The WNT1 G177C mutation specifically affects skeletal integrity in a mouse model of osteogenesis imperfecta type XV

Nele Vollersen , Wenbo Zhao , Tim Rolvien , Fabiola Lange , Felix Nikolai Schmidt , Stephan Sonntag , Doron Shmerling , Simon von Kroge , Kilian Elia Stockhausen , Ahmed Sharaf , Michaela Schweizer , Meliha Karsak , Björn Busse , Ernesto Bockamp , Oliver Semler , Michael Amling , Ralf Oheim , Thorsten Schinke , Timur Alexander Yorgan

Bone Research ›› 2021, Vol. 9 ›› Issue (1) : 48

PDF
Bone Research ›› 2021, Vol. 9 ›› Issue (1) : 48 DOI: 10.1038/s41413-021-00170-0
Article

The WNT1 G177C mutation specifically affects skeletal integrity in a mouse model of osteogenesis imperfecta type XV

Author information +
History +
PDF

Abstract

The recent identification of homozygous WNT1 mutations in individuals with osteogenesis imperfecta type XV (OI-XV) has suggested that WNT1 is a key ligand promoting the differentiation and function of bone-forming osteoblasts. Although such an influence was supported by subsequent studies, a mouse model of OI-XV remained to be established. Therefore, we introduced a previously identified disease-causing mutation (G177C) into the murine Wnt1 gene. Homozygous Wnt1 G177C/G177C mice were viable and did not display defects in brain development, but the majority of 24-week-old Wnt1 G177C/G177C mice had skeletal fractures. This increased bone fragility was not fully explained by reduced bone mass but also by impaired bone matrix quality. Importantly, the homozygous presence of the G177C mutation did not interfere with the osteoanabolic influence of either parathyroid hormone injection or activating mutation of LRP5, the latter mimicking the effect of sclerostin neutralization. Finally, transcriptomic analyses revealed that short-term administration of WNT1 to osteogenic cells induced not only the expression of canonical WNT signaling targets but also the expression of genes encoding extracellular matrix modifiers. Taken together, our data demonstrate that regulating bone matrix quality is a primary function of WNT1. They further suggest that individuals with WNT1 mutations should profit from existing osteoanabolic therapies.

Cite this article

Download citation ▾
Nele Vollersen, Wenbo Zhao, Tim Rolvien, Fabiola Lange, Felix Nikolai Schmidt, Stephan Sonntag, Doron Shmerling, Simon von Kroge, Kilian Elia Stockhausen, Ahmed Sharaf, Michaela Schweizer, Meliha Karsak, Björn Busse, Ernesto Bockamp, Oliver Semler, Michael Amling, Ralf Oheim, Thorsten Schinke, Timur Alexander Yorgan. The WNT1 G177C mutation specifically affects skeletal integrity in a mouse model of osteogenesis imperfecta type XV. Bone Research, 2021, 9(1): 48 DOI:10.1038/s41413-021-00170-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet, 2019, 393: 364-376

[2]

Khosla S, Hofbauer LC. Osteoporosis treatment: recent developments and ongoing challenges. Lancet Diabetes Endocrinol., 2017, 5: 898-907

[3]

Saag KG et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N. Engl. J. Med., 2017, 377: 1417-1427

[4]

Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med., 2013, 19: 179-192

[5]

Little RD et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet., 2002, 70: 11-19

[6]

Balemans W et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum. Mol. Genet., 2001, 10: 537-543

[7]

Li X et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem., 2005, 280: 19883-19887

[8]

Semenov M, Tamai K, He X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J. Biol. Chem., 2005, 280: 26770-26775

[9]

Laine CM et al. WNT1 mutations in early-onset osteoporosis and osteogenesis imperfecta. N. Engl. J. Med., 2013, 368: 1809-1816

[10]

Pyott SM et al. WNT1 mutations in families affected by moderately severe and progressive recessive osteogenesis imperfecta. Am. J. Hum. Genet., 2013, 92: 590-597

[11]

Keupp K et al. Mutations in WNT1 cause different forms of bone fragility. Am. J. Hum. Genet., 2013, 92: 565-574

[12]

Fahiminiya S et al. Mutations in WNT1 are a cause of osteogenesis imperfecta. J. Med. Genet., 2013, 50: 345-348

[13]

Thomas KR, Capecchi MR. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature, 1990, 346: 847-850

[14]

McMahon AP, Bradley A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell, 1990, 62: 1073-1085

[15]

Joeng KS et al. The swaying mouse as a model of osteogenesis imperfecta caused by WNT1 mutations. Hum. Mol. Genet., 2014, 23: 4035-4042

[16]

Joeng KS et al. Osteocyte-specific WNT1 regulates osteoblast function during bone homeostasis. J. Clin. Invest., 2017, 127: 2678-2688

[17]

Wang F et al. Mesenchymal cell-derived juxtacrine Wnt1 signaling regulates osteoblast activity and osteoclast differentiation. J. Bone Miner. Res., 2019, 34: 1129-1142

[18]

Luther, J. et al. Wnt1 is an Lrp5-independent bone-anabolic Wnt ligand. Sci. Transl. Med. 10, eaau7137 (2018).

[19]

Yorgan, T. A. et al. Mice carrying a ubiquitous R235W mutation of Wnt1 display a bone-specific phenotype. J. Bone Miner. Res. 35, 1726–1737 (2020).

