A high-resolution route map reveals distinct stages of chondrocyte dedifferentiation for cartilage regeneration
Yishan Chen , Yeke Yu , Ya Wen , Juan Chen , Junxin Lin , Zixuan Sheng , Wenyan Zhou , Heng Sun , Chengrui An , Jiansong Chen , Weiliang Wu , Chong Teng , Wei Wei , Hongwei Ouyang
Bone Research ›› 2022, Vol. 10 ›› Issue (1) : 38
A high-resolution route map reveals distinct stages of chondrocyte dedifferentiation for cartilage regeneration
Articular cartilage damage is a universal health problem. Despite recent progress, chondrocyte dedifferentiation has severely compromised the clinical outcomes of cell-based cartilage regeneration. Loss-of-function changes are frequently observed in chondrocyte expansion and other pathological conditions, but the characteristics and intermediate molecular mechanisms remain unclear. In this study, we demonstrate a time-lapse atlas of chondrocyte dedifferentiation to provide molecular details and informative biomarkers associated with clinical chondrocyte evaluation. We performed various assays, such as single-cell RNA sequencing (scRNA-seq), live-cell metabolic assays, and assays for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), to develop a biphasic dedifferentiation model consisting of early and late dedifferentiation stages. Early-stage chondrocytes exhibited a glycolytic phenotype with increased expression of genes involved in metabolism and antioxidation, whereas late-stage chondrocytes exhibited ultrastructural changes involving mitochondrial damage and stress-associated chromatin remodeling. Using the chemical inhibitor BTB06584, we revealed that early and late dedifferentiated chondrocytes possessed distinct recovery potentials from functional phenotype loss. Notably, this two-stage transition was also validated in human chondrocytes. An image-based approach was established for clinical use to efficiently predict chondrocyte plasticity using stage-specific biomarkers. Overall, this study lays a foundation to improve the quality of chondrocytes in clinical use and provides deep insights into chondrocyte dedifferentiation.
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
Peterson, L. et al. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin. Orthop. Relat. Res. 212–234 (2000). |
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
Shen, G., Liu, W., Xu, L. & Wang, L. Mitochondrial unfolded protein response and its roles in stem cells. Stem Cells Dev. 29, 627–637 (2020). |
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
the National Key R&D Program of China (2017YFA0104900), the Natural Sciences Foundation of China (31830029)
the Natural Sciences Foundation of China (82002319)
/
| 〈 |
|
〉 |