Endothelial PDGF-BB/PDGFR-β signaling promotes osteoarthritis by enhancing angiogenesis-dependent abnormal subchondral bone formation

Zhuang Cui , Hangtian Wu , Ye Xiao , Ting Xu , Junjie Jia , Hancheng Lin , Rongmin Lin , Kun Chen , Yihuang Lin , Kaiqun Li , Xiaohu Wu , Changjun Li , Bin Yu

Bone Research ›› 2022, Vol. 10 ›› Issue (1) : 58

PDF
Bone Research ›› 2022, Vol. 10 ›› Issue (1) :58 DOI: 10.1038/s41413-022-00229-6
Article

Endothelial PDGF-BB/PDGFR-β signaling promotes osteoarthritis by enhancing angiogenesis-dependent abnormal subchondral bone formation

Author information +
History +
PDF

Abstract

The mechanisms that coordinate the shift from joint homeostasis to osteoarthritis (OA) remain unknown. No pharmacological intervention can currently prevent the progression of osteoarthritis. Accumulating evidence has shown that subchondral bone deterioration is a primary trigger for overlying cartilage degeneration. We previously found that H-type vessels modulate aberrant subchondral bone formation during the pathogenesis of OA. However, the mechanism responsible for the elevation of H-type vessels in OA is still unclear. Here, we found that PDGFR-β expression, predominantly in the CD31hiEmcnhi endothelium, was substantially elevated in subchondral bones from OA patients and rodent OA models. A mouse model of OA with deletion of PDGFR-β in endothelial cells (ECs) exhibited fewer H-type vessels, ameliorated subchondral bone deterioration and alleviated overlying cartilage degeneration. Endothelial PDGFR-β promotes angiogenesis through the formation of the PDGFR-β/talin1/FAK complex. Notably, endothelium-specific inhibition of PDGFR-β by local injection of AAV9 in subchondral bone effectively attenuated the pathogenesis of OA compared with that of the vehicle-treated controls. Based on the results from this study, targeting PDGFR-β is a novel and promising approach for the prevention or early treatment of OA.

Cite this article

Download citation ▾
Zhuang Cui, Hangtian Wu, Ye Xiao, Ting Xu, Junjie Jia, Hancheng Lin, Rongmin Lin, Kun Chen, Yihuang Lin, Kaiqun Li, Xiaohu Wu, Changjun Li, Bin Yu. Endothelial PDGF-BB/PDGFR-β signaling promotes osteoarthritis by enhancing angiogenesis-dependent abnormal subchondral bone formation. Bone Research, 2022, 10(1): 58 DOI:10.1038/s41413-022-00229-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhen G et al. Mechanical stress determines the configuration of TGFβ activation in articular cartilage. Nat. Commun., 2021, 12

[2]

Hootman JM, Helmick CG, Barbour KE, Theis KA, Boring MA. Updated projected prevalence of self-reported doctor-diagnosed arthritis and arthritis-attributable activity limitation among US adults, 2015-2040. Arthritis Rheumatol., 2016, 68: 1582-1587

[3]

Hu Y, Chen X, Wang S, Jing Y, Su J. Subchondral bone microenvironment in osteoarthritis and pain. Bone Res., 2021, 17: 20

[4]

Lories RJ, Luyten FP. The bone-cartilage unit in osteoarthritis. Nat. Rev. Rheumatol., 2011, 7: 43-49

[5]

Burr DB, Gallant MA. Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol., 2012, 8: 665-673

[6]

Zhen G et al. Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med., 2013, 19: 704-712

[7]

Qin H et al. SDF-1/CXCR4 axis coordinates crosstalk between subchondral bone and articular cartilage in osteoarthritis pathogenesis. Bone, 2019, 125: 140-150

[8]

Chen D et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res., 2017, 5: 16044

[9]

Brandt KD, Radin EL, Dieppe PA, van de Putte L. Yet more evidence that osteoarthritis is not a cartilage disease. Ann. Rheum. Dis., 2006, 65: 1261-1264

[10]

Tuckermann J, Adams RH. The endothelium-bone axis in development, homeostasis and bone and joint disease. Nat. Rev. Rheumatol., 2021, 17 10 608-620

[11]

Huang J et al. Harmine enhances type H vessel formation and prevents bone loss in ovariectomized mice. Theranostics, 2018, 8: 2435-2446

[12]

Portal-Núñez S, Lozano D, Esbrit P. Role of angiogenesis on bone formation. Histol. Histopathol., 2012, 27: 559-566