[20]

Palomo T, Vilaca T, Lazaretti-Castro M. Osteogenesis imperfecta: diagnosis and treatment. Curr. Opin. Endocrinol. Diabetes Obes., 2017, 24: 381-388

[21]

Thomas KR, Musci TS, Neumann PE, Capecchi MR. Swaying is a mutant allele of the proto-oncogene Wnt-1. Cell, 1991, 67: 969-976

[22]

Kelly NH, Schimenti JC, Ross FP, van der Meulen MC. Transcriptional profiling of cortical versus cancellous bone from mechanically-loaded murine tibiae reveals differential gene expression. Bone, 2016, 86: 22-29

[23]

Yorgan TA et al. Mice lacking plastin-3 display a specific defect of cortical bone acquisition. Bone, 2020, 130: 115062

[24]

Keller H, Kneissel M. SOST is a target gene for PTH in bone. Bone, 2005, 37: 148-158

[25]

Silva BC, Bilezikian JP. Parathyroid hormone: anabolic and catabolic actions on the skeleton. Curr. Opin. Pharmacol., 2015, 22: 41-50

[26]

Heckt T et al. Parathyroid hormone induces expression and proteolytic processing of Rankl in primary murine osteoblasts. Bone, 2016, 92: 85-93

[27]

Yorgan TA et al. The anti-osteoanabolic function of sclerostin is blunted in mice carrying a high bone mass mutation of Lrp5. J. Bone Miner. Res., 2015, 30: 1175-1183

[28]

Albers J et al. Control of bone formation by the serpentine receptor Frizzled-9. J. Cell Biol., 2011, 192: 1057-1072

[29]

Richards JS et al. Either Kras activation or Pten loss similarly enhance the dominant-stable CTNNB1-induced genetic program to promote granulosa cell tumor development in the ovary and testis. Oncogene, 2012, 31: 1504-1520

[30]

Takahashi M et al. Isolation of a novel human gene, APCDD1, as a direct target of the beta-Catenin/T-cell factor 4 complex with probable involvement in colorectal carcinogenesis. Cancer Res., 2002, 62: 5651-5656

[31]

Schneider AJ, Branam AM, Peterson RE. Intersection of AHR and Wnt signaling in development, health, and disease. Int. J. Mol. Sci., 2014, 15: 17852-17885

[32]

Li ZQ et al. Cyr61/CCN1 is regulated by Wnt/beta-catenin signaling and plays an important role in the progression of hepatocellular carcinoma. PLoS One, 2012, 7: e35754

[33]

Gerbaix M, Vico L, Ferrari SL, Bonnet N. Periostin expression contributes to cortical bone loss during unloading. Bone, 2015, 71: 94-100

[34]

Marini JC et al. Osteogenesis imperfecta. Nat. Rev. Dis. Prim., 2017, 3: 17052

[35]

Marini JC, Reich A, Smith SM. Osteogenesis imperfecta due to mutations in non-collagenous genes: lessons in the biology of bone formation. Curr. Opin. Pediatr., 2014, 26: 500-507

[36]

Schulze J et al. Negative regulation of bone formation by the transmembrane Wnt antagonist Kremen-2. PLoS One, 2010, 5: e10309

[37]

Glatt V, Canalis E, Stadmeyer L, Bouxsein ML. Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J. Bone Miner. Res., 2007, 22: 1197-1207

[38]

Moverare-Skrtic S et al. Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat. Med., 2014, 20: 1279-1288

[39]

van Dijk FS et al. PLS3 mutations in X-linked osteoporosis with fractures. N. Engl. J. Med., 2013, 369: 1529-1536

[40]

Vahle JL et al. Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1-34) for 2 years and relevance to human safety. Toxicol. Pathol., 2002, 30: 312-321

[41]

Joiner DM, Ke J, Zhong Z, Xu HE, Williams BO. LRP5 and LRP6 in development and disease. Trends Endocrinol. Metab., 2013, 24: 31-39

[42]

Bonnet N, Garnero P, Ferrari S. Periostin action in bone. Mol. Cell. Endocrinol., 2016, 432: 75-82

[43]

Bonnet N et al. Periostin deficiency increases bone damage and impairs injury response to fatigue loading in adult mice. PLoS One, 2013, 8: e78347

[44]

Tashima T, Nagatoishi S, Sagara H, Ohnuma S, Tsumoto K. Osteomodulin regulates diameter and alters shape of collagen fibrils. Biochem. Biophys. Res. Commun., 2015, 463: 292-296

[45]

Tashima T et al. Molecular basis for governing the morphology of type-I collagen fibrils by Osteomodulin. Commun. Biol., 2018, 1: 33

[46]

Gatti D et al. Intravenous bisphosphonate therapy increases radial width in adults with osteogenesis imperfecta. J. Bone Miner. Res., 2005, 20: 1323-1326

[47]

Zimmermann EA et al. Mechanical competence and bone quality develop during skeletal growth. J. Bone Miner. Res., 2019, 34: 1461-1472

[48]

Albers J et al. Canonical Wnt signaling inhibits osteoclastogenesis independent of osteoprotegerin. J. Cell Biol., 2013, 200: 537-549

[49]

Bouxsein ML et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res., 2010, 25: 1468-1486

[50]

Dempster DW et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res., 2013, 28: 2-17

[51]

Rueden CT et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinforma., 2017, 18

[52]

Busse B et al. Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell, 2010, 9: 1065-1075

[53]

Koehne T et al. Trends in trabecular architecture and bone mineral density distribution in 152 individuals aged 30-90 years. Bone, 2014, 66: 31-38

Funding

Deutsche Forschungsgemeinschaft (German Research Foundation)(YO 299/1-1)

China Scholarship Council (CSC)(not applicable)

EC | Seventh Framework Programme (EC Seventh Framework Programm)(602300)

Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)(DIMEOS)

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/