Can intracellular Staphylococcus aureus in osteomyelitis be treated using current antibiotics? A systematic review and narrative synthesis

Anja R. Zelmer , Renjy Nelson , Katharina Richter , Gerald J. Atkins

Bone Research ›› 2022, Vol. 10 ›› Issue (1) : 53

PDF
Bone Research ›› 2022, Vol. 10 ›› Issue (1) :53 DOI: 10.1038/s41413-022-00227-8
Review Article

Can intracellular Staphylococcus aureus in osteomyelitis be treated using current antibiotics? A systematic review and narrative synthesis

Author information +
History +
PDF

Abstract

Approximately 40% of treatments of chronic and recurrent osteomyelitis fail in part due to bacterial persistence. Staphylococcus aureus, the predominant pathogen in human osteomyelitis, is known to persist by phenotypic adaptation as small-colony variants (SCVs) and by formation of intracellular reservoirs, including those in major bone cell types, reducing susceptibility to antibiotics. Intracellular infections with S. aureus are difficult to treat; however, there are no evidence-based clinical guidelines addressing these infections in osteomyelitis. We conducted a systematic review of the literature to determine the demonstrated efficacy of all antibiotics against intracellular S. aureus relevant to osteomyelitis, including protein biosynthesis inhibitors (lincosamides, streptogramins, macrolides, oxazolidines, tetracyclines, fusidic acid, and aminoglycosides), enzyme inhibitors (fluoroquinolones and ansamycines), and cell wall inhibitors (beta-lactam inhibitors, glycopeptides, fosfomycin, and lipopeptides). The PubMed and Embase databases were screened for articles related to intracellular S. aureus infections that compared the effectiveness of multiple antibiotics or a single antibiotic together with another treatment, which resulted in 34 full-text articles fitting the inclusion criteria. The combined findings of these studies were largely inconclusive, most likely due to the plethora of methodologies utilized. Therefore, the reported findings in the context of the models employed and possible solutions for improved understanding are explored here. While rifampicin, oritavancin, linezolid, moxifloxacin and oxacillin were identified as the most effective potential intracellular treatments, the scientific evidence for these is still relatively weak. We advocate for more standardized research on determining the intracellular effectiveness of antibiotics in S. aureus osteomyelitis to improve treatments and patient outcomes.

Cite this article

Download citation ▾
Anja R. Zelmer, Renjy Nelson, Katharina Richter, Gerald J. Atkins. Can intracellular Staphylococcus aureus in osteomyelitis be treated using current antibiotics? A systematic review and narrative synthesis. Bone Research, 2022, 10(1): 53 DOI:10.1038/s41413-022-00227-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hofstee MI et al. Current concepts of osteomyelitis: from pathologic mechanisms to advanced research methods. Am J Pathol, 2020, 190: 1151-1163

[2]

Lew DP, Waldvogel FA. Osteomyelitis. Lancet, 2004, 364: 369-379

[3]

Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR). Hip, Knee & Shoulder Arthroplasty: 2020 Annual Report. 1–474 (AOA, Adelaide, 2020).

[4]

Kurtz SM, Ong KL, Lau E, Bozic KJ. Impact of the economic downturn on total joint replacement demand in the United States: updated projections to 2021. J. Bone Jt. Surg., 2014, 96: 624-630

[5]

Masters EA et al. Evolving concepts in bone infection: redefining “biofilm”, “acute vs. chronic osteomyelitis”. “ Immune Proteome” “Local Antibiot. Ther.”. Bone Res., 2019, 7: 1-18

[6]

Zalavras CG, Patzakis MJ. Open fractures: evaluation and management. J. Am. Acad. Orthop. Surg., 2003, 11: 212-219

[7]

Metsemakers WJ et al. Infection after fracture fixation: current surgical and microbiological concepts. Injury, 2018, 49: 511-522

[8]

Schwarz EM et al. 2018 international consensus meeting on musculoskeletal infection: research priorities from the general assembly questions. J. Orthop. Res., 2019, 37: 997-1006

[9]

Acharya S, Soliman M, Egun A, Rajbhandari SM. Conservative management of diabetic foot osteomyelitis. Diabetes Res. Clin. Pract., 2013, 101: e18-e20

[10]

Sigmund IK et al. Diagnostic accuracy of neutrophil counts in histopathological tissue analysis in periprosthetic joint infection using the ICM, IDSA, and EBJIS criteria. Bone Jt. Res., 2021, 10: 536-547

[11]

Josse J, Velard F, Gangloff SC. Staphylococcus aureus vs. osteoblast: relationship and consequences in osteomyelitis. Front. Cell. Infect. Microbiol., 2015, 5: 85

[12]

Ormsby RT et al. Evidence for osteocyte-mediated bone-matrix degradation associated with periprosthetic joint infection PJI. Eur. Cells Mater, 2021, 41: 264-280

[13]

Wright JA, Nair SP. Interaction of staphylococci with bone. Int. J. Med. Microbiol., 2010, 300: 193-204

[14]

Tande AJ et al. Clinical characteristics and outcomes of prosthetic joint infection caused by small colony variant staphylococci. mBio, 2014, 5: e01910-14

[15]

