severity of periodontitis and clinical activity in rheumatoid arthritis patients: a case-control study. Arthritis Res. Ther., 2019, 21: 27

[32]

Lin YJ, Anzaghe M, Schülke S. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells, 2020, 9: 880

[33]

Sandros J et al. Cytokine responses of oral epithelial cells to Porphyromonas gingivalis infection. J. Dent. Res., 2000, 79: 1808-1814

[34]

Usui M et al. Gingival epithelial cells support osteoclastogenesis by producing receptor activator of nuclear factor kappa B ligand via protein kinase A signaling. J. Periodontal Res., 2016, 51: 462-470

[35]

Jang JY, Song IS, Baek KJ, Choi Y, Ji S. Immunologic characteristics of human gingival fibroblasts in response to oral bacteria. J. Periodontal. Res., 2017, 52: 447-457

[36]

Belibasakis GN et al. Regulation of RANKL and OPG gene expression in human gingival fibroblasts and periodontal ligament cells by Porphyromonas gingivalis: a putative role of the Arg-gingipains. Microb. Pathog., 2007, 43: 46-53

[37]

Lefèvre S et al. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat. Med., 2009, 15: 1414-1420

[38]

Lewis MJ et al. Molecular portraits of early rheumatoid arthritis identify clinical and treatment response phenotypes. Cell Rep., 2019, 28: 2455-2470.e5

[39]

Sharawi H et al. The prevalence of gingival dendritic cell subsets in periodontal patients. J. Dent. Res., 2021, 100: 1330-1336

[40]

Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat. Rev. Dis. Prim., 2017, 3: 17038

[41]

Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol., 2011, 11: 519-531

[42]

Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat. Rev. Immunol., 2015, 15: 30-44

[43]

Hajishengallis G, Chavakis T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat. Rev. Immunol., 2021, 21: 1

[44]

Ling MR, Chapple IL, Matthews JB. Peripheral blood neutrophil cytokine hyper-reactivity in chronic periodontitis. Innate Immun., 2015, 21: 714-725

[45]

Coutant F, Miossec P. Altered dendritic cell functions in autoimmune diseases: distinct and overlapping profiles. Nat. Rev. Rheumatol., 2016, 12: 703-715

[46]

Lebre MC et al. Rheumatoid arthritis synovium contains two subsets of CD83−DC-LAMP− dendritic cells with distinct cytokine profiles. Am. J. Pathol., 2008, 172: 940

[47]

Jongbloed SL et al. Enumeration and phenotypical analysis of distinct dendritic cell subsets in psoriatic arthritis and rheumatoid arthritis. Arthritis Res. Ther., 2006, 8: R15

[48]

Segura E et al. Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity, 2013, 38: 336-348

[49]

Page G, Miossec P. Paired synovium and lymph nodes from rheumatoid arthritis patients differ in dendritic cell and chemokine expression. J. Pathol., 2004, 204: 28-38

[50]

Kurgan S, Kantarci A. Molecular basis for immunohistochemical and inflammatory changes during progression of gingivitis to periodontitis. Periodontol 2000, 2018, 76: 51-67

[51]

Rankin L, Groom J, Mielke LA, Seillet C, Belz GT. Diversity, function, and transcriptional regulation of gut innate lymphocytes. Front. Immunol., 2013, 4: 22

[52]

Chemin K, Gerstner C, Malmström V. Effector functions of CD4+ T cells at the site of local autoimmune inflammation-lessons from rheumatoid arthritis. Front. Immunol., 2019, 10: 353

[53]

Gemmell E, Seymour GJ. Immunoregulatory control of Th1/Th2 cytokine profiles in periodontal disease. Periodontol 2000, 2004, 35: 21-41

[54]

Liao C, Zhang C, Yang Y. Pivotal roles of interleukin-17 as the epicenter of bone loss diseases. Curr. Pharm. Des., 2017, 23: 6302-6309

[55]

de Molon RS, Rossa C, Thurlings RM, Cirelli JA, Koenders MI. Linkage of periodontitis and rheumatoid arthritis: current evidence and potential biological interactions. Int. J. Mol. Sci., 2019, 20: 4541

[56]

Cascão R et al. Identification of a cytokine network sustaining neutrophil and Th17 activation in untreated early rheumatoid arthritis. Arthritis Res. Ther., 2010, 12: R196

