Roles of mechanosensitive channel Piezo1/2 proteins in skeleton and other tissues

Lei Qin , Tailin He , Sheng Chen , Dazhi Yang , Weihong Yi , Huiling Cao , Guozhi Xiao

Bone Research ›› 2021, Vol. 9 ›› Issue (1) : 44

PDF
Bone Research ›› 2021, Vol. 9 ›› Issue (1) : 44 DOI: 10.1038/s41413-021-00168-8
Review Article

Roles of mechanosensitive channel Piezo1/2 proteins in skeleton and other tissues

Author information +
History +
PDF

Abstract

Mechanotransduction is a fundamental ability that allows living organisms to receive and respond to physical signals from both the external and internal environments. The mechanotransduction process requires a range of special proteins termed mechanotransducers to convert mechanical forces into biochemical signals in cells. The Piezo proteins are mechanically activated nonselective cation channels and the largest plasma membrane ion channels reported thus far. The regulation of two family members, Piezo1 and Piezo2, has been reported to have essential functions in mechanosensation and transduction in different organs and tissues. Recently, the predominant contributions of the Piezo family were reported to occur in the skeletal system, especially in bone development and mechano-stimulated bone homeostasis. Here we review current studies focused on the tissue-specific functions of Piezo1 and Piezo2 in various backgrounds with special highlights on their importance in regulating skeletal cell mechanotransduction. In this review, we emphasize the diverse functions of Piezo1 and Piezo2 and related signaling pathways in osteoblast lineage cells and chondrocytes. We also summarize our current understanding of Piezo channel structures and the key findings about PIEZO gene mutations in human diseases.

Cite this article

Download citation ▾
Lei Qin, Tailin He, Sheng Chen, Dazhi Yang, Weihong Yi, Huiling Cao, Guozhi Xiao. Roles of mechanosensitive channel Piezo1/2 proteins in skeleton and other tissues. Bone Research, 2021, 9(1): 44 DOI:10.1038/s41413-021-00168-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Árnadóttir J, Chalfie M. Eukaryotic mechanosensitive channels. Annu. Rev. Biophys., 2010, 39: 111-137

[2]

Duscher D et al. Mechanotransduction and fibrosis. J. Biomech., 2014, 47: 1997-2005

[3]

Romani P, Valcarcel-Jimenez L, Frezza C, Dupont S. Crosstalk between mechanotransduction and metabolism. Nat. Rev. Mol. Cell Biol., 2021, 22: 22-38

[4]

Vollrath MA, Kwan KY, Corey DP. The micromachinery of mechanotransduction in hair cells. Annu. Rev. Neurosci., 2007, 30: 339-365

[5]

Lyon Robert C, Zanella F, Omens Jeffrey H, Sheikh F. Mechanotransduction in cardiac hypertrophy and failure. Circ. Res., 2015, 116: 1462-1476

[6]

Broders-Bondon F, Nguyen Ho-Bouldoires TH, Fernandez-Sanchez M-E, Farge E. Mechanotransduction in tumor progression: the dark side of the force. J. Cell Biol., 2018, 217: 1571-1587

[7]

Ostrow LW, Sachs F. Mechanosensation and endothelin in astrocytes-hypothetical roles in CNS pathophysiology. Brain Res. Brain Res. Rev., 2005, 48: 488-508

[8]

Klein-Nulend J, Bacabac RG, Veldhuijzen JP, Van, Loon JJ. Microgravity and bone cell mechanosensitivity. Adv. Space Res., 2003, 32: 1551-1559

[9]

Ranade Sanjeev S, Syeda R, Patapoutian A. Mechanically activated ion channels. Neuron, 2015, 87: 1162-1179

[10]

Coste B et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science, 2010, 330: 55-60

[11]

Jiang Y, Yang X, Jiang J, Xiao B. Structural designs and mechanogating mechanisms of the mechanosensitive Piezo channels. Trends Biochem. Sci., 2021, 46: 472-488

[12]

Murthy SE, Dubin AE, Patapoutian A. Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat. Rev. Mol. Cell Biol., 2017, 18: 771-783

[13]