Arciola CR, An Y, Campoccia D, Donati M, Montanaro L. Etiology of implant orthopedic infections: a survey on 1027 clinical isolates. Int. J. Artif. Organs, 2005, 28: 1091-1100

[16]

Proctor RA et al. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat. Rev. Microbiol., 2006, 4: 295-305

[17]

Nguyen HA et al. Intracellular activity of antibiotics in a model of human THP-1 Macrophages Infected by a Staphylococcus aureus small-colony variant strain isolated from a cystic fibrosis patient: Pharmacodynamic evaluation and comparison with isogenic normal-phenotype and revertant strains. Antimicrobial Agents Chemother., 2009, 53: 1434-1442

[18]

Garcia LG et al. Antibiotic activity against small-colony variants of Staphylococcus aureus: review of in vitro, animal and clinical data. J. Antimicrobial Chemother., 2013, 68: 1455-1464

[19]

Lee J, Zilm PS, Kidd SP. Novel research models for Staphylococcus aureus small colony variants (SCV) development: Co-pathogenesis and growth rate. Front. Microbiol, 2020, 11: 321

[20]

Kahl BC, Becker K, Löffler B. Clinical significance and pathogenesis of staphylococcal small colony variants in persistent infections. Clin. Microbiol. Rev., 2016, 29: 401-427

[21]

von Eiff C, Peters G, Becker K. The small colony variant (SCV) concept—the role of staphylococcal SCVs in persistent infections. Injury, 2006, 37: S26-S33

[22]

Horn J, Stelzner K, Rudel T, Fraunholz M. Inside job: Staphylococcus aureus host-pathogen interactions. Int. J. Med. Microbiol., 2018, 308: 607-624

[23]

Sendi P et al. Staphylococcus aureus small colony variants in prosthetic joint infection. Clin. Infect. Dis.: Off. Publ. Infect. Dis. Soc. Am., 2006, 43: 961-967

[24]

Tuchscherr L et al. Staphylococcus aureus small-colony variants are adapted phenotypes for intracellular persistence. J. Infect. Dis., 2010, 202: 1031-1040

[25]

Yang D et al. Novel insights into Staphylococcus aureus deep bone infections: The involvement of osteocytes. MBio, 2018, 9: 1-10 mBio 9:e00415-18

[26]

Jevon M et al. Mechanisms of internalization of Staphylococcus aureus by cultured human osteoblasts. Infect. Immun., 1999, 67: 2677-2681

[27]

Garzoni C, Kelley WL. Staphylococcus aureus: new evidence for intracellular persistence. Trends Microbiol., 2009, 17: 59-65

[28]

Krauss JL et al. Staphylococcus aureus infects osteoclasts and replicates intracellularly. mBio, 2019, 10: e02447-19

[29]

Strobel M et al. Post-invasion events after infection with Staphylococcus aureus are strongly dependent on both the host cell type and the infecting S. aureus strain. Clin. Microbiol. Infect., 2016, 22: 799-809

[30]

Alexander E, Hudson M. Factors influencing the internalization of Staphylococcus aureus and impacts on the course of infections in humans. Appl. Microbiol. Biotechnol., 2001, 56: 361-366

[31]

Gao T, Lin J, Zhang C, Zhu H, Zheng X. Is intracellular Staphylococcus aureus associated with recurrent infection in a rat model of open fracture? Bone Jt. Res., 2020, 9: 71-76

[32]

Ballard A et al. Osteoclasts serve as an intracellular niche for replicating Staphylococcus Aureus. J. Bone Miner. Res., 2018, 33: 192

[33]

Krauss, J., Goering, E. & Novack, D. Osteoclasts as an intracellular growth niche for staphylococcus aureus. J. Bone Miner. Res. 31, https://doi.org/10.1002/jbmr.3107 (2017).

[34]

Bosse MJ, Gruber HE, Ramp WK. Internalization of bacteria by osteoblasts in a patient with recurrent, long-term osteomyelitis. J. Bone Jt. Surg., 2005, 87: 1343-1347

[35]

Hamza T et al. Intra-cellular Staphylococcus aureus alone causes infection in vivo. Eur. Cells Mater., 2012, 25: 341-350

[36]

Watkins KE, Unnikrishnan M. Evasion of host defenses by intracellular Staphylococcus aureus. Advances in Applied Microbiology, 2020, 112: 105-141

[37]

Nasser A, Azimi T, Ostadmohammadi S, Ostadmohammadi S. A comprehensive review of bacterial osteomyelitis with emphasis on Staphylococcusaureus. Microbial Pathogenesis, 2020, 148: 104431

[38]

Alder KD et al. Intracellular Staphylococcus aureus in bone and joint infections:a mechanism of disease recurrence, inflammation, and bone and cartilage destruction. Bone, 2020, 141: 115568

[39]

Abed N, Couvreur P. Nanocarriers for antibiotics: a promising solution to treat intracellular bacterial infections. Int. J. Antimicrobial Agents, 2014, 43: 485-496

[40]

Landersdorfer CB, Bulitta JB, Kinzig M, Holzgrabe U, Sörgel F. Penetration of antibacterials into bone. Clin. Pharmacokinetics, 2009, 48: 89-124

[41]

Thabit AK et al. Antibiotic penetration into bone and joints: an updated review. Int. J. Infect. Dis., 2019, 81: 128-136