[57]

Zhang Y, Li Y, Lv TT, Yin ZJ, Wang XB. Elevated circulating Th17 and follicular helper CD4(+) T cells in patients with rheumatoid arthritis. APMIS, 2015, 123: 659-666

[58]

Garlet GP et al. Regulatory T cells attenuate experimental periodontitis progression in mice. J. Clin. Periodontol., 2010, 37: 591-600

[59]

Aletaha D et al. Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum., 2010, 62: 2569-2581

[60]

Gerlag DM et al. Effects of B-cell directed therapy on the preclinical stage of rheumatoid arthritis: the PRAIRI study. Ann. Rheum. Dis., 2019, 78: 179-185

[61]

Ohlrich EJ, Cullinan MP, Seymour GJ. The immunopathogenesis of periodontal disease. Aust. Dent. J., 2009, 54: S2-S10

[62]

Wu F et al. B cells in rheumatoid arthritis: pathogenic mechanisms and treatment prospects. Front. Immunol., 2021, 12: 3987

[63]

Settem RP, Honma K, Chinthamani S, Kawai T, Sharma A. B-Cell RANKL contributes to pathogen-induced alveolar bone loss in an experimental periodontitis mouse model. Front. Physiol., 2021, 12: 1412

[64]

Hatipoğlu M et al. B cell depletion in patients with rheumatoid arthritis is associated with reduced IL-1β in GCF. Clin. Oral. Investig., 2022, 26: 4307-4313

[65]

Wang Y et al. B10 cells alleviate periodontal bone loss in experimental periodontitis. Infect. Immun., 2017, 85: e00335-17

[66]

R L et al. Rheumatoid arthritis and periodontal disease: what are the similarities and differences? Int. J. Rheum. Dis., 2017, 20: 1887-1901

[67]

Lam J et al. TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J. Clin. Invest., 2000, 106: 1481-1488

[68]

Marahleh A et al. TNF-α directly enhances osteocyte RANKL expression and promotes osteoclast formation. Front. Immunol., 2019, 10: 2925

[69]

Brennan FM, McInnes IB. Evidence that cytokines play a role in rheumatoid arthritis. J. Clin. Invest., 2008, 118: 3537-3545

[70]

Romero-Sanchez C et al. Is the treatment with biological or non-biological DMARDS a modifier of periodontal condition in patients with rheumatoid arthritis. Curr. Rheumatol. Rev., 2017, 13: 139-151

[71]

Avci AB, Feist E, Burmester GR. Targeting IL-6 or IL-6 receptor in rheumatoid arthritis: what’s the difference? BioDrugs, 2018, 32: 531-546

[72]

Amarasekara DS et al. Regulation of osteoclast differentiation by cytokine networks. Immune Netw., 2018, 18: 1-18

[73]

Fossiez F et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med., 1996, 183: 2593

[74]

Chabaud M et al. Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis. Cytokine, 2000, 12: 1092-1099

[75]

Van Bezooijen RL, Papapoulos SE, Löwik CWGM. Effect of interleukin-17 on nitric oxide production and osteoclastic bone resorption: is there dependency on nuclear factor-κB and receptor activator of nuclear factor κB (RANK)/RANK ligand signaling? Bone, 2001, 28: 378-386

[76]

Adibrad M et al. Signs of the presence of Th17 cells in chronic periodontal disease. J. Periodontal. Res., 2012, 47: 525-531

[77]

Chukkapalli S et al. Periodontal bacterial colonization in synovial tissues exacerbates collagen-induced arthritis in B10.RIII mice. Arthritis Res. Ther., 2016, 18: 1-12

[78]

de Aquino SG et al. The aggravation of arthritis by periodontitis is dependent of IL-17 receptor A activation. J. Clin. Periodontol., 2017, 44: 881-891

[79]

Kunwar S, Dahal K, Sharma S. Anti-IL-17 therapy in treatment of rheumatoid arthritis: a systematic literature review and meta-analysis of randomized controlled trials. Rheumatol. Int., 2016, 3: 1065-1075

[80]

Schett G, Dayer JM, Manger B. Interleukin-1 function and role in rheumatic disease. Nat. Rev. Rheumatol., 2016, 12: 14-24