Anderson EO, Schneider ER, Bagriantsev SN. Piezo2 in cutaneous and proprioceptive mechanotransduction in vertebrates. Curr. Top. Membr., 2017, 79: 197-217

[14]

Retailleau K et al. Piezo1 in smooth muscle cells is involved in hypertension-dependent arterial remodeling. Cell Rep., 2015, 13: 1161-1171

[15]

Cahalan SM. Piezo1 links mechanical forces to red blood cell volume. Elife, 2015, 4: e07370

[16]

Eisenhoffer GT et al. Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature, 2012, 484: 546-549

[17]

Pathak MM et al. Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells. Proc. Natl. Acad. Sci. U. S. A., 2014, 111: 16148-16153

[18]

Koser DE et al. Mechanosensing is critical for axon growth in the developing brain. Nat. Neurosci., 2016, 19: 1592-1598

[19]

Martins JR et al. Piezo1-dependent regulation of urinary osmolarity. Pflug. Arch., 2016, 468: 1197-1206

[20]

Maksimovic S et al. Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature, 2014, 509: 617-621

[21]

Kim SE, Coste B, Chadha A, Cook B, Patapoutian A. The role of Drosophila Piezo in mechanical nociception. Nature, 2012, 483: 209-212

[22]

Woo SH et al. Piezo2 is the principal mechanotransduction channel for proprioception. Nat. Neurosci., 2015, 18: 1756-1762

[23]

Wu Z et al. Mechanosensory hair cells express two molecularly distinct mechanotransduction channels. Nat. Neurosci., 2017, 20: 24-33

[24]

Bai T et al. Piezo2: a candidate biomarker for visceral hypersensitivity in irritable bowel syndrome? J. Neurogastroenterol. Motil., 2017, 23: 453-463

[25]

Wang F et al. Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J. Physiol., 2017, 595: 79-91

[26]

Nonomura K et al. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature, 2017, 541: 176-181

[27]

Li X et al. Stimulation of Piezo1 by mechanical signals promotes bone anabolism. Elife, 2019, 8: e49631

[28]

Sun W et al. The mechanosensitive Piezo1 channel is required for bone formation. Elife, 2019, 8: e47454

[29]

Zhou T et al. Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT-YAP1-ß-catenin. Elife, 2020, 9: e52779

[30]

Wang L et al. Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk. Nat. Commun., 2020, 11

[31]

Satoh K et al. A novel membrane protein, encoded by the gene covering KIAA0233, is transcriptionally induced in senile plaque-associated astrocytes. Brain Res., 2006, 1108: 19-27

[32]

McHugh BJ et al. Integrin activation by Fam38A uses a novel mechanism of R-Ras targeting to the endoplasmic reticulum. J. Cell Sci., 2010, 123: 51

[33]

Xiao B. Levering mechanically activated Piezo channels for potential pharmacological intervention. Annu. Rev. Pharmacol. Toxicol., 2020, 60: 195-218

[34]

Coste B et al. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature, 2012, 483: 176-181

[35]

Suslak TJ et al. Piezo is essential for amiloride-sensitive stretch-activated mechanotransduction in larval drosophila dorsal bipolar dendritic sensory neurons. PLoS One, 2015, 10: e0130969

[36]

Faucherre A, Nargeot J, Mangoni ME, Jopling C. Piezo2b regulates vertebrate light touch response. J. Neurosci., 2013, 33: 17089

[37]

Datkhaeva I et al. Identification of novel PIEZO1 variants using prenatal exome sequencing and correlation to ultrasound and autopsy findings of recurrent hydrops fetalis. Am. J. Med. Genet. A, 2018, 176: 2829-2834

[38]

Fotiou E et al. Novel mutations in PIEZO1 cause an autosomal recessive generalized lymphatic dysplasia with non-immune hydrops fetalis. Nat. Commun., 2015, 6

[39]

Lukacs V et al. Impaired PIEZO1 function in patients with a novel autosomal recessive congenital lymphatic dysplasia. Nat. Commun., 2015, 6

[40]

Li S et al. Novel mutations in TPM2 and PIEZO2 are responsible for distal arthrogryposis (DA) 2B and mild DA in two Chinese families. BMC Med. Genet., 2018, 19

