IκB-ζ signaling promotes chondrocyte inflammatory phenotype, senescence, and erosive joint pathology

Manoj Arra , Gaurav Swarnkar , Yael Alippe , Gabriel Mbalaviele , Yousef Abu-Amer

Bone Research ›› 2022, Vol. 10 ›› Issue (1) : 12

PDF
Bone Research ›› 2022, Vol. 10 ›› Issue (1) : 12 DOI: 10.1038/s41413-021-00183-9
Article

IκB-ζ signaling promotes chondrocyte inflammatory phenotype, senescence, and erosive joint pathology

Author information +
History +
PDF

Abstract

Osteoarthritis is a joint disease characterized by a poorly-defined inflammatory response that does not encompass a massive immune cell infiltration yet contributes to cartilage degradation and loss of joint mobility, suggesting a chondrocyte intrinsic inflammatory response. Using primary chondrocytes from joints of osteoarthritic mice and patients, we first show that these cells express ample pro-inflammatory markers and RANKL in an NF-κB dependent manner. The inflammatory phenotype of chondrocytes was recapitulated by exposure of chondrocytes to IL-1β and bone particles, which were used to model bone matrix breakdown products revealed to be present in synovial fluid of OA patients, albeit their role was not defined. We further show that bone particles and IL-1β can promote senescent and apoptotic changes in primary chondrocytes due to oxidative stress from various cellular sources such as the mitochondria. Finally, we provide evidence that inflammation, oxidative stress and senescence converge upon IκB-ζ, the principal mediator downstream of NF-κB, which regulates expression of RANKL, inflammatory, catabolic, and SASP genes. Overall, this work highlights the capacity and mechanisms by which inflammatory cues, primarily joint degradation products, i.e., bone matrix particles in concert with IL-1β in the joint microenvironment, program chondrocytes into an “inflammatory phenotype” which inflects local tissue damage.

Cite this article

Download citation ▾
Manoj Arra, Gaurav Swarnkar, Yael Alippe, Gabriel Mbalaviele, Yousef Abu-Amer. IκB-ζ signaling promotes chondrocyte inflammatory phenotype, senescence, and erosive joint pathology. Bone Research, 2022, 10(1): 12 DOI:10.1038/s41413-021-00183-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Clin. Geriatr. Med., 2010, 26: 355-369

[2]

Wallace IJ et al. Knee osteoarthritis has doubled in prevalence since the mid-20th century. Proc. Natl. Acad. Sci. USA, 2017, 114: 9332-9336

[3]

Turkiewicz A et al. Current and future impact of osteoarthritis on health care: a population-based study with projections to year 2032. Osteoarthr. Cartil., 2014, 22: 1826-1832

[4]

Goldring MB, Otero M. Inflammation in osteoarthritis. Curr. Opin. Rheumatol., 2011, 23: 471-478

[5]

Sokolove J, Lepus CM. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther. Adv. Musculoskelet. Dis., 2013, 5: 77-94

[6]

Rogers EL, Reynard LN, Loughlin J. The role of inflammation-related genes in osteoarthritis. Osteoarthr. Cartil., 2015, 23: 1933-1938

[7]

Berenbaum F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr. Cartil., 2013, 21: 16-21

[8]

Zhang Q, Lenardo MJ, Baltimore D. 30 years of NF-kappaB: a blossoming of relevance to human pathobiology. Cell, 2017, 168: 37-57

[9]

Rigoglou S, Papavassiliou AG. The NF-kappaB signalling pathway in osteoarthritis. Int. J. Biochem. Cell Biol., 2013, 45: 2580-2584

[10]

Loeser RF. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthr. Cartil., 2009, 17: 971-979

[11]

Martin J. A., Brown T. D., Heiner A. D., Buckwalter J. A. Chondrocyte senescence, joint loading and osteoarthritis. Clin. Orthop. Relat. Res. 427, S96–S103 (2004).

[12]

Toh WS et al. Cellular senescence in aging and osteoarthritis. Acta Orthop., 2016, 87: 6-14

[13]

Jeon OH, David N, Campisi J, Elisseeff JH. Senescent cells and osteoarthritis: a painful connection. J. Clin. Invest., 2018, 128: 1229-1237

[14]

Kang D. et al. Stress-activated miR-204 governs senescent phenotypes of chondrocytes to promote osteoarthritis development. Sci. Transl. Med. 11, 1–14 (2019).