[81]

Akitsu A et al. IL-1 receptor antagonist-deficient mice develop autoimmune arthritis due to intrinsic activation of IL-17-producing CCR2(+)Vγ6(+)γδ T cells. Nat. Commun., 2015, 6

[82]

Gaffen SL, Hajishengallis G. A new inflammatory cytokine on the block: re-thinking periodontal disease and the Th1/Th2 paradigm in the context of Th17 cells and IL-17. J. Dent. Res., 2008, 87: 817-828

[83]

Singh JA et al. Biologics for rheumatoid arthritis: an overview of Cochrane reviews. Sao Paulo Med. J., 2010, 128: 309-310

[84]

Ren B et al. Anti-inflammatory effect of IL-1ra-loaded dextran/PLGA microspheres on Porphyromonas gingivalis lipopolysaccharide-stimulated macrophages in vitro and in vivo in a rat model of periodontitis. Biomed. Pharmacother., 2021, 134: 111171

[85]

Pettit AR et al. TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am. J. Pathol., 2001, 159: 1689-1699

[86]

Cloitre A et al. IL-36γ is a pivotal inflammatory player in periodontitis-associated bone loss. Sci. Rep., 2019, 9: 1-12

[87]

Kassem A et al. Porphyromonas gingivalis stimulates bone resorption by enhancing RANKL (receptor activator of NF-κB ligand) through activation of toll-like receptor 2 in osteoblasts. J. Biol. Chem., 2015, 290: 20147-20158

[88]

Izati AF, Wong KK, Hussin C, Maraina C. IL-23/IL-17 axis in the pathogenesis and treatment of systemic lupus erythematosus and rheumatoid arthritis. Malays. J. Pathol., 2020, 42: 333-347

[89]

Peichl P et al. Abatacept retention and clinical outcomes in Austrian patients with rheumatoid arthritis: real-world data from the 2-year ACTION study. Wien. Med. Wochenschr., 2020, 170: 132-140

[90]

Mayer Y, Elimelech R, Balbir-Gurman A, Braun-Moscovici Y, Machtei EE. Periodontal condition of patients with autoimmune diseases and the effect of anti-tumor necrosis factor-α therapy. J. Periodontol., 2013, 84: 136-142

[91]

Mayer Y, Balbir-Gurman A, Machtei EE. Anti-tumor necrosis factor-alpha therapy and periodontal parameters in patients with rheumatoid arthritis. J. Periodontol., 2009, 80: 1414-1420

[92]

Schiefelbein R, Jentsch HFR. Periodontal conditions during arthritis therapy with TNF-α blockers. J. Clin. Diagn. Res., 2018, 12: ZC27-ZC31

[93]

Ancuța C et al. Exploring the role of interleukin-6 receptor inhibitor tocilizumab in patients with active rheumatoid arthritis and periodontal disease. J. Clin. Med., 2021, 10: 1-12

[94]

Brianti P, Paolino G, Mercuri SR. Successful use and safety of secukinumab in psoriatic patients with periodontitis: a valid therapeutic option. Dermatol. Ther., 2020, 33: e13350

[95]

Coat J et al. Anti-B lymphocyte immunotherapy is associated with improvement of periodontal status in subjects with rheumatoid arthritis. J. Clin. Periodontol., 2015, 42: 817-823

[96]

Rooney CM, Mankia K, Emery P. The role of the microbiome in driving RA-related autoimmunity. Front. Cell Dev. Biol., 2020, 8: 538130

[97]

Carrion J et al. Microbial carriage state of peripheral blood dendritic cells (DCs) in chronic periodontitis influences DC differentiation, atherogenic potential. J. Immunol., 2012, 189: 3178

[98]

Totaro MC et al. Porphyromonas gingivalis and the pathogenesis of rheumatoid arthritis: analysis of various compartments including the synovial tissue. Arthritis Res. Ther., 2013, 15: R66

[99]

Corsiero E, Pratesi F, Prediletto E, Bombardieri M, Migliorini P. NETosis as source of autoantigens in rheumatoid arthritis. Front. Immunol., 2016, 7: 485

[100]

Pratesi F et al. Antibodies from patients with rheumatoid arthritis target citrullinated histone 4 contained in neutrophils extracellular traps. Ann. Rheum. Dis., 2014, 73: 1414-1422