[41]

Zhang M, Wang Y, Geng J, Zhou S, Xiao B. Mechanically activated Piezo channels mediate touch and suppress acute mechanical pain response in mice. Cell Rep., 2019, 26: 1419-1431.e4

[42]

Ge J et al. Architecture of the mammalian mechanosensitive Piezo1 channel. Nature, 2015, 527: 64-69

[43]

Saotome K et al. Structure of the mechanically activated ion channel Piezo1. Nature, 2018, 554: 481-486

[44]

Zhao Q et al. Structure and mechanogating mechanism of the Piezo1 channel. Nature, 2018, 554: 487-492

[45]

Guo YR, MacKinnon R. Structure-based membrane dome mechanism for Piezo mechanosensitivity. Elife, 2017, 6: e33660

[46]

Fang X-Z et al. Structure, kinetic properties and biological function of mechanosensitive Piezo channels. Cell Biosci., 2021, 11: 13

[47]

Zhao Q et al. Ion permeation and mechanotransduction mechanisms of mechanosensitive Piezo channels. Neuron, 2016, 89: 1248-1263

[48]

Zhao Q, Zhou H, Li X, Xiao B. The mechanosensitive Piezo1 channel: a three-bladed propeller-like structure and a lever-like mechanogating mechanism. FEBS J., 2019, 286: 2461-2470

[49]

Nosyreva ED, Thompson D, Syeda R. Identification and functional characterization of the Piezo1 channel pore domain. J. Biol. Chem., 2021, 296: 100225

[50]

Wang L et al. Structure and mechanogating of the mammalian tactile channel PIEZO2. Nature, 2019, 573: 225-229

[51]

Taberner FJ et al. Structure-guided examination of the mechanogating mechanism of PIEZO2. Proc. Natl. Acad. Sci. U. S. A., 2019, 116: 14260-14269

[52]

Poole K, Herget R, Lapatsina L, Ngo HD, Lewin GR. Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch. Nat. Commun., 2014, 5

[53]

Wang Y, Xiao B. The mechanosensitive Piezo1 channel: structural features and molecular bases underlying its ion permeation and mechanotransduction. J. Physiol., 2018, 596: 969-978

[54]

Lewis AH, Grandl J. Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension. Elife, 2015, 4: e12088

[55]

Wang Y et al. A lever-like transduction pathway for long-distance chemical- and mechano-gating of the mechanosensitive Piezo1 channel. Nat. Commun., 2018, 9

[56]

Gnanasambandam R, Bae C, Gottlieb PA, Sachs F. Ionic selectivity and permeation properties of human PIEZO1 channels. PLoS One, 2015, 10: e0125503

[57]

Gnanasambandam R, Gottlieb PA, Sachs F. The kinetics and the permeation properties of Piezo channels. Curr. Top. Membr., 2017, 79: 275-307

[58]

Gottlieb PA, Sachs F. Piezo1: properties of a cation selective mechanical channel. Channels, 2012, 6: 214-219

[59]

Cox CD et al. Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. Nat. Commun., 2016, 7

[60]

Syeda R et al. Piezo1 channels are inherently mechanosensitive. Cell Rep., 2016, 17: 1739-1746

[61]

Nourse JL, Pathak MM. How cells channel their stress: interplay between Piezo1 and the cytoskeleton. Semin. Cell Dev. Biol., 2017, 71: 3-12

[62]

Li J et al. Piezo1 integration of vascular architecture with physiological force. Nature, 2014, 515: 279-282

[63]

Ranade SS et al. Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc. Natl. Acad. Sci. U. S. A., 2014, 111: 10347-10352

[64]

Blumenthal NR, Hermanson O, Heimrich B, Shastri VP. Stochastic nanoroughness modulates neuron-astrocyte interactions and function via mechanosensing cation channels. Proc. Natl. Acad. Sci. U. S. A., 2014, 111: 16124-16129

[65]

Hung WC et al. Confinement sensing and signal optimization via Piezo1/PKA and myosin II pathways. Cell Rep., 2016, 15: 1430-1441