[42]

Carryn S et al. Intracellular pharmacodynamics of antibiotics. Infect. Dis. Clin., 2003, 17: 615-634

[43]

Abad L et al. Lysosomal alkalization to potentiate eradication of intraosteoblastic Staphylococcus aureus in the bone and joint infection setting. Clin. Microbiol. Infect, 2022, 28: 135-e1

[44]

Bongers S, Hellebrekers P, Leenen LP, Koenderman L, Hietbrink F. Intracellular penetration and effects of antibiotics on Staphylococcus aureus inside human neutrophils: a comprehensive review. Antibiotics, 2019, 8: 54

[45]

Kavanagh N et al. Staphylococcal osteomyelitis: disease progression, treatment challenges, and future directions. Clin. Microbiol. Rev., 2018, 31: 1-25

[46]

Bonnaire A et al. Clindamycin combination treatment for the treatment of bone and joint infections caused by clindamycin-susceptible, erythromycin-resistant Staphylococcus spp. Diagnostic Microbiol. Infect. Dis., 2021, 99: 115225

[47]

Leclercq R. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin. Infect. Dis., 2002, 34: 482-492

[48]

Spížek J, Řezanka T. Lincomycin, clindamycin and their applications. Appl. Microbiol. Biotechnol., 2004, 64: 455-464

[49]

Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol., 2014, 12: 35-48

[50]

Curis E et al. Pharmacokinetic variability of clindamycin and influence of rifampicin on clindamycin concentration in patients with bone and joint infections. Infection, 2015, 43: 473-481

[51]

Nicholas P, Meyers BR, Levy RN, Hirschman SZ. Concentration of clindamycin in human bone. Antimicrobial Agents Chemother., 1975, 8: 220-221

[52]

Bouazza N et al. Population pharmacokinetics of clindamycin orally and intravenously administered in patients with osteomyelitis. Br. J. Clin. Pharmacol., 2012, 74: 971-977

[53]

Valour F et al. Antimicrobial activity against intraosteoblastic Staphylococcus aureus. Antimicrobial Agents Chemother., 2015, 59: 2029-2036

[54]

Ellington JK et al. Intracellular Staphylococcus aureus and antibiotic resistance: implications for treatment of staphylococcal osteomyelitis. J. Orthop. Res., 2006, 24: 87-93

[55]

Tuchscherr L et al. Staphylococcus aureus develops increased resistance to antibiotics by forming dynamic small colony variants during chronic osteomyelitis. J. Antimicrobial Chemother., 2015, 71: 438-448

[56]

Burgaleta C, Velasco GL, Peletier R, Messeguer M, Pernas M. The effect of clindamycin on intraphagocytic Staphylococcus aureus in leukocytes from patients with chronic osteomyelitis. Enferm. Infecc. Microbiol Clin., 1992, 10: 143-147

[57]

Uskoković V, Desai TA. Simultaneous bactericidal and osteogenic effect of nanoparticulate calcium phosphate powders loaded with clindamycin on osteoblasts infected with Staphylococcus aureus. Mater. Sci. Eng.: C., 2014, 37: 210-222

[58]

Noore J, Noore A, Li B. Cationic antimicrobial peptide LL-37 is effective against both extra-and intracellular Staphylococcus aureus. Antimicrobial Agents Chemother., 2013, 57: 1283-1290

[59]

Harms JM, Schlünzen F, Fucini P, Bartels H, Yonath A. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. BMC Biol., 2004, 2

[60]

Mukhtar TA, Wright GD. Streptogramins, oxazolidinones, and other inhibitors of bacterial protein synthesis. Chem. Rev., 2005, 105: 529-542

[61]

Mast Y, Wohlleben W. Streptogramins – Two are better than one. Int. J. Med. Microbiol., 2014, 304: 44-50

[62]

Reissier, S. & Cattoir, V. Streptogramins for the treatment of infections caused by Gram-positive pathogens. Expert Rev. Anti-infective Ther., 1–13, (2020).

[63]

Johnston NJ, Mukhtar TA, Wright GD. Streptogramin antibiotics: mode of action and resistance. Curr. Drug Targets, 2002, 3: 335-344

[64]

Inc, P. L. D. P. SYNERCID- quinupristin and dalfopristin injection, powder, lyophilized, for solution. http://labeling.pfizer.com/ShowLabeling.aspx?id=712 (2018).

[65]

Summers M, Misenhimer GR, Antony SJ. Vancomycin-resistant Enterococcus faecium osteomyelitis: successful treatment with quinupristin-dalfopristin. South Med. J., 2001, 94: 353-355

[66]

Drew RH et al. Treatment of methicillin-resistant Staphylococcus aureus infections with quinupristin–dalfopristin in patients intolerant of or failing prior therapy. J. Antimicrobial Chemother., 2000, 46: 775-784

[67]

Ng J, Gosbell IB. Successful oral pristinamycin therapy for osteoarticular infections due to methicillin-resistant Staphylococcus aureus (MRSA) and other Staphylococcus spp. J. Antimicrobial Chemother., 2005, 55: 1008-1012

[68]

Reid AB, Daffy JR, Stanley P, Buising KL. Use of pristinamycin for infections by gram-positive bacteria: clinical experience at an Australian hospital. Antimicrobial Agents Chemother., 2010, 54: 3949-3952