[13]

Cleaver O, Melton DA. Endothelial signaling during development. Nat. Med., 2003, 9: 661-8

[14]

Chim SM et al. Angiogenic factors in bone local environment. Cytokine Growth Factor. Rev., 2013, 24: 297-310

[15]

Brandi ML, Collin-Osdoby P. Vascular Biology and the Skeleton. J. Bone Miner. Res., 2006, 21: 183-192

[16]

Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature, 2014, 507: 323-328

[17]

Ramasamy SK, Kusumbe AP, Wang L, Adams RH. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature, 2014, 507: 376-380

[18]

Cui Z et al. Halofuginone attenuates osteoarthritis by inhibition of TGF-β activity and H-type vessel formation in subchondral bone. Ann. Rheum. Dis., 2016, 75: 1714-1721

[19]

Hu Y et al. Defactinib attenuates osteoarthritis by inhibiting positive feedback loop between H-Type vessels and MSCs in subchondral bone. J. Orthop. Transl., 2020, 24: 12-22

[20]

Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes. Dev., 2008, 22: 1276-1312

[21]

Rolny C et al. Platelet-derived growth factor receptor-beta promotes early endothelial cell differentiation. Blood, 2006, 108: 1877-1886

[22]

Caplan AI, Correa D. PDGF in bone formation and regeneration: new insights into a novel mechanism involving MSCs. J. Orthop. Res., 2011, 29: 1795-1803

[23]

Battegay EJ, Rupp J, Iruela-Arispe L, Sage EH, Pech M. PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF beta-receptors. J. Cell. Biol., 1994, 125: 917-928

[24]

Xie H et al. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat. Med., 2014, 20: 1270-1278

[25]

Gao B et al. Macrophage-lineage TRAP+ cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration. J. Clin. Invest., 2019, 129: 2578-2594

[26]

Rindone AN et al. Quantitative 3D imaging of the cranial microvascular environment at single-cell resolution. Nat. Commun., 2021, 12

[27]

Zhen G et al. An antibody against Siglec-15 promotes bone formation and fracture healing by increasing TRAP+ mononuclear cells and PDGF-BB secretion. Bone Res., 2021, 9: 47

[28]

Santhanam L et al. Skeleton-secreted PDGF-BB mediates arterial stiffening. J. Clin. Invest., 2021, 131: e147116

[29]

Su W et al. Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development. JCI. insight, 2020, 5: e135446

[30]

Clarke J. PDGF-BB is the key to unlocking pathological angiogenesis in OA. Nat. Rev. Rheumatol., 2020, 16: 298

[31]

Liu T et al. PDGF-mediated mesenchymal transformation renders endothelial resistance to anti-VEGF treatment in glioblastoma. Nat. Commun., 2018, 9

[32]

Critchley DR. Biochemical and structural properties of the integrin-associated cytoskeletal protein talin. Annu. Rev. Biophys., 2009, 38: 235-254

[33]

Ratnikov B et al. Talin phosphorylation sites mapped by mass spectrometry. J. Cell. Sci., 2005, 118: 4921-4923

[34]

Monkley SJ et al. Endothelial cell talin1 is essential for embryonic angiogenesis. Dev. Biol., 2011, 349: 494-502

[35]

Pulous FE et al. Talin-dependent integrin activation is required for endothelial proliferation and postnatal angiogenesis. Angiogenesis, 2021, 24: 177-190

[36]

Yang M et al. MiR-497~195 cluster regulates angiogenesis during coupling with osteogenesis by maintaining endothelial Notch and HIF-1a activity. Nat. Commun., 2017, 8

[37]

Pritzker KP et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr. Cartil., 2006, 14: 13-29

[38]

Roemer FW et al. Change in MRI-detected subchondral bone marrow lesions is associated with cartilage loss: the MOST Study. A longitudinal multicentre study of knee osteoarthritis. Ann. Rheum. Dis., 2009, 68: 1461-1465

[39]

Fu S, Wang C, Yang R, Wu F, Hsiao F. Bisphosphonate use and the risk of undergoing total knee arthroplasty in osteoporotic patients with osteoarthritis: a nationwide cohort study in Taiwan. J. Bone Jt. Surg. Am., 2017, 99: 938-946

[40]

Hu B et al. Sensory nerves regulate mesenchymal stromal cell lineage commitment by tuning sympathetic tones. J. Clin. Invest., 2020, 130: 3483-3498

[41]

Ambrosi TH et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell. Stem. Cell., 2017, 20: 771-784.e6

[42]

Lawson C et al. FAK promotes recruitment of talin to nascent adhesions to control cell motility. J. Cell. Biol., 2012, 196: 223-232

[43]

Cheng L et al. Clinically relevant high levels of human C-reactive protein induces endothelial dysfunction and hypertension by inhibiting the AMPK-eNOS axis. Clin. Sci., 2020, 134: 1805-1819

[44]

Varadi K et al. Novel random peptide libraries displayed on AAV serotype 9 for selection of endothelial cell-directed gene transfer vectors. Gene. Ther., 2012, 19: 800-809

[45]

Findlay DM, Kuliwaba JS. Bone-cartilage crosstalk: a conversation for understanding osteoarthritis. Bone Res., 2016, 4: 16028

[46]

Hunter DJ, Felson DT. Osteoarthritis. BMJ, 2006, 332: 639-642

[47]

Meachim G. The effect of scarification on articular cartilage in the rabbit. J. Bone Jt. Surg. Br., 1963, 45: 150-161

[48]

Neogi T, Li S, Peloquin C, Misra D, Zhang Y. Effect of bisphosphonates on knee replacement surgery. Ann. Rheum. Dis., 2018, 77: 92-97

[49]

Raica M, Cimpean AM. Platelet-Derived Growth Factor (PDGF)/PDGF Receptors (PDGFR) axis as target for antitumor and antiangiogenic therapy. Pharmaceuticals, 2010, 3: 572-599

[50]

Dubrac A et al. NCK-dependent pericyte migration promotes pathological neovascularization in ischemic retinopathy. Nat. Commun., 2018, 9

[51]

Krasnokutsky S et al. Quantitative magnetic resonance imaging evidence of synovial proliferation is associated with radiographic severity of knee osteoarthritis. Arthritis Rheum., 2011, 63: 2983-2991

[52]

Yusuf E, Kortekaas MC, Watt I, Huizinga TW, Kloppenburg M. Do knee abnormalities visualised on MRI explain knee pain in knee osteoarthritis? A systematic review. Ann. Rheum. Dis., 2011, 70: 60-67

[53]

Zhu S et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J. Clin. Invest., 2019, 129: 1076-1093

[54]

Kopp PM et al. Studies on the morphology and spreading of human endothelial cells define key inter- and intramolecular interactions for talin1. Eur. J. Cell. Biol., 2010, 89: 661-673

[55]

Senetar MA, McCann RO. Gene duplication and functional divergence during evolution of the cytoskeletal linker protein talin. Gene, 2005, 362: 141-152

[56]

Zhang X et al. Talin depletion reveals independence of initial cell spreading from integrin activation and traction. Nat. Cell. Biol., 2008, 10: 1062-1068

[57]

Monkley SJ, Pritchard CA, Critchley DR. Analysis of the mammalian talin2 gene TLN2. Biochem. Biophys. Res. Commun., 2001, 286: 880-885

[58]

Debrand E et al. Talin 2 is a large and complex gene encoding multiple transcripts and protein isoforms. FEBS. J., 2009, 276: 1610-1628

[59]

Rui YN et al. The Intracranial Aneurysm Gene THSD1 connects endosome dynamics to nascent focal adhesion assembly. Cell. Physiol. Biochem., 2017, 43: 2200-2211

[60]

Chen H et al. Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat. Commun., 2019, 10

[61]

Walsh DA et al. Angiogenesis and nerve growth factor at the osteochondral junction in rheumatoid arthritis and osteoarthritis. Rheumatology, 2010, 49: 1852-1861

[62]

Zhou C et al. Runx1 protects against the pathological progression of osteoarthritis. Bone Res., 2021, 9: 50

[63]

Nyul-Toth A et al. Early manifestation of gait alterations in the Tg2576 mouse model of Alzheimer’s disease. GeroScience, 2021, 43: 1947-1957

[64]

Ding R et al. Advanced oxidation protein products sensitized the transient receptor potential vanilloid 1 via NADPH oxidase 1 and 4 to cause mechanical hyperalgesia. Redox Biol., 2016, 10: 1-11

[65]

Toussaint AB et al. Chronic paternal morphine exposure increases sensitivity to morphine-derived pain relief in male progeny. Sci. Adv., 2022, 8: eabk2425

Funding

Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation)(2019A1515011614)

National Natural Science Foundation of China (National Science Foundation of China)(81601942)

PDF

206

Accesses

0

Citation

Detail

Sections
Recommended

/