[66]

Zhang T, Chi S, Jiang F, Zhao Q, Xiao B. A protein interaction mechanism for suppressing the mechanosensitive Piezo channels. Nat. Commun., 2017, 8

[67]

Peyronnet R et al. Piezo1-dependent stretch-activated channels are inhibited by Polycystin-2 in renal tubular epithelial cells. EMBO Rep., 2013, 14: 1143-1148

[68]

Wetzel C et al. Small-molecule inhibition of STOML3 oligomerization reverses pathological mechanical hypersensitivity. Nat. Neurosci., 2017, 20: 209-218

[69]

Yang X-N et al. Piezo1 is as a novel trefoil factor family 1 binding protein that promotes gastric cancer cell mobility in vitro. Dig. Dis. Sci., 2014, 59: 1428-1435

[70]

Wang, J., Jiang, J., Yang, X., Wang, L. & Xiao, B. Tethering Piezo channels to the actin via the E-cadherin-β-catenin mechanotransduction complex. Preprint at bioRxiv https://doi.org/10.1101/2020.05.12.092148 (2020).

[71]

Bagriantsev SN, Gracheva EO, Gallagher PG. Piezo proteins: regulators of mechanosensation and other cellular processes. J. Biol. Chem., 2014, 289: 31673-31681

[72]

Syeda R et al. Chemical activation of the mechanotransduction channel Piezo1. Elife, 2015, 4: e07369

[73]

Gnanasambandam R et al. GsMTx4: mechanism of inhibiting mechanosensitive ion channels. Biophys. J., 2017, 112: 31-45

[74]

Bae C, Sachs F, Gottlieb PA. The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4. Biochemistry, 2011, 50: 6295-6300

[75]

Alcaino C, Knutson K, Gottlieb PA, Farrugia G, Beyder A. Mechanosensitive ion channel Piezo2 is inhibited by D-GsMTx4. Channels, 2017, 11: 245-253

[76]

Suchyna TM. Piezo channels and GsMTx4: two milestones in our understanding of excitatory mechanosensitive channels and their role in pathology. Prog. Biophys. Mol. Biol., 2017, 130: 244-253

[77]

Wittkowske C, Reilly GC, Lacroix D, Perrault CM. In vitro bone cell models: impact of fluid shear stress on bone formation. Front. Bioeng. Biotechnol., 2016, 4: 87

[78]

Olsen BR, Reginato AM, Wang W. Bone development. Annu. Rev. Cell Dev. Biol., 2000, 16: 191-220

[79]

Jacobs CR, Temiyasathit S, Castillo AB. Osteocyte mechanobiology and pericellular mechanics. Annu. Rev. Biomed. Eng., 2010, 12: 369-400

[80]

Bonewald LF. The amazing osteocyte. J. Bone Min. Res., 2011, 26: 229-238

[81]

Uda Y, Azab E, Sun N, Shi C, Pajevic PD. Osteocyte mechanobiology. Curr. Osteoporos. Rep., 2017, 15: 318-325

[82]

Wolff, J. Das Gesetz der Transformation der Knochen Kirschwald (Georg Thieme Verlag, 1892).

[83]

Papachroni KK, Karatzas DN, Papavassiliou KA, Basdra EK, Papavassiliou AG. Mechanotransduction in osteoblast regulation and bone disease. Trends Mol. Med., 2009, 15: 208-216

[84]

Duncan RL, Turner CH. Mechanotransduction and the functional response of bone to mechanical strain. Calcif. Tissue Int., 1995, 57: 344-358

[85]

Zhao Z et al. Mechanotransduction pathways in the regulation of cartilage chondrocyte homoeostasis. J. Cell Mol. Med., 2020, 24: 5408-5419

[86]

Shea CA, Rolfe RA, Murphy P. The importance of foetal movement for co-ordinated cartilage and bone development in utero: clinical consequences and potential for therapy. Bone Joint Res., 2015, 4: 105-116

[87]

Rauch F, Schoenau E. Changes in bone density during childhood and adolescence: an approach based on bone’s biological organization. J. Bone Min. Res., 2001, 16: 597-604

[88]

Rolfe R, Roddy K, Murphy P. Mechanical regulation of skeletal development. Curr. Osteoporos. Rep., 2013, 11: 107-116

[89]

Responte DJ, Lee JK, Hu JC, Athanasiou KA. Biomechanics-driven chondrogenesis: from embryo to adult. FASEB J., 2012, 26: 3614-3624

[90]

Qin L, Liu W, Cao H, Xiao G. Molecular mechanosensors in osteocytes. Bone Res., 2020, 8: 23

[91]

Guldberg RE et al. Mechanical stimulation of tissue repair in the hydraulic bone chamber. J. Bone Miner. Res., 1997, 12: 1295-1302

[92]

Sugisawa E et al. RNA sensing by gut Piezo1 is essential for systemic serotonin synthesis. Cell, 2020, 182: 609.e21-624.e21

[93]

Hendrickx G et al. Piezo1 inactivation in chondrocytes impairs trabecular bone formation. J. Bone Min. Res., 2021, 36: 369-384

[94]

Ranade SS et al. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature, 2014, 516: 121-125

[95]

Hillam RA, Goodship AE, Skerry TM. Peak strain magnitudes and rates in the tibia exceed greatly those in the skull: an in vivo study in a human subject. J. Biomech., 2015, 48: 3292-3298

[96]

Shen B et al. A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature, 2021, 591: 438-444

[97]

Ziros PG, Basdra EK, Papavassiliou AG. Runx2: of bone and stretch. Int. J. Biochem. Cell Biol., 2008, 40: 1659-1663

[98]

Zhang S et al. Dose-dependent effects of Runx2 on bone development. J. Bone Min. Res., 2009, 24: 1889-1904

[99]

Shu B et al. Inhibition of Axin1 in osteoblast precursor cells leads to defects in postnatal bone growth through suppressing osteoclast formation. Bone Res., 2020, 8: 31

[100]

Shekaran A et al. The effect of conditional inactivation of beta 1 integrins using twist 2 Cre, Osterix Cre and osteocalcin Cre lines on skeletal phenotype. Bone, 2014, 68: 131-141

[101]

Cao H et al. Focal adhesion protein Kindlin-2 regulates bone homeostasis in mice. Bone Res., 2020, 8: 2

[102]

Wang Y et al. Focal adhesion proteins Pinch1 and Pinch2 regulate bone homeostasis in mice. JCI Insight, 2019, 4: e131692

[103]

Fu X et al. Kindlin-2 regulates skeletal homeostasis by modulating PTH1R in mice. Signal Transduct. Target. Ther., 2020, 5: 297

[104]

Zhang G, Li X, Wu L, Qin Y-X. Piezo1 channel activation in response to mechanobiological acoustic radiation force in osteoblastic cells. Bone Res., 2021, 9: 16

[105]

Sugimoto A et al. Piezo type mechanosensitive ion channel component 1 functions as a regulator of the cell fate determination of mesenchymal stem cells. Sci. Rep., 2017, 7

[106]

Halloran D, Durbano HW, Nohe A. Bone morphogenetic protein-2 in development and bone homeostasis. J. Dev. Biol., 2020, 8: 19

[107]

Song J et al. Fluid shear stress induces Runx-2 expression via upregulation of PIEZO1 in MC3T3-E1 cells. Cell Biol. Int., 2020, 44: 1491-1502

[108]

Hayashi S et al. The type II collagen N-propeptide, PIIBNP, inhibits cell survival and bone resorption of osteoclasts via integrin-mediated signaling. Bone, 2011, 49: 644-652

[109]

Wang CJ et al. Trabecular bone deterioration in col9a1+/− mice associated with enlarged osteoclasts adhered to collagen IX–deficient bone. J. Bone Miner. Res., 2008, 23: 837-849

[110]

Sasaki F et al. Mechanotransduction via the Piezo1-Akt pathway underlies Sost suppression in osteocytes. Biochem. Biophys. Res. Commun., 2020, 521: 806-813

[111]

Zheng L, Zhang Z, Sheng P, Mobasheri A. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res. Rev., 2020, 66: 101249

[112]

Kwon H et al. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat. Rev. Rheumatol., 2019, 15: 550-570

[113]

Duan R, Xie H, Liu ZZ. The role of autophagy in osteoarthritis. Front. Cell Dev. Biol., 2020, 8: 608388

[114]

Jiang S et al. Clinical application status of articular cartilage regeneration techniques: tissue-engineered cartilage brings new hope. Stem Cells Int., 2020, 2020: 5690252

[115]

Yang Y et al. Moderate mechanical stimulation protects rats against osteoarthritis through the regulation of TRAIL via the NF-κB/NLRP3 pathway. Oxid. Med. Cell Longev., 2020, 2020: 6196398

[116]

Lohberger B et al. Mechanical exposure and diacerein treatment modulates integrin-FAK-MAPKs mechanotransduction in human osteoarthritis chondrocytes. Cell. Signal., 2019, 56: 23-30

[117]

Wang Y, Zhao X, Liu-Bryan R. Role of TLR2 and TLR4 in regulation of articular chondrocyte homeostasis. Osteoarthr. Cartil., 2020, 28: 669-674

[118]

Ruhlen R, Marberry K. The chondrocyte primary cilium. Osteoarthr. Cartil., 2014, 22: 1071-1076

[119]

Servin-Vences MR, Richardson J, Lewin GR, Poole K. Mechanoelectrical transduction in chondrocytes. Clin. Exp. Pharmacol. Physiol., 2018, 45: 481-488

[120]

Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet, 2019, 393: 1745-1759

[121]

Servin-Vences MR, Moroni M, Lewin GR, Poole K. Direct measurement of TRPV4 and PIEZO1 activity reveals multiple mechanotransduction pathways in chondrocytes. Elife, 2017, 6: e21074

[122]

Lee W, Guilak F, Liedtke W. Role of Piezo channels in joint health and injury. Curr. Top. Membr., 2017, 79: 263-273

[123]

Lee W et al. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage. Proc. Natl. Acad. Sci. U. S. A., 2014, 111: E5114-E5122

[124]

Du G et al. Roles of TRPV4 and Piezo channels in stretch-evoked Ca(2+) response in chondrocytes. Exp. Biol. Med., 2020, 245: 180-189

[125]

Li XF, Zhang Z, Chen ZK, Cui ZW, Zhang HN. Piezo1 protein induces the apoptosis of human osteoarthritis-derived chondrocytes by activating caspase-12, the signaling marker of ER stress. Int. J. Mol. Med., 2017, 40: 845-853

[126]

Charlier E et al. Insights on molecular mechanisms of chondrocytes death in osteoarthritis. Int. J. Mol. Sci., 2016, 17: 2146

[127]

Lawrence KM et al. Chondroprotection by urocortin involves blockade of the mechanosensitive ion channel Piezo1. Sci. Rep., 2017, 7

[128]

Lee W et al. Inflammatory signaling sensitizes Piezo1 mechanotransduction in articular chondrocytes as a pathogenic feed-forward mechanism in osteoarthritis. Proc. Natl. Acad. Sci. U. S. A., 2021, 118: e2001611118

[129]

Lane NE et al. Tanezumab for the treatment of pain from osteoarthritis of the knee. N. Engl. J. Med., 2010, 363: 1521-1531

[130]

Zhu S et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J. Clin. Investig., 2019, 129: 1076-1093

[131]

Assaraf E et al. Piezo2 expressed in proprioceptive neurons is essential for skeletal integrity. Nat. Commun., 2020, 11

[132]

Zhong M et al. Alveolar stretch activation of endothelial Piezo1 protects adherens junctions and lung vascular barrier. Am. J. Respir. Cell Mol. Biol., 2020, 62: 168-177

[133]

Friedrich EE et al. Endothelial cell Piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherens junctions. Proc. Natl. Acad. Sci. U. S. A., 2019, 116: 12980-12985

[134]

Nonomura K et al. Mechanically activated ion channel PIEZO1 is required for lymphatic valve formation. Proc. Natl. Acad. Sci. U. S. A., 2018, 115: 12817-12822

[135]

