Procalcitonin is expressed in osteoblasts and limits bone resorption through inhibition of macrophage migration during intermittent PTH treatment

Anke Baranowsky , Denise Jahn , Shan Jiang , Timur Yorgan , Peter Ludewig , Jessika Appelt , Kai K. Albrecht , Ellen Otto , Paul Knapstein , Antonia Donat , Jack Winneberger , Lana Rosenthal , Paul Köhli , Cordula Erdmann , Melanie Fuchs , Karl-Heinz Frosch , Serafeim Tsitsilonis , Michael Amling , Thorsten Schinke , Johannes Keller

Bone Research ›› 2022, Vol. 10 ›› Issue (1) : 9

PDF
Bone Research ›› 2022, Vol. 10 ›› Issue (1) : 9 DOI: 10.1038/s41413-021-00172-y
Article

Procalcitonin is expressed in osteoblasts and limits bone resorption through inhibition of macrophage migration during intermittent PTH treatment

Author information +
History +
PDF

Abstract

Intermittent injections of parathyroid hormone (iPTH) are applied clinically to stimulate bone formation by osteoblasts, although continuous elevation of parathyroid hormone (PTH) primarily results in increased bone resorption. Here, we identified Calca, encoding the sepsis biomarker procalcitonin (ProCT), as a novel target gene of PTH in murine osteoblasts that inhibits osteoclast formation. During iPTH treatment, mice lacking ProCT develop increased bone resorption with excessive osteoclast formation in both the long bones and axial skeleton. Mechanistically, ProCT inhibits the expression of key mediators involved in the recruitment of macrophages, representing osteoclast precursors. Accordingly, ProCT arrests macrophage migration and causes inhibition of early but not late osteoclastogenesis. In conclusion, our results reveal a potential role of osteoblast-derived ProCT in the bone microenvironment that is required to limit bone resorption during iPTH.

Cite this article

Download citation ▾
Anke Baranowsky, Denise Jahn, Shan Jiang, Timur Yorgan, Peter Ludewig, Jessika Appelt, Kai K. Albrecht, Ellen Otto, Paul Knapstein, Antonia Donat, Jack Winneberger, Lana Rosenthal, Paul Köhli, Cordula Erdmann, Melanie Fuchs, Karl-Heinz Frosch, Serafeim Tsitsilonis, Michael Amling, Thorsten Schinke, Johannes Keller. Procalcitonin is expressed in osteoblasts and limits bone resorption through inhibition of macrophage migration during intermittent PTH treatment. Bone Research, 2022, 10(1): 9 DOI:10.1038/s41413-021-00172-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sims NA, Morris HA, Moore RJ, Durbridge TC. Increased bone resorption precedes increased bone formation in the ovariectomized rat. Calcif. Tissue Int., 1996, 59: 121-127

[2]

Zaidi M. Skeletal remodeling in health and disease. Nat. Med., 2007, 13: 791-801

[3]

Parfitt AM. The coupling of bone formation to bone resorption: a critical analysis of the concept and of its relevance to the pathogenesis of osteoporosis. Metab. Bone Dis. Relat. Res., 1982, 4: 1-6

[4]

Reginster JY, Burlet N. Osteoporosis: a still increasing prevalence. Bone, 2006, 38: S4-S9

[5]

Sözen T, Özışık L, Başaran N. An overview and management of osteoporosis. Eur. J. Rheumatol., 2017, 4: 46-56

[6]

Russow, G. et al. Anabolic therapies in osteoporosis and bone regeneration. Int. J. Mol. Sci. 20, 83 (2018).

[7]

Potts JT, Kronenberg HM, Rosenblatt M. Parathyroid hormone: chemistry, biosynthesis, and mode of action. Adv. Protein Chem., 1982, 35: 323-396

[8]

Bandeira F et al. Bone disease in primary hyperparathyroidism. Arq. Bras. Endocrinol. Metab., 2014, 58: 553-561

[9]

Uzawa T, Hori M, Ejiri S, Ozawa H. Comparison of the effects of intermittent and continuous administration of human parathyroid hormone(1-34) on rat bone. Bone, 1995, 16: 477-484

[10]

Wojda SJ, Donahue SW. Parathyroid hormone for bone regeneration. J. Orthop. Res., 2018, 36: 2586-2594

[11]

Fermor B, Skerry TM. PTH/PTHrP receptor expression on osteoblasts and osteocytes but not resorbing bone surfaces in growing rats. J. Bone Min. Res., 1995, 10: 1935-1943

[12]

Calvi LM et al. Activated parathyroid hormone/parathyroid hormone-related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone. J. Clin. Invest., 2001, 107: 277-286

[13]

Powell WF et al. Targeted ablation of the PTH/PTHrP receptor in osteocytes impairs bone structure and homeostatic calcemic responses. J. Endocrinol., 2011, 209: 21-32

[14]

Yu B et al. Parathyroid hormone induces differentiation of mesenchymal stromal/stem cells by enhancing bone morphogenetic protein signaling. J. Bone Min. Res., 2012, 27: 2001-2014