[69]

Al-Fadhli AA et al. Macrolides from rare actinomycetes: structures and bioactivities. Int. J. Antimicrobial Agents, 2022, 59: 106523

[70]

Blondeau JM, DeCarolis E, Metzler KL, Hansen GT. The macrolides. Expert Opin. Investigational Drugs, 2002, 11: 189-215

[71]

Kong D, Lee M-J, Lin S, Kim E-S. Biosynthesis and pathway engineering of antifungal polyene macrolides in actinomycetes. J. Ind. Microbiol. Biotechnol., 2013, 40: 529-543

[72]

Dinos GP. The macrolide antibiotic renaissance. Br. J. Pharmacol., 2017, 174: 2967-2983

[73]

Janas A, Przybylski P. 14- and 15-membered lactone macrolides and their analogues and hybrids: structure, molecular mechanism of action and biological activity. Eur. J. Medicinal Chem., 2019, 182: 111662

[74]

Barcia-Macay M, Seral C, Mingeot-Leclercq M-P, Tulkens PM, Van Bambeke F. Pharmacodynamic evaluation of the intracellular activities of antibiotics against Staphylococcus aureus in a model of THP-1 macrophages. Antimicrobial Agents Chemother., 2006, 50: 841-851

[75]

Seral C, Van Bambeke F, Tulkens PM. Quantitative analysis of gentamicin, azithromycin, telithromycin, ciprofloxacin, moxifloxacin, and oritavancin (LY333328) activities against intracellular Staphylococcus aureus in mouse J774 macrophages. Antimicrobial Agents Chemother., 2003, 47: 2283-2292

[76]

Brook I. Pharmacodynamics and pharmacokinetics of spiramycin and their clinical significance. Clin. Pharmacokinetics, 1998, 34: 303-310

[77]

Schlünzen F et al. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature, 2001, 413: 814-821

[78]

Cetin ES, Gunes H, Kaya S, Aridogan BC, Demirci M. Macrolide-lincosamide-streptogramin B resistance phenotypes in clinical staphylococcal isolates. Int. J. Antimicrobal Agents, 2008, 31: 364-368

[79]

Osterman IA, Dontsova OA, Sergiev PV. rRNA methylation and antibiotic resistance. Biochemistry, 2020, 85: 1335-1349

[80]

Iannelli F et al. Type m resistance to macrolides is due to a two-gene efflux transport system of the ATP-binding cassette (ABC) superfamily. Front. Microbiol, 2018, 9: 1670

[81]

Sutcliffe J, Tait-Kamradt A, Wondrack L. Streptococcus pneumoniae and Streptococcus pyogenes resistant to macrolides but sensitive to clindamycin: a common resistance pattern mediated by an efflux system. Antimicrobial Agents Chemother., 1996, 40: 1817-1824

[82]

Roberts MC et al. Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrobial Agents Chemother., 1999, 43: 2823-2830

[83]

Bozdogan B, Appelbaum PC. Oxazolidinones: activity, mode of action, and mechanism of resistance. Int. J. Antimicrobial Agents, 2004, 23: 113-119

[84]

Lin AH, Murray RW, Vidmar TJ, Marotti KR. The oxazolidinone eperezolid binds to the 50S ribosomal subunit and competes with binding of chloramphenicol and lincomycin. Antimicrobial Agents Chemother., 1997, 41: 2127-2131

[85]

Diekema DJ, Jones RN. Oxazolidinone antibiotics. Lancet, 2001, 358: 1975-1982

[86]

Feng J et al. Genome sequencing of linezolid-resistant Streptococcus pneumoniae mutants reveals novel mechanisms of resistance. Genome Res., 2009, 19: 1214-1223

[87]

Chien JW, Kucia ML, Salata RA. Use of linezolid, an oxazolidinone, in the treatment of multidrug-resistant gram-positive bacterial infections. Clin. Infect. Dis., 2000, 30: 146-151

[88]

Senneville E et al. Effectiveness and tolerability of prolonged linezolid treatment for chronic osteomyelitis: A retrospective study. Clin. Therapeutics, 2006, 28: 1155-1163

[89]

Aneziokoro CO, Cannon JP, Pachucki CT, Lentino JR. The effectiveness and safety of oral linezolid for the primary and secondary treatment of osteomyelitis. J. Chemother., 2005, 17: 643-650

[90]

Vercillo, M., Patzakis, M. J., Holtom, P. & Zalavras, C. G. Linezolid in the treatment of implant-related chronic osteomyelitis. Clin. Orthopaedics Related Research ® 461 (2007).