Choi D et al. Piezo1 incorporates mechanical force signals into the genetic program that governs lymphatic valve development and maintenance. JCI Insight., 2019, 4: e125068

[136]

Kang H et al. Piezo1 mediates angiogenesis through activation of MT1-MMP signaling. Am. J. Physiol. Cell Physiol., 2019, 316: C92-c103

[137]

Rode B et al. Piezo1 channels sense whole body physical activity to reset cardiovascular homeostasis and enhance performance. Nat. Commun., 2017, 8

[138]

Wang S et al. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J. Clin. Investig., 2016, 126: 4527-4536

[139]

Jiang F et al. The mechanosensitive Piezo1 channel mediates heart mechano-chemo transduction. Nat. Commun., 2021, 12: 869

[140]

Wang S et al. Adipocyte Piezo1 mediates obesogenic adipogenesis through the FGF1/FGFR1 signaling pathway in mice. Nat. Commun., 2020, 11

[141]

Zhao C et al. Mechanosensitive ion channel Piezo1 regulates diet-induced adipose inflammation and systemic insulin resistance. Front. Endocrinol., 2019, 10: 373

[142]

Romac JM, Shahid RA, Swain SM, Vigna SR, Liddle RA. Piezo1 is a mechanically activated ion channel and mediates pressure induced pancreatitis. Nat. Commun., 2018, 9

[143]

Solis AG et al. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature, 2019, 573: 69-74

[144]

Velasco-Estevez M, Rolle SO, Mampay M, Dev KK, Sheridan GK. Piezo1 regulates calcium oscillations and cytokine release from astrocytes. Glia, 2020, 68: 145-160

[145]

Mikhailov N et al. Mechanosensitive meningeal nociception via Piezo channels: implications for pulsatile pain in migraine? Neuropharmacology, 2019, 149: 113-123

[146]

Maneshi MM, Ziegler L, Sachs F, Hua SZ, Gottlieb PA. Enantiomeric Aβ peptides inhibit the fluid shear stress response of PIEZO1. Sci. Rep., 2018, 8

[147]

Wong TY et al. Mechanical stretching simulates cardiac physiology and pathology through mechanosensor Piezo1. J. Clin. Med., 2018, 7: 410

[148]

Han Y et al. Mechanosensitive ion channel Piezo1 promotes prostate cancer development through the activation of the Akt/mTOR pathway and acceleration of cell cycle. Int. J. Oncol., 2019, 55: 629-644

[149]

Szczot M et al. PIEZO2 mediates injury-induced tactile pain in mice and humans. Sci. Transl. Med., 2018, 10: eaat9892

[150]

Nickolls AR et al. Transcriptional programming of human mechanosensory neuron subtypes from pluripotent stem cells. Cell Rep., 2020, 30: 932.e7-946.e7

[151]

Romero LO et al. A dietary fatty acid counteracts neuronal mechanical sensitization. Nat. Commun., 2020, 11

[152]

Abraira VE, Ginty DD. The sensory neurons of touch. Neuron, 2013, 79: 618-639

[153]

Fern ndez-Trillo J et al. Piezo2 mediates low-threshold mechanically-evoked pain in the cornea. J. Neurosci., 2020, 40: 8976-8993

[154]

Florez-Paz D, Bali KK, Kuner R, Gomis A. A critical role for Piezo2 channels in the mechanotransduction of mouse proprioceptive neurons. Sci. Rep., 2016, 6

[155]

Marshall KL et al. PIEZO2 in sensory neurons and urothelial cells coordinates urination. Nature, 2020, 588: 290-295

[156]

Zeng WZ et al. PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex. Science, 2018, 362: 464-467

[157]

Chesler AT et al. The role of PIEZO2 in human mechanosensation. N. Engl. J. Med., 2016, 375: 1355-1364

[158]

Murthy SE et al. The mechanosensitive ion channel Piezo2 mediates sensitivity to mechanical pain in mice. Sci. Transl. Med., 2018, 10: eaat9897

[159]

Roh J et al. Functional expression of Piezo1 in dorsal root ganglion (DRG) neurons. Int. J. Mol. Sci., 2020, 21: 3834

[160]