[15]

Vinatier C, Dominguez E, Guicheux J, Carames B. Role of the inflammation-autophagy-senescence integrative network in osteoarthritis. Front. Physiol., 2018, 9: 706

[16]

Coryell PR, Diekman BO, Loeser RF. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat. Rev. Rheumatol., 2021, 17: 47-57

[17]

Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochim. Biophys. Acta, 2016, 1862: 576-591

[18]

Kang C. Senolytics and senostatics: a two-pronged approach to target cellular senescence for delaying aging and age-related diseases. Mol. Cells, 2019, 42: 821-827

[19]

Wu CW, Terkeltaub R, Kalunian KC. Calcium-containing crystals and osteoarthritis: implications for the clinician. Curr. Rheumatol. Rep., 2005, 7: 213-219

[20]

Cheung HS. Role of calcium-containing crystals in osteoarthritis. Front. Biosci., 2005, 10: 1336-1340

[21]

Jaovisidha K, Rosenthal AK. Calcium crystals in osteoarthritis. Curr. Opin. Rheumatol., 2002, 14: 298-302

[22]

Ea HK et al. Articular cartilage calcification in osteoarthritis: insights into crystal-induced stress. Arthritis Rheum., 2011, 63: 10-18

[23]

Donell S. Subchondral bone remodelling in osteoarthritis. EFORT Open Rev., 2019, 4: 221-229

[24]

Funck-Brentano T, Cohen-Solal M. Subchondral bone and osteoarthritis. Curr. Opin. Rheumatol., 2015, 27: 420-426

[25]

Henrotin Y, Pesesse L, Sanchez C. Subchondral bone in osteoarthritis physiopathology: state-of-the art and perspectives. Biomed. Mater. Eng., 2009, 19: 311-316

[26]

Wang B, Jin H, Shu B, Mira RR, Chen D. Chondrocytes-specific expression of osteoprotegerin modulates osteoclast formation in metaphyseal bone. Sci. Rep., 2015, 5

[27]

Ea HK et al. Pathogenic role of basic calcium phosphate crystals in destructive arthropathies. PLoS One, 2013, 8: e57352

[28]

Ea HK, So A, Liote F, Busso N. Basic calcium phosphate crystals induce NLRP3 inflammasome activation: the in vitro and in vivo face to face. Proc. Natl. Acad. Sci. USA, 2011, 108: E1361

[29]

Sofat N. Analysing the role of endogenous matrix molecules in the development of osteoarthritis. Int. J. Exp. Pathol., 2009, 90: 463-479

[30]

Nalbant S et al. Synovial fluid features and their relations to osteoarthritis severity: new findings from sequential studies. Osteoarthr. Cartil., 2003, 11: 50-54

[31]

Evans CH, Mazzocchi RA, Nelson DD, Rubash HE. Experimental arthritis induced by intraarticular injection of allogenic cartilaginous particles into rabbit knees. Arthritis Rheum., 1984, 27: 200-207

[32]

Kwan Tat S, Lajeunesse D, Pelletier JP, Martel-Pelletier J. Targeting subchondral bone for treating osteoarthritis: what is the evidence? Best. Pr. Res. Clin. Rheumatol., 2010, 24: 51-70

[33]

Bapat S, Hubbard D, Munjal A, Hunter M, Fulzele S. Pros and cons of mouse models for studying osteoarthritis. Clin. Transl. Med., 2018, 7

[34]

Arra M et al. LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis. Nat. Commun., 2020, 11

[35]

Kobayashi Y, Udagawa N, Takahashi N. Action of RANKL and OPG for osteoclastogenesis. Crit. Rev. Eukaryot. Gene Expr., 2009, 19: 61-72

[36]

Mahon OR, Dunne A. Disease-associated particulates and joint inflammation; mechanistic insights and potential therapeutic targets. Front. Immunol., 2018, 9: 1145

[37]

Jo EK, Kim JK, Shin DM, Sasakawa C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol. Immunol., 2016, 13: 148-159

[38]

Willems M, Dubois N, Musumeci L, Bours V, Robe PA. IkappaBzeta: an emerging player in cancer. Oncotarget, 2016, 7: 66310-66322

[39]

Choi MC, MaruYama T, Chun CH, Park Y. Alleviation of murine osteoarthritis by cartilage-specific deletion of IkappaBzeta. Arthritis Rheumatol., 2018, 70: 1440-1449

[40]