[91]

Patel R, Piper KE, Rouse MS, Steckelberg JM. Linezolid therapy of Staphylococcus aureus experimental osteomyelitis. Antimicrobial Agents Chemother., 2000, 44: 3438-3440

[92]

Rayner CR et al. Linezolid in the treatment of osteomyelitis: results of compassionate use experience. Infection, 2004, 32: 8-14

[93]

Melzer M, Goldsmith D, Gransden W. Successful Ttreatment of vertebral osteomyelitis with linezolid in a patient receiving hemodialysis and with persistent methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus Bacteremias. Clin. Infect. Dis., 2000, 31: 208-209

[94]

Lovering A et al. Penetration of linezolid into bone, fat, muscle and haematoma of patients undergoing routine hip replacement. J. Antimicrobial Chemother., 2002, 50: 73-77

[95]

Lemaire S et al. Cellular pharmacodynamics of the novel biaryloxazolidinone radezolid: studies with infected phagocytic and nonphagocytic cells, using Staphylococcus aureus, Staphylococcus epidermidis, Listeria monocytogenes, and Legionella pneumophila. Antimicrobial Agents Chemother., 2010, 54: 2549-2559

[96]

Lemaire S, Tulkens Paul M, Van Bambeke F. Cellular pharmacokinetics of the novel biaryloxazolidinone radezolid in phagocytic cells: Studies with macrophages and polymorphonuclear neutrophils. Antimicrobial Agents Chemother., 2010, 54: 2540-2548

[97]

Yang X, Shi G, Guo J, Wang C, He Y. Exosome-encapsulated antibiotic against intracellular infections of methicillin-resistant Staphylococcus aureus. Int. J. Nanomed., 2018, 13: 8095

[98]

Abad L et al. Evaluation of the ability of linezolid and tedizolid to eradicate intraosteoblastic and biofilm-embedded Staphylococcus aureus in the bone and joint infection setting. J. Antimicrobial Chemother., 2019, 74: 625-632

[99]

Guo P, Buttaro BA, Xue HY, Tran NT, Wong HL. Lipid-polymer hybrid nanoparticles carrying linezolid improve treatment of methicillin-resistant Staphylococcus aureus (MRSA) harbored inside bone cells and biofilms. Eur. J. Pharmaceutics Biopharmaceutics, 2020, 151: 189-198

[100]

Nelson ML, Levy SB. The history of the tetracyclines. Ann. N. Y. Acad. Sci., 2011, 1241: 17-32

[101]

Eliopoulos GM, Eliopoulos GM, Roberts MC. Tetracycline therapy: Update. Clin. Infect. Dis., 2003, 36: 462-467

[102]

Connell SR, Tracz DM, Nierhaus KH, Taylor DE. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrobial Agents Chemother, 2003, 12: 3675-3681

[103]

Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev., 2001, 65: 232-260

[104]

Ramachanderan R, Schaefer B. Tetracycline antibiotics. ChemTexts, 2021, 7

[105]

Peterson LR. A review of tigecycline — the first glycylcycline. Int. J. Antimicrobial Agents, 2008, 32: S215-S222

[106]

Griffin AT, Harting JA, Christensen DM. Tigecycline in the management of osteomyelitis: a case series from the bone and joint infection (BAJIO) database. Diagnostic Microbiol. Infect. Dis., 2013, 77: 273-277

[107]

Spellberg B, Lipsky BA. Systemic antibiotic therapy for chronic osteomyelitis in adults. Clin. Infect. Dis., 2012, 54: 393-407

[108]

Kreis CA et al. Therapy of intracellular Staphylococcus aureus by tigecyclin. BMC Infect. Dis., 2013, 13: 1-6

[109]

Godtfredsen WO, Rastrup-Andersen N, Vangedal S, Ollis WD. Metabolites of fusidium coccineum. Tetrahedron, 1979, 35: 2419-2431

[110]

Curbete MM, Salgado HRN. A critical review of the properties of fusidic acid and analytical methods for its determination. Crit. Rev. Anal. Chem., 2016, 46: 352-360

[111]

Laurberg M et al. Structure of a mutant EF-G reveals domain III and possibly the fusidic acid binding site11Edited by I. A. Wilson. J. Mol. Biol., 2000, 303: 593-603

[112]

Pushkin R et al. A randomized study evaluating oral fusidic acid (CEM-102) in combination with oral rifampin compared with standard-of-care antibiotics for treatment of prosthetic joint infections: A newly identified drug–drug interaction. Clin. Infect. Dis., 2016, 63: 1599-1604

[113]

Ertek M, Yazgi H, Erol S, Altoparlak U. Demonstration of in vitro antagonism between fusidic acid and quinolones. J. Int. Med. Res., 2002, 30: 525-528

[114]

Hajikhani B et al. The global prevalence of fusidic acid resistance in clinical isolates of Staphylococcus aureus: a systematic review and meta-analysis. Antimicrobial Resistance Infect. Control, 2021, 10: 75

[115]

O’Neill AJ, McLaws F, Kahlmeter G, Henriksen AS, Chopra I. Genetic basis of resistance to fusidic acid in staphylococci. Antimicrobial Agents Chemother., 2007, 51: 1737-1740

[116]

Inam M, Shabir M. Frequency of different bacteria and their antibiotics sensitivity pattern in chronic osteomyelitis. J. Pak. Orthop. Assoc., 2020, 32: 92-96

[117]

Wang J-L et al. Fusidic acid for the treatment of bone and joint infections caused by meticillin-resistant Staphylococcus aureus. Int. J. Antimicrobial Agents, 2012, 40: 103-107

[118]

Aboltins CA et al. Treatment of staphylococcal prosthetic joint infections with debridement, prosthesis retention and oral rifampicin and fusidic acid. Clin. Microbiol. Infect., 2007, 13: 586-591

[119]

Begg EJ, Barclay ML. Aminoglycosides-50 years on. Br. J. Clin. Pharmacol., 1995, 39: 597

[120]

Pagkalis S, Mantadakis E, Mavros MN, Ammari C, Falagas ME. Pharmacological considerations for the proper clinical use of aminoglycosides. Drugs, 2011, 71: 2277-2294

[121]

Shakil S, Khan R, Zarrilli R, Khan AU. Aminoglycosides versus bacteria – a description of the action, resistance mechanism, and nosocomial battleground. J. Biomed. Sci., 2008, 15: 5-14

[122]

Wachino J-I, Doi Y, Arakawa Y. Aminoglycoside resistance: updates with a focus on acquired 16S ribosomal RNA methyltransferases. Infect. Dis. Clin., 2020, 34: 887-902

[123]

Barth RE, Vogely HC, Hoepelman AIM, Peters EJG. ‘To bead or not to bead?’ Treatment of osteomyelitis and prosthetic joint-associated infections with gentamicin bead chains. Int. J. Antimicrobial Agents, 2011, 38: 371-375

[124]

Kim J-H, Chaurasia AK, Batool N, Ko KS, Kim KK. Alternative enzyme protection assay to overcome the drawbacks of the gentamicin protection assay for measuring entry and intracellular survival of staphylococci. Infect. Immunity, 2019, 87: e00119-19

[125]

Garcia L et al. Pharmacodynamic evaluation of the activity of antibiotics against hemin-and menadione-dependent small-colony variants of Staphylococcus aureus in models of extracellular (broth) and intracellular (THP-1 monocytes) infections. Antimicrobial Agents Chemother., 2012, 56: 3700-3711

[126]

Mohamed W et al. Intracellular proliferation of S. aureus in osteoblasts and effects of rifampicin and gentamicin on S. aureus intracellular proliferation and survival. Eur. Cells Mater., 2014, 28: 258-268

[127]

Schaaff F, Bierbaum G, Baumert N, Bartmann P, Sahl H-G. Mutations are involved in emergence of aminoglycoside-induced small colony variants of Staphylococcus aureus. Int. J. Med. Microbiol., 2003, 293: 427-435

[128]

Pelletier LL, Richardson M, Feist M. Virulent gentamicin-induced small colony variants of Staphylococcus aureus. J. Lab. Clin. Med., 1979, 94: 324-334

[129]

Yang S et al. Bacteria-targeting nanoparticles with microenvironment-responsive antibiotic release to eliminate intracellular Staphylococcus aureus and associated infection. ACS Appl. Mater. Interfaces, 2018, 10: 14299-14311

[130]

Blondeau JM. Fluoroquinolones: mechanism of action, classification, and development of resistance. Surv. Ophthalmol., 2004, 49: S73-S78

[131]

Tomé AM, Filipe A. Quinolones. Drug Saf., 2011, 34: 465-488

[132]

Yan, A. & Bryant, E. E. Quinolones. StatPearls, Internet Book at https://www.ncbi.nlm.nih.gov/books/NBK557777/ (2020).

[133]

Dukhovich TV, Chopei IV, Chubirko KI. Dynamics of staphylococcus aureus antibiotic resistance to fluoroquinolones in vitro in patients with overweight. Wiad. Lek., 2018, 71: 301-305

[134]

Fantoni M, Taccari F, Giovannenze F. Systemic antibiotic treatment of chronic osteomyelitis in adults. Eur. Rev. Med. Pharm. Sci., 2019, 23: 258-270

[135]

Meléndez-Carmona , Muñoz-Gallego I, Viedma E, Lora-Tamayo J, Chaves F. Intraosteoblastic activity of levofloxacin and rifampin alone and in combination against clinical isolates of meticillin-susceptible Staphylococcus aureus causing prosthetic joint infection. Int. J. Antimicrobial Agents, 2019, 54: 356-360

[136]

Krishnan AG, Jayaram L, Biswas R, Nair M. Evaluation of antibacterial activity and cytocompatibility of ciprofloxacin loaded Gelatin–Hydroxyapatite scaffolds as a local drug delivery system for osteomyelitis treatment. Tissue Eng. Part A, 2015, 21: 1422-1431

[137]

Ferreira M et al. Levofloxacin-loaded bone cement delivery system: Highly effective against intracellular bacteria and Staphylococcus aureus biofilms. Int. J. Pharmaceutics, 2017, 532: 241-248

[138]

Bala S et al. Reclassification of Amycolatopsis mediterranei DSM 46095 as Amycolatopsis rifamycinica sp. nov. Int. J. Syst. Evolut. Microbiol., 2004, 54: 1145-1149

[139]

Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future. Curr. Opin. Microbiol., 2019, 51: 72-80

[140]

Aristoff PA, Garcia GA, Kirchhoff PD, Hollis Showalter HD. Rifamycins – obstacles and opportunities. Tuberculosis, 2010, 90: 94-118

[141]

Yu K et al. Recalcitrant methicillin-resistant Staphylococcus aureus infection of bone cells: Intracellular penetration and control strategies. Bone Jt. Res., 2020, 9: 49-59

[142]

Abad L et al. Antibiofilm and intraosteoblastic activities of rifamycins against Staphylococcus aureus: promising in vitro profile of rifabutin. J. Antimicrobial Chemother., 2020, 75: 1466-1473

[143]

Guo P, Xue HY, Buttaro BA, Tran NT, Wong HL. Enhanced eradication of intracellular and biofilm-residing methicillin-resistant Staphylococcus aureus (MRSA) reservoirs with hybrid nanoparticles delivering rifampicin. Int. J. Pharmaceutics, 2020, 589: 119784

[144]

Kolenda C et al. Evaluation of the activity of a combination of three bacteriophages alone or in association with antibiotics on Staphylococcus aureus embedded in biofilm or internalized in osteoblasts. Antimicrobial Agents Chemother, 2020, 64: e02231-19

[145]

Sanchez CJ et al. Rifamycin derivatives are effective against staphylococcal biofilms in vitro and elutable from PMMA. Clin. Orthop. Relat. Res., 2015, 473: 2874-2884

[146]

Karau MJ et al. Novel use of rifabutin and rifapentine to treat methicillin-resistant Staphylococcus aureus in a rat model of foreign body osteomyelitis. J. Infect. Dis., 2020, 222: 1498-1504

[147]

Bush K, Bradford PA. β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harb. Perspect. Med., 2016, 6: a025247

[148]

Cooper RD. The carbacephems: a new beta-lactam antibiotic class. Am. J. Med., 1992, 92: S2-S6

[149]

Bignardi G, Woodford N, Chapman A, Johnson A, Speller D. Detection of the mec-A gene and phenotypic detection of resistance in Staphylococcus aureus isolates with borderline or low-level methicillin resistance. J. Antimicrobial Chemother., 1996, 37: 53-63

[150]

Lemaire S, Van Bambeke F, Mingeot-Leclercq M-P, Tulkens PM. Activity of three β-lactams (ertapenem, meropenem and ampicillin) against intraphagocytic Listeria monocytogenes and Staphylococcus aureus. J. Antimicrobial Chemother., 2005, 55: 897-904

[151]

Akashi M et al. A literature review of perioperative antibiotic administration in surgery for medication-related osteonecrosis of the jaw. Oral. Maxillofac. Surg., 2018, 22: 369-378

[152]

Dusane DH et al. Targeting intracellular Staphylococcus aureus to lower recurrence of orthopaedic infection. J. Orthop. Res., 2018, 36: 1068-1092

[153]

Dupieux C et al. Intraosteoblastic activity of daptomycin in combination with oxacillin and ceftaroline against MSSA and MRSA. J. Antimicrobial Chemother., 2017, 72: 3353-3356

[154]

Renard C, Vanderhaeghe HJ, Claes PJ, Zenebergh A, Tulkens PM. Influence of conversion of penicillin G into a basic derivative on its accumulation and subcellular localization in cultured macrophages. Antimicrobial Agents Chemother., 1987, 31: 410-416

[155]

Lemaire S, Fuda C, Van Bambeke F, Tulkens PM, Mobashery S. Restoration of susceptibility of methicillin-resistant Staphylococcus aureus to β-lactam antibiotics by acidic pH: role of penicillin-binding protein PBP 2a. J. Biol. Chem., 2008, 283: 12769-12776

[156]

Pillai RR, Somayaji SN, Rabinovich M, Hudson MC, Gonsalves KE. Nafcillin-loaded PLGA nanoparticles for treatment of osteomyelitis. Biomed. Mater., 2008, 3: 034114

[157]

Zhang C et al. Antibiotic-derived lipid nanoparticles to treat intracellular Staphylococcus aureus. ACS Appl. Bio Mater., 2019, 2: 1270-1277

[158]

Scheetz MH. Vancomycin: The pendulum swings. Am. J. Health-Syst. Pharm., 2020, 77: 810-811

[159]

Blaskovich MA et al. Developments in glycopeptide antibiotics. ACS Infect. Dis., 2018, 4: 715-735

[160]

Stogios PJ, Savchenko A. Molecular mechanisms of vancomycin resistance. Protein Sci., 2020, 29: 654-669

[161]

Courvalin P. Vancomycin resistance in gram-positive cocci. Clin. Infect. Dis., 2006, 42: S25-S34

[162]

Shahin IG et al. Evaluation of N-phenyl-2-aminothiazoles for treatment of multi-drug resistant and intracellular Staphylococcus aureus infections. Eur. J. Medicinal Chem., 2020, 202: 112497

[163]

Pumerantz A et al. Preparation of liposomal vancomycin and intracellular killing of meticillin-resistant Staphylococcus aureus (MRSA). Int. J. Antimicrobial Agents, 2011, 37: 140-144

[164]

Huo S et al. Overcoming planktonic and intracellular Staphylococcus aureus-associated infection with a cell-penetrating peptide-conjugated antimicrobial peptide. ACS Infect. Dis., 2020, 6: 3147-3162

[165]

Zhang Y et al. Efficient induction of antimicrobial activity with vancomycin nanoparticle-loaded poly (trimethylene carbonate) localized drug delivery system. Int. J. Nanomed., 2017, 12: 1201

[166]

Yang X et al. Eradicating intracellular MRSA via targeted delivery of lysostaphin and vancomycin with mannose-modified exosomes. J. Controlled Release, 2021, 329: 454-467