Miyamoto T et al. Functional role for Piezo1 in stretch-evoked Ca2+ influx and ATP release in urothelial cell cultures. J. Biol. Chem., 2014, 289: 16565-16575

[161]

Woo SH et al. Piezo2 is required for Merkel-cell mechanotransduction. Nature, 2014, 509: 622-626

[162]

Alcaino C et al. A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release. Proc. Natl. Acad. Sci. U. S. A., 2018, 115: E7632-e7641

[163]

Chen P et al. Mechanosensitive Piezo1 in endothelial cells promotes angiogenesis to support bone fracture repair. Cell Calcium., 2021, 97: 102431

[164]

Song Y et al. The mechanosensitive ion channel Piezo inhibits axon regeneration. Neuron, 2019, 102: 373.e6-389.e6

[165]

Alper SL. Genetic diseases of PIEZO1 and PIEZO2 dysfunction. Curr. Top. Membr., 2017, 79: 97-134

[166]

Martin-Almedina S, Mansour S, Ostergaard P. Human phenotypes caused by PIEZO1 mutations; one gene, two overlapping phenotypes? J. Physiol., 2018, 596: 985-992

[167]

Andolfo I et al. PIEZO1 hypomorphic variants in congenital lymphatic dysplasia cause shape and hydration alterations of red blood cells. Front. Physiol., 2019, 10: 258

[168]

Picard V et al. Clinical and biological features in PIEZO1-hereditary xerocytosis and Gardos channelopathy: a retrospective series of 126 patients. Haematologica, 2019, 104: 1554-1564

[169]

Ma S et al. Common PIEZO1 allele in African populations causes RBC dehydration and attenuates plasmodium infection. Cell, 2018, 173: 443.e2-455.e2

[170]

Zarychanski R et al. Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis. Blood, 2012, 120: 1908-1915

[171]

Caulier A et al. PIEZO1 activation delays erythroid differentiation of normal and hereditary xerocytosis-derived human progenitor cells. Haematologica, 2020, 105: 610-622

[172]

Moura PL et al. PIEZO1 gain-of-function mutations delay reticulocyte maturation in hereditary xerocytosis. Haematologica, 2020, 105: e268-e271

[173]

Petkova-Kirova P et al. Red blood cell membrane conductance in hereditary haemolytic anaemias. Front. Physiol., 2019, 10: 386

[174]

Coste B et al. Gain-of-function mutations in the mechanically activated ion channel PIEZO2 cause a subtype of distal arthrogryposis. Proc. Natl. Acad. Sci. U. S. A., 2013, 110: 4667-4672

[175]

Mahmud AA et al. Loss of the proprioception and touch sensation channel PIEZO2 in siblings with a progressive form of contractures. Clin. Genet., 2017, 91: 470-475

[176]

Alisch F et al. Familial Gordon syndrome associated with a PIEZO2 mutation. Am. J. Med. Genet. A, 2017, 173: 254-259

[177]

Pethő Z, Najder K, Bulk E, Schwab A. Mechanosensitive ion channels push cancer progression. Cell Calcium, 2019, 80: 79-90

[178]

De Felice D, Alaimo A. Mechanosensitive Piezo channels in cancer: focus on altered calcium signaling in cancer cells and in tumor progression. Cancers, 2020, 12: 1780

[179]

Sun Y et al. The function of Piezo1 in colon cancer metastasis and its potential regulatory mechanism. J. Cancer Res. Clin. Oncol., 2020, 146: 1139-1152

[180]

Lou W et al. Five miRNAs-mediated PIEZO2 downregulation, accompanied with activation of Hedgehog signaling pathway, predicts poor prognosis of breast cancer. Aging, 2019, 11: 2628-2652

[181]

Lhomme A et al. Stretch-activated Piezo1 channel in endothelial cells relaxes mouse intrapulmonary arteries. Am. J. Respir. Cell Mol. Biol., 2019, 60: 650-658

[182]

Dubin AE et al. Inflammatory signals enhance Piezo2-mediated mechanosensitive currents. Cell Rep., 2012, 2: 511-517

AI Summary AI Mindmap
PDF

208

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/