Hou A et al. Cellular senescence in osteoarthritis and anti-aging strategies. Mech. Ageing Dev., 2018, 175: 83-87

[41]

McCulloch K, Litherland GJ, Rai TS. Cellular senescence in osteoarthritis pathology. Aging Cell., 2017, 16: 210-218

[42]

Philipot D et al. p16INK4a and its regulator miR-24 link senescence and chondrocyte terminal differentiation-associated matrix remodeling in osteoarthritis. Arthritis Res. Ther., 2014, 16: R58

[43]

Che H., et al. p16 deficiency attenuates intervertebral disc degeneration by adjusting oxidative stress and nucleus pulposus cell cycle. Elife. 9, e52570 (2020).

[44]

Kim EC, Kim JR. Senotherapeutics: emerging strategy for healthy aging and age-related disease. BMB Rep., 2019, 52: 47-55

[45]

Drevet S, Gavazzi G, Grange L, Dupuy C, Lardy B. Reactive oxygen species and NADPH oxidase 4 involvement in osteoarthritis. Exp. Gerontol., 2018, 111: 107-117

[46]

van Dalen SCM et al. The role of NOX2-derived reactive oxygen species in collagenase-induced osteoarthritis. Osteoarthr. Cartil., 2018, 26: 1722-1732

[47]

Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J. Mol. Med., 2019, 44: 3-15

[48]

Blanco FJ, Rego I, Ruiz-Romero C. The role of mitochondria in osteoarthritis. Nat. Rev. Rheumatol., 2011, 7: 161-169

[49]

Hikisz P, Kilianska ZM. PUMA, a critical mediator of cell death-one decade on from its discovery. Cell Mol. Biol. Lett., 2012, 17: 646-669

[50]

Zhu L et al. Curcumin triggers apoptosis via upregulation of Bax/Bcl-2 ratio and caspase activation in SW872 human adipocytes. Mol. Med. Rep., 2015, 12: 1151-1156

[51]

Salakou S et al. Increased Bax/Bcl-2 ratio up-regulates caspase-3 and increases apoptosis in the thymus of patients with myasthenia gravis. Vivo, 2007, 21: 123-132

[52]

Coleman M. C., et al. Targeting mitochondrial responses to intra-articular fracture to prevent posttraumatic osteoarthritis. Sci Transl. Med. 10, 1–14 (2018).

[53]

Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev., 2007, 87: 315-424

[54]

Loeser RF, Carlson CS, Del Carlo M, Cole A. Detection of nitrotyrosine in aging and osteoarthritic cartilage: Correlation of oxidative damage with the presence of interleukin-1beta and with chondrocyte resistance to insulin-like growth factor 1. Arthritis Rheum., 2002, 46: 2349-2357

[55]

Sun Q., et al. Parathyroid hormone attenuates osteoarthritis pain by remodeling subchondral bone in mice. Elife. 10, e66532 (2021).

[56]

Li X et al. Knee loading inhibits osteoclast lineage in a mouse model of osteoarthritis. Sci. Rep., 2016, 6

[57]

Bertuglia A et al. Osteoclasts are recruited to the subchondral bone in naturally occurring post-traumatic equine carpal osteoarthritis and may contribute to cartilage degradation. Osteoarthr. Cartil., 2016, 24: 555-566

[58]

Zhu X, Chan YT, Yung PSH, Tuan RS, Jiang Y. Subchondral bone remodeling: a therapeutic target for osteoarthritis. Front. Cell Dev. Biol., 2020, 8: 607764

[59]

Avouac J, Vicaut E, Bardin T, Richette P. Efficacy of joint lavage in knee osteoarthritis: meta-analysis of randomized controlled studies. Rheumatol. (Oxf.), 2010, 49: 334-340

[60]

Villanueva C, Giulivi C. Subcellular and cellular locations of nitric oxide synthase isoforms as determinants of health and disease. Free Radic. Biol. Med., 2010, 49: 307-316

[61]

Dikalov SI, Mayorov VI, Panov AV. Physiological levels of nitric oxide diminish mitochondrial superoxide. potential role of mitochondrial dinitrosyl iron complexes and nitrosothiols. Front. Physiol., 2017, 8: 907

[62]

Wink DA et al. Mechanisms of the antioxidant effects of nitric oxide. Antioxid. Redox Signal, 2001, 3: 203-213

Funding

U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)(AR049192)

U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)

U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)

Shriners Hospitals for Children(85160)

U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)

U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/