[15]

Nishida S et al. Increased bone formation by intermittent parathyroid hormone administration is due to the stimulation of proliferation and differentiation of osteoprogenitor cells in bone marrow. Bone, 1994, 15: 717-723

[16]

Calvi LM et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 2003, 425: 841-846

[17]

Jilka RL et al. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J. Clin. Invest., 1999, 104: 439-446

[18]

Kim SW et al. Intermittent parathyroid hormone administration converts quiescent lining cells to active osteoblasts. J. Bone Min. Res., 2012, 27: 2075-2084

[19]

Siddiqui JA, Partridge NC. CCL2/Monocyte chemoattractant protein 1 and parathyroid hormone action on bone. Front. Endocrinol. (Lausanne), 2017, 8: 49

[20]

Huang JC et al. PTH differentially regulates expression of RANKL and OPG. J. Bone Min. Res., 2004, 19: 235-244

[21]

Chambers TJ, Moore A. The sensitivity of isolated osteoclasts to morphological transformation by calcitonin. J. Clin. Endocrinol. Metab., 1983, 57: 819-824

[22]

Zaidi M et al. Calcitonin gene-related peptide inhibits osteoclastic bone resorption: a comparative study. Calcif. Tissue Int., 1987, 40: 149-154

[23]

Zaidi M, Moonga BS, Abe E. Calcitonin and bone formation: a knockout full of surprises. J. Clin. Invest., 2002, 110: 1769-1771

[24]

Davey RA, Findlay DM. Calcitonin: physiology or fantasy? J. Bone Min. Res., 2013, 28: 973-979

[25]

Keller J et al. Calcitonin controls bone formation by inhibiting the release of sphingosine 1-phosphate from osteoclasts. Nat. Commun., 2014, 5

[26]

Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature, 1982, 298: 240-244

[27]

Russwurm S et al. Molecular aspects and natural source of procalcitonin. Clin. Chem. Lab. Med., 1999, 37: 789-797

[28]

Becker KL, Snider R, Nylen ES. Procalcitonin in sepsis and systemic inflammation: a harmful biomarker and a therapeutic target. Br. J. Pharm., 2010, 159: 253-264

[29]

Hamade B, Huang DT. Procalcitonin: where are we now? Crit. Care Clin., 2020, 36: 23-40

[30]

Foster GV et al. Thyroid origin of calcitonin. Nature, 1964, 202: 1303-1305

[31]

Becker KL, Nylén ES, White JC, Müller B, Snider RH. Clinical review 167: procalcitonin and the calcitonin gene family of peptides in inflammation, infection, and sepsis: a journey from calcitonin back to its precursors. J. Clin. Endocrinol. Metab., 2004, 89: 1512-1525

[32]

Rosenfeld MG et al. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature, 1983, 304: 129-135

[33]

Irie K, Hara-Irie F, Ozawa H, Yajima T. Calcitonin gene-related peptide (CGRP)-containing nerve fibers in bone tissue and their involvement in bone remodeling. Microsc Res. Tech., 2002, 58: 85-90

[34]

Lu JT et al. Mice lacking alpha-calcitonin gene-related peptide exhibit normal cardiovascular regulation and neuromuscular development. Mol. Cell Neurosci., 1999, 14: 99-120

[35]

Schinke T et al. Decreased bone formation and osteopenia in mice lacking alpha-calcitonin gene-related peptide. J. Bone Min. Res., 2004, 19: 2049-2056

[36]

Sexton PM et al. Procalcitonin has bioactivity at calcitonin receptor family complexes: potential mediator implications in sepsis. Crit. Care Med., 2008, 36: 1637-1640

[37]

Hay DL, Garelja ML, Poyner DR, Walker CS. Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. Br. J. Pharm., 2018, 175: 3-17

[38]

Heckt T et al. Parathyroid hormone induces expression and proteolytic processing of Rankl in primary murine osteoblasts. Bone, 2016, 92: 85-93

[39]

Mun SH, Won HY, Hernandez P, Aguila HL, Lee SK. Deletion of CD74, a putative MIF receptor, in mice enhances osteoclastogenesis and decreases bone mass. J. Bone Min. Res., 2013, 28: 948-959

[40]

Wintges K et al. Impaired bone formation and increased osteoclastogenesis in mice lacking chemokine (C-C motif) ligand 5 (Ccl5). J. Bone Min. Res., 2013, 28: 2070-2080

[41]

Moreth K et al. Biglycan-triggered TLR-2- and TLR-4-signaling exacerbates the pathophysiology of ischemic acute kidney injury. Matrix Biol., 2014, 35: 143-151

[42]

Zeng-Brouwers J, Beckmann J, Nastase MV, Iozzo RV, Schaefer L. De novo expression of circulating biglycan evokes an innate inflammatory tissue response via MyD88/TRIF pathways. Matrix Biol., 2014, 35: 132-142

[43]

Digiacomo G et al. Fibronectin induces macrophage migration through a SFK-FAK/CSF-1R pathway. Cell Adh. Migr., 2017, 11: 327-337