[101]

Zhao Y et al. Frontline science: characterization and regulation of osteoclast precursors following chronic Porphyromonas gingivalis infection. J. Leukoc. Biol., 2020, 108: 1037-1050

[102]

Zhang Y et al. The association between periodontitis and inflammatory bowel disease: a systematic review and meta-analysis. Biomed. Res. Int., 2021, 2021: 6692420

[103]

Rogier R et al. Alteration of the intestinal microbiome characterizes preclinical inflammatory arthritis in mice and its modulation attenuates established arthritis. Sci. Rep., 2017, 7: 1-12

[104]

Sato K et al. Aggravation of collagen-induced arthritis by orally administered Porphyromonas gingivalis through modulation of the gut microbiota and gut immune system. Sci. Rep., 2017, 7

[105]

Mikuls TR et al. Periodontitis and Porphyromonas gingivalis in patients with rheumatoid arthritis. Arthritis Rheumatol., 2014, 66: 1090-1100

[106]

Harvey GP et al. Expression of peptidylarginine deiminase-2 and -4, citrullinated proteins and anti-citrullinated protein antibodies in human gingiva. J. Periodontal Res., 2013, 48: 252-261

[107]

Quirke AM et al. Heightened immune response to autocitrullinated Porphyromonas gingivalis peptidylarginine deiminase: a potential mechanism for breaching immunologic tolerance in rheumatoid arthritis. Ann. Rheum. Dis., 2014, 73: 263-269

[108]

Laugisch O et al. Citrullination in the periodontium-a possible link between periodontitis and rheumatoid arthritis. Clin. Oral. Investig., 2016, 20: 675-683

[109]

Sherina N et al. Antibodies to a citrullinated Porphyromonas gingivalis epitope are increased in early rheumatoid arthritis, and can be produced by gingival tissue B cells: implications for a bacterial origin in RA etiology. Front. Immunol., 2022, 13: 804822

[110]

Van den Steen PE et al. Cleavage of denatured natural collagen type II by neutrophil gelatinase B reveals enzyme specificity, post-translational modifications in the substrate, and the formation of remnant epitopes in rheumatoid arthritis. FASEB J., 2002, 16: 379-389

[111]

Majeed ZN, Philip K, Alabsi AM, Pushparajan S, Swaminathan D. Identification of gingival crevicular fluid sampling, analytical methods, and oral biomarkers for the diagnosis and monitoring of periodontal diseases: a systematic review. Dis. Markers, 2016, 2016: 1804727

[112]

Guentsch A et al. Cleavage of IgG1 in gingival crevicular fluid is associated with the presence of Porphyromonas gingivalis. J. Periodontal Res., 2013, 48: 458-465

[113]

Lundberg K et al. Antibodies to citrullinated alpha-enolase peptide 1 are specific for rheumatoid arthritis and cross-react with bacterial enolase. Arthritis Rheum., 2008, 58: 3009-3019

[114]

Kinloch AJ et al. Immunization with Porphyromonas gingivalis enolase induces autoimmunity to mammalian α-enolase and arthritis in DR4-IE-transgenic mice. Arthritis Rheum., 2011, 63: 3818-3823

[115]

Jeong E, Lee JY, Kim SJ, Choi J. Predominant immunoreactivity of Porphyromonas gingivalis heat shock protein in autoimmune diseases. J. Periodontal Res., 2012, 47: 811-816

[116]

Hirschfeld J et al. Neutrophil extracellular trap formation in supragingival biofilms. Int. J. Med. Microbiol., 2015, 305: 453-463

[117]

Nefla M, Holzinger D, Berenbaum F, Jacques C. The danger from within: alarmins in arthritis. Nat. Rev. Rheumatol., 2016, 12: 669-683

[118]

Lapérine O et al. Interleukin-33 and RANK-L interplay in the alveolar bone loss associated to periodontitis. PLoS One, 2016, 11: e0168080

[119]

Cai X et al. Enhanced dual function of osteoclast precursors following calvarial Porphyromonas gingivalis infection. J. Periodontal Res., 2020, 55: 410-425

[120]

Xia Y et al. TGFβ reprograms TNF stimulation of macrophages towards a non-canonical pathway driving inflammatory osteoclastogenesis. Nat. Commun., 2022, 13: 1-21 2022 131

[121]

Xiao Y et al. Macrophages and osteoclasts stem from a bipotent progenitor downstream of a macrophage/osteoclast/dendritic cell progenitor. Blood Adv., 2017, 1: 1993-2006

[122]

Charles JF et al. Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function. J. Clin. Invest., 2012, 122: 4592-4605

[123]

Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol., 2011, 11: 762-774

[124]

Meirow Y et al. Specific inflammatory osteoclast precursors induced during chronic inflammation give rise to highly active osteoclasts associated with inflammatory bone loss. Bone Res., 2022, 10: 1-17 2022 101

[125]

Swirski FK et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science, 2009, 325: 612-616

[126]

Zhao Z et al. TNF induction of NF-κB RelB enhances RANKL-induced osteoclastogenesis by promoting inflammatory macrophage differentiation but also limits it through suppression of NFATc1 expression. PLoS One, 2015, 10: e0135728

[127]

Ammari M et al. Delivery of miR-146a to Ly6Chigh monocytes inhibits pathogenic bone erosion in inflammatory arthritis. Theranostics, 2018, 8: 5972

[128]

Puchner A et al. Non-classical monocytes as mediators of tissue destruction in arthritis. Ann. Rheum. Dis., 2018, 77: 1490-1497

[129]

Chiu YG et al. CD16 (FcRγIII) as a potential marker of osteoclast precursors in psoriatic arthritis. Arthritis Res. Ther., 2010, 12: 1-14

[130]

Almubarak A, Tanagala KKK, Papapanou PN, Lalla E, Momen-Heravi F. Disruption of monocyte and macrophage homeostasis in periodontitis. Front. Immunol., 2020, 11: 1-11

[131]

Ansalone C et al. TNF is a homoeostatic regulator of distinct epigenetically primed human osteoclast precursors. Ann. Rheum. Dis., 2021, 80: 748-757

[132]

Sprangers S, Schoenmaker T, Cao Y, Everts V, de Vries TJ. Different blood-borne human osteoclast precursors respond in distinct ways to IL-17A. J. Cell. Physiol., 2016, 231: 1249-1260

[133]

Drevinge C et al. Intermediate monocytes correlate with CXCR3+ Th17 cells but not with bone characteristics in untreated early rheumatoid arthritis. PLoS One, 2021, 16: 1-17

[134]

Lapérine O, Blin-Wakkach C, Guicheux J, Beck-Cormier S, Lesclous P. Dendritic-cell-derived osteoclasts: a new game changer in bone-resorption-associated diseases. Drug Discov. Today, 2016, 21: 1345-1354

[135]

Wakkach A et al. Bone marrow microenvironment controls the in vivo differentiation of murine dendritic cells into osteoclasts. Blood, 2008, 112: 5074-5083

[136]

Speziani C et al. Murine dendritic cell transdifferentiation into osteoclasts is differentially regulated by innate and adaptive cytokines. Eur. J. Immunol., 2007, 37: 747-757

[137]

Alnaeeli M, Penninger JM, Teng Y-TA. Immune interactions with CD4 + T cells promote the development of functional osteoclasts from murine CD11c + dendritic cells. J. Immunol., 2006, 177: 3314-3326

[138]

Gallois A et al. Genome-wide expression analyses establish dendritic cells as a new osteoclast precursor able to generate bone-resorbing cells more efficiently than monocytes. J. Bone Miner. Res., 2010, 25: 661-672

[139]

Page G, Miossec P. RANK and RANKL expression as markers of dendritic cell-T cell interactions in paired samples of rheumatoid synovium and lymph nodes. Arthritis Rheum., 2005, 52: 2307-2312

[140]

Ciucci T et al. Bone marrow Th17 TNFα cells induce osteoclast differentiation, and link bone destruction to IBD. Gut, 2015, 64: 1072-1081

[141]

Leipe J et al. Role of Th17 cells in human autoimmune arthritis. Arthritis Rheum., 2010, 62: 2876-2885

[142]

Tucci M et al. Immature dendritic cells in multiple myeloma are prone to osteoclast-like differentiation through interleukin-17A stimulation. Br. J. Haematol., 2013, 161: 821-831

[143]

Ribeiro Souto G, Queiroz CM, Nogueira Guimarães De Abreu MH, Oliveira Costa F, Alves Mesquita R. Pro-inflammatory, Th1, Th2, Th17 cytokines and dendritic cells: a cross-sectional study in chronic periodontitis. PLoS One, 2014, 9: e91636

[144]

Cardoso CR et al. Evidence of the presence of T helper type 17 cells in chronic lesions of human periodontal disease. Oral. Microbiol. Immunol., 2009, 24: 1-6

[145]

Nagasawa T et al. LPS-stimulated human gingival fibroblasts inhibit the differentiation of monocytes into osteoclasts through the production of osteoprotegerin. Clin. Exp. Immunol., 2002, 130: 338

[146]

Boutet MA et al. Novel insights into macrophage diversity in rheumatoid arthritis synovium. Autoimmun. Rev., 2021, 77: 102758

[147]

Mantovani A et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol., 2004, 25: 677-686

[148]

Hasegawa T. Updating the pathophysiology of arthritic bone destruction: identifying and visualizing pathological osteoclasts in pannus. Immunol. Med., 2021, 0: 1-6

[149]

Furuya M et al. Direct cell–cell contact between mature osteoblasts and osteoclasts dynamically controls their functions in vivo. Nat. Commun., 2018, 9: 1-12 2018 91

[150]

Hasegawa T, Kikuta J, Ishii M. Imaging of bone and joints in vivo: pathological osteoclastogenesis in arthritis. Int. Immunol., 2021, 33: 679-686

[151]

Hasegawa T et al. Development of an intravital imaging system for the synovial tissue reveals the dynamics of CTLA-4 Ig in vivo. Sci. Rep., 2020, 10

[152]

McDonald MM et al. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell, 2021, 184: 1330-1347.e13

[153]

Mabilleau G, Libouban H, Geoffroy V. Osteomorphs as a tool for personalized medicine. Trends Endocrinol. Metab., 2021, 32: 655-656

[154]

Bozec A et al. T cell costimulation molecules CD80/86 inhibit osteoclast differentiation by inducing the IDO/tryptophan pathway. Sci. Transl. Med., 2014, 6: 235ra60

[155]

Bluestone JA, St. Clair EW, Turka LA. CTLA4Ig: bridging the basic immunology with clinical application. Immunity, 2006, 24: 233-238

[156]

Sokolove J et al. Impact of baseline anti-cyclic citrullinated peptide-2 antibody concentration on efficacy outcomes following treatment with subcutaneous abatacept or adalimumab: 2-year results from the AMPLE trial. Ann. Rheum. Dis., 2016, 75: 709-714

[157]

Cutolo M et al. CTLA4-Ig interacts with cultured synovial macrophages from rheumatoid arthritis patients and downregulates cytokine production. Arthritis Res. Ther., 2009, 11: R176

[158]

Oi K et al. Tumour necrosis factor α augments the inhibitory effects of CTLA‐4‐Ig on osteoclast generation from human monocytes via induction of CD80 expression. Clin. Exp. Immunol., 2019, 196: 392

[159]

Agemura T, Hasegawa T, Yari S, Kikuta J, Ishii M. Arthritis-associated osteoclastogenic macrophages (AtoMs) participate in pathological bone erosion in rheumatoid arthritis. Immunol. Med., 2021, 0: 1-5

[160]

Wang W et al. FOXM1/LINC00152 feedback loop regulates proliferation and apoptosis in rheumatoid arthritis fibroblast-like synoviocytes via Wnt/β-catenin signaling pathway. Biosci. Rep., 2020, 40: BSR20191900

[161]

Zeng R et al. FOXM1 activates JAK1/STAT3 pathway in human osteoarthritis cartilage cell inflammatory reaction. Exp. Biol. Med., 2021, 246: 644-653

[162]

Weivoda MM, Lee SK, Monroe DG. miRNAs in osteoclast biology. Bone, 2021, 143: 115757

[163]

Alivernini S et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med., 2020, 26: 1295-1306

[164]

Chen Y et al. Single-cell RNA landscape of the osteoimmunology microenvironment in periodontitis. Theranostics, 2022, 2022: 1074-1096

[165]

Culemann S et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature, 2019, 572: 670-675

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/