[167]

Silver LL. Fosfomycin: Mechanism and resistance. Cold Spring Harb. Perspect. Med., 2017, 7: a025262

[168]

Falagas ME, Athanasaki F, Voulgaris GL, Triarides NA, Vardakas KZ. Resistance to fosfomycin: Mechanisms, frequency and clinical consequences. Int. J. Antimicrobial Agents, 2019, 53: 22-28

[169]

Morata L, Soriano A. The role of fosfomycin in osteoarticular infection. Rev. Española de. Quimioterapia, 2019, 32: 30

[170]

Grabein B, Graninger W, Rodríguez Baño J, Dinh A, Liesenfeld DB. Intravenous fosfomycin—back to the future. Systematic review and meta-analysis of the clinical literature. Clin. Microbiol. Infect., 2017, 23: 363-372

[171]

Rubio S, Martínez-Cámara S, de la Fuente JL, Rodríguez-Sáiz M, Barredo J-L. Strain improvement program of Streptomyces roseosporus for daptomycin production. Methods Mol. Biol., 2021, 2296: 351-363

[172]

Vilhena C, Bettencourt A. Daptomycin: a review of properties, clinical use, drug delivery and resistance. Mini Rev. Medicinal Chem., 2012, 12: 202-209

[173]

Huang HWDaptomycin. its membrane-active mechanism vs. that of other antimicrobial peptides. Biochimica et. Biophysica Acta (BBA) - Biomembranes, 2020, 1862: 183395

[174]

Tran TT, Munita JM, Arias CA. Mechanisms of drug resistance: daptomycin resistance. Ann. N. Y. Acad. Sci., 2015, 1354: 32

[175]

Heidary M et al. Daptomycin. J. Antimicrobial Chemother., 2018, 73: 1-11

[176]

Telles JP, Cieslinski J, Tuon FF. Daptomycin to bone and joint infections and prosthesis joint infections: a systematic review. Braz. J. Infect. Dis., 2019, 23: 191-196

[177]

Sipahi O et al. Daptomycin versus teicoplanin in the treatment of osteomyelitis: Results of the Göztepe retrospective cohort study. Infectious Diseases Now, 2021, 51: 362-367

[178]

Woischnig A-K et al. Acrylic microparticles increase daptomycin intracellular and in vivo anti-biofilm activity against Staphylococcus aureus. Int. J. pharmaceutics, 2018, 550: 372-379

[179]

Fisher C, Patel R. Rifampin, rifapentine, and rifabutin are active against intracellular periprosthetic joint infection associated Staphylococcus epidermidis. Antimicrobial Agents Chemother, 2021, 65: e01275-20

[180]

Schentag JJ, Gengo FM, Tsuang MT. Principles of antibiotic tissue penetration and guidelines for pharmacokinetic analysis. J. Urol., 1982, 128: 871-872

[181]

Hamza T, Li B. Differential responses of osteoblasts and macrophages upon Staphylococcus aureus infection. BMC Microbiol., 2014, 14

[182]

Gunn NJ et al. A human osteocyte cell line model for studying Staphylococcus aureus persistence in osteomyelitis. Front. Cellular Infect. Microbiol, 2021, 11: 781022

[183]

Häffner N et al. Intracellular environment and agr system affect colony size heterogeneity of Staphylococcus aureus. Frontiers in Microbiology, 2020, 11: 1415

[184]

Goetz J et al. Animal experimental investigation on the efficacy of antibiotic therapy with linezolid, vancomycin, cotrimoxazole, and rifampin in treatment of periprosthetic knee joint infections by MRSA. Bone Jt. Res., 2022, 11: 143-151

[185]

Sato K et al. Osteomyelitis due to methicillin-resistant Staphylococcus aureus successfully treated by an oral combination of minocycline and trimethoprim–sulfamethoxazole. SAGE Open Med. Case Rep., 2019, 7: 2050313X19841465

[186]

Nurjadi D et al. Molecular analysis of an increase in trimethoprim/sulfamethoxazole-resistant MRSA reveals multiple introductions into a tertiary care hospital, Germany 2012–19. J. Antimicrobial Chemother., 2022, 77: 38-48

[187]

Ham, D. C. et al. Trimethoprim-sulfamethoxazole resistance patterns among Staphylococcus aureus in the United States, 2012–2018. Infect. Control Hospital Epidemiology https://doi.org/10.1017/ice.2022.9 (2022).

[188]

Karau MJ et al. Activity of omadacycline in rat methicillin-resistant staphylococcus aureus osteomyelitis. Antimicrobial Agents Chemother., 2022, 66: e01703-e01721

[189]

Dubois J, Dubois M, Martel J-F. In vitro and intracellular activities of omadacycline against Legionella pneumophila. Antimicrobial Agents Chemother., 2020, 64: e01972-01919

[190]

Karlowsky JA, Steenbergen J, Zhanel GG. Microbiology and preclinical review of omadacycline. Clin. Infect. Dis., 2019, 69: S6-S15

[191]

Lima ALL, Oliveira PR, Carvalho VC, Cimerman S, Savio E. Recommendations for the treatment of osteomyelitis. Braz. J. Infect. Dis., 2014, 18: 526-534

PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

/