[44]

Chen P et al. Symbiotic macrophage-glioma cell interactions reveal synthetic lethality in PTEN-Null Glioma. Cancer Cell, 2019, 35: 868-884.e866

[45]

Raquil MA, Anceriz N, Rouleau P, Tessier PA. Blockade of antimicrobial proteins S100A8 and S100A9 inhibits phagocyte migration to the alveoli in streptococcal pneumonia. J. Immunol., 2008, 180: 3366-3374

[46]

Hodsman AB et al. Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr. Rev., 2005, 26: 688-703

[47]

Canalis E, Giustina A, Bilezikian JP. Mechanisms of anabolic therapies for osteoporosis. N. Engl. J. Med., 2007, 357: 905-916

[48]

Leder BZ et al. Two years of Denosumab and teriparatide administration in postmenopausal women with osteoporosis (The DATA Extension Study): a randomized controlled trial. J. Clin. Endocrinol. Metab., 2014, 99: 1694-1700

[49]

Crenshaw EB, Russo AF, Swanson LW, Rosenfeld MG. Neuron-specific alternative RNA processing in transgenic mice expressing a metallothionein-calcitonin fusion gene. Cell, 1987, 49: 389-398

[50]

Stolarsky-Fredman L et al. A tissue-specific enhancer in the rat-calcitonin/CGRP gene is active in both neural and endocrine cell types. Mol. Endocrinol., 1990, 4: 497-504

[51]

Hoff AO et al. Increased bone mass is an unexpected phenotype associated with deletion of the calcitonin gene. J. Clin. Invest., 2002, 110: 1849-1857

[52]

Tavares E, Maldonado R, Miñano FJ. N-procalcitonin: central effects on feeding and energy homeostasis in rats. Endocrinology, 2007, 148: 1891-1901

[53]

Liappis AP et al. Exogenous procalcitonin evokes a pro-inflammatory cytokine response. Inflamm. Res., 2011, 60: 203-207

[54]

Gooi JH et al. Decline in calcitonin receptor expression in osteocytes with age. J. Endocrinol., 2014, 221: 181-191

[55]

Eue I, Pietz B, Storck J, Klempt M, Sorg C. Transendothelial migration of 27E10+ human monocytes. Int. Immunol., 2000, 12: 1593-1604

[56]

Nisapakultorn K, Ross KF, Herzberg MC. Calprotectin expression inhibits bacterial binding to mucosal epithelial cells. Infect. Immun., 2001, 69: 3692-3696

[57]

Dapunt U et al. Neutrophil-derived MRP-14 is up-regulated in infectious osteomyelitis and stimulates osteoclast generation. J. Leukoc. Biol., 2015, 98: 575-582

[58]

Xia C, Braunstein Z, Toomey AC, Zhong J, Rao X. S100 proteins as an important regulator of macrophage inflammation. Front. Immunol., 2017, 8: 1908

[59]

Newton RA, Hogg N. The human S100 protein MRP-14 is a novel activator of the beta 2 integrin Mac-1 on neutrophils. J. Immunol., 1998, 160: 1427-1435

[60]

Ryckman C, Vandal K, Rouleau P, Talbot M, Tessier PA. Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J. Immunol., 2003, 170: 3233-3242

[61]

Wiedermann FJ et al. Migration of human monocytes in response to procalcitonin. Crit. Care Med., 2002, 30: 1112-1117

[62]

Baranowsky A et al. Procalcitonin exerts a mediator role in septic shock through the calcitonin gene-related peptide receptor. Crit. Care Med., 2021, 49: e41-e52

[63]

Kramer I, Loots GG, Studer A, Keller H, Kneissel M. Parathyroid hormone (PTH)-induced bone gain is blunted in SOST overexpressing and deficient mice. J. Bone Min. Res., 2010, 25: 178-189

[64]

Xie Y et al. Intermittent PTH (1-34) injection rescues the retarded skeletal development and postnatal lethality of mice mimicking human achondroplasia and thanatophoric dysplasia. Hum. Mol. Genet., 2012, 21: 3941-3955

[65]

Saito H et al. TG-interacting factor 1 (Tgif1)-deficiency attenuates bone remodeling and blunts the anabolic response to parathyroid hormone. Nat. Commun., 2019, 10

[66]

Rose S, Misharin A, Perlman H. A novel Ly6C/Ly6G-based strategy to analyze the mouse splenic myeloid compartment. Cytom. A, 2012, 81: 343-350

[67]

Luther, J. et al. Wnt1 is an Lrp5-independent bone-anabolic Wnt ligand. Sci. Transl. Med. 10, eaau7137 (2018).

Funding

Else Kröner-Fresenius-Stiftung (Else Kroner-Fresenius Foundation)(EKFS 2017_A22)

Berlin Institute of Health

Gemeinnützige Hertie-Stiftung (Hertie Foundation)

Deutsche Forschungsgemeinschaft (German Research Foundation)(DFG FOR 2879)

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/