Inhibition of aberrant Hif1α activation delays intervertebral disc degeneration in adult mice

Zuqiang Wang , Hangang Chen , Qiaoyan Tan , Junlan Huang , Siru Zhou , Fengtao Luo , Dali Zhang , Jing Yang , Can Li , Bo Chen , Xianding Sun , Liang Kuang , Wanling Jiang , Zhenhong Ni , Quan Wang , Shuai Chen , Xiaolan Du , Di Chen , Chuxia Deng , Liangjun Yin , Lin Chen , Yangli Xie

Bone Research ›› 2022, Vol. 10 ›› Issue (1) : 2

PDF
Bone Research ›› 2022, Vol. 10 ›› Issue (1) : 2 DOI: 10.1038/s41413-021-00165-x
Article

Inhibition of aberrant Hif1α activation delays intervertebral disc degeneration in adult mice

Author information +
History +
PDF

Abstract

The intervertebral disc (IVD) is the largest avascular tissue. Hypoxia-inducible factors (HIFs) play essential roles in regulating cellular adaptation in the IVD under physiological conditions. Disc degeneration disease (DDD) is one of the leading causes of disability, and current therapies are ineffective. This study sought to explore the role of HIFs in DDD pathogenesis in mice. The findings of this study showed that among HIF family members, Hif1α was significantly upregulated in cartilaginous endplate (EP) and annulus fibrosus (AF) tissues from human DDD patients and two mouse models of DDD compared with controls. Conditional deletion of the E3 ubiquitin ligase Vhl in EP and AF tissues of adult mice resulted in upregulated Hif1α expression and age-dependent IVD degeneration. Aberrant Hif1α activation enhanced glycolytic metabolism and suppressed mitochondrial function. On the other hand, genetic ablation of the Hif1α gene delayed DDD pathogenesis in Vhl-deficient mice. Administration of 2-methoxyestradiol (2ME2), a selective Hif1α inhibitor, attenuated experimental IVD degeneration in mice. The findings of this study show that aberrant Hif1α activation in EP and AF tissues induces pathological changes in DDD, implying that inhibition of aberrant Hif1α activity is a potential therapeutic strategy for DDD.

Cite this article

Download citation ▾
Zuqiang Wang, Hangang Chen, Qiaoyan Tan, Junlan Huang, Siru Zhou, Fengtao Luo, Dali Zhang, Jing Yang, Can Li, Bo Chen, Xianding Sun, Liang Kuang, Wanling Jiang, Zhenhong Ni, Quan Wang, Shuai Chen, Xiaolan Du, Di Chen, Chuxia Deng, Liangjun Yin, Lin Chen, Yangli Xie. Inhibition of aberrant Hif1α activation delays intervertebral disc degeneration in adult mice. Bone Research, 2022, 10(1): 2 DOI:10.1038/s41413-021-00165-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Balague F, Mannion AF, Pellise F, Cedraschi C. Non-specific low back pain. Lancet, 2012, 379: 482-491

[2]

Hansson E, Hansson T. The cost-utility of lumbar disc herniation surgery. Eur. Spine J., 2007, 16: 329-337

[3]

Andersson GB. Epidemiological features of chronic low-back pain. Lancet, 1999, 354: 581-585

[4]

Kerr GJ, Veras MA, Kim MK, Seguin CA. Decoding the intervertebral disc: unravelling the complexities of cell phenotypes and pathways associated with degeneration and mechanotransduction. Semin. Cell Dev. Biol., 2017, 62: 94-103

[5]

Boden SD, Davis DO, Dina TS, Patronas NJ, Wiesel SW. Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation. J. Bone Jt. Surg. Am., 1990, 72: 403-408

[6]

van Uden S, Silva-Correia J, Oliveira JM, Reis RL. Current strategies for treatment of intervertebral disc degeneration: substitution and regeneration possibilities. Biomater. Res., 2017, 21

[7]

Chou R, Huffman LH American Pain S. and American College of P. Medications for acute and chronic low back pain: a review of the evidence for an American Pain Society/American College of Physicians clinical practice guideline. Ann. Intern. Med., 2007, 147: 505-514

[8]

Levin DA et al. Comparative charge analysis of one- and two-level lumbar total disc arthroplasty versus circumferential lumbar fusion. Spine, 2007, 32: 2905-2909

[9]

Chan WC, Sze KL, Samartzis D, Leung VY, Chan D. Structure and biology of the intervertebral disk in health and disease. Orthop. Clin. N. Am., 2011, 42: 447-464 vii

[10]

Raj PP. Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain. Pract., 2008, 8: 18-44

[11]

Moon SM et al. Evaluation of intervertebral disc cartilaginous endplate structure using magnetic resonance imaging. Eur. Spine J., 2013, 22: 1820-1828

[12]

Pouyssegur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature, 2006, 441: 437-443

[13]

Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Investig., 2013, 123: 3664-3671

[14]

Risbud MV et al. Nucleus pulposus cells express HIF-1 alpha under normoxic culture conditions: a metabolic adaptation to the intervertebral disc microenvironment. J. Cell. Biochem., 2006, 98: 152-159

[15]

Fujita N, Chiba K, Shapiro IM, Risbud MV. HIF-1alpha and HIF-2alpha degradation is differentially regulated in nucleus pulposus cells of the intervertebral disc. J. Bone Miner. Res., 2012, 27: 401-412

[16]

Choi H et al. Hypoxia promotes noncanonical autophagy in nucleus pulposus cells independent of MTOR and HIF1A signaling. Autophagy, 2016, 12: 1631-1646

[17]

Rajpurohit R, Risbud MV, Ducheyne P, Vresilovic EJ, Shapiro IM. Phenotypic characteristics of the nucleus pulposus: expression of hypoxia inducing factor-1, glucose transporter-1 and MMP-2. Cell Tissue Res., 2002, 308: 401-407

[18]

Bibby SR, Jones DA, Ripley RM, Urban JP. Metabolism of the intervertebral disc: effects of low levels of oxygen, glucose, and pH on rates of energy metabolism of bovine nucleus pulposus cells. Spine, 2005, 30: 487-496

[19]

Merceron C et al. Loss of HIF-1alpha in the notochord results in cell death and complete disappearance of the nucleus pulposus. PLoS One, 2014, 9: e110768

[20]

Richardson SM, Knowles R, Tyler J, Mobasheri A, Hoyland JA. Expression of glucose transporters GLUT-1, GLUT-3, GLUT-9 and HIF-1alpha in normal and degenerate human intervertebral disc. Histochem. Cell Biol., 2008, 129: 503-511

[21]

Griffith JF et al. Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. Spine, 2007, 32: E708-E712

[22]

Pfander D et al. Deletion of Vhlh in chondrocytes reduces cell proliferation and increases matrix deposition during growth plate development. Development, 2004, 131: 2497-2508

[23]

Nakamichi R et al. Mohawk promotes the maintenance and regeneration of the outer annulus fibrosus of intervertebral discs. Nat. Commun., 2016, 7

[24]

Long F, Ornitz DM. Development of the endochondral skeleton. Cold Spring Harb. Perspect. Biol., 2013, 5: a008334

[25]

Rutges JP et al. Hypertrophic differentiation and calcification during intervertebral disc degeneration. Osteoarthr. Cartil., 2010, 18: 1487-1495

[26]

van der Kraan PM, van den Berg WB. Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthritis. Cartilage, 2012, 20: 223-232

[27]

Lin AC et al. Modulating hedgehog signaling can attenuate the severity of osteoarthritis. Nat. Med., 2009, 15: 1421-1425

[28]

Geiger F et al. Vascular endothelial growth factor gene-activated matrix (VEGF165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects. J. Bone Miner. Res., 2005, 20: 2028-2035

[29]

Born AK, Lischer S, Maniura-Weber K. Watching osteogenesis: life monitoring of osteogenic differentiation using an osteocalcin reporter. J. Cell Biochem., 2012, 113: 313-321

[30]

Dunwoodie SL. The role of hypoxia in development of the Mammalian embryo. Dev. Cell, 2009, 17: 755-773

[31]

Salvatierra JC et al. Difference in energy metabolism of annulus fibrosus and nucleus pulposus cells of the intervertebral disc. Cell. Mol. Bioeng., 2011, 4: 302-310

[32]

Wang C, Gonzales S, Levene H, Gu W, Huang CY. Energy metabolism of intervertebral disc under mechanical loading. J. Orthop. Res., 2013, 31: 1733-1738

[33]

Regan JN et al. Up-regulation of glycolytic metabolism is required for HIF1alpha-driven bone formation. Proc. Natl Acad. Sci. U. S. A., 2014, 111: 8673-8678

[34]

Oh CD et al. Rho-associated kinase inhibitor immortalizes rat nucleus pulposus and annulus fibrosus cells: establishment of intervertebral disc cell lines with novel approaches. Spine, 2016, 41: E255-E261

[35]

Zhang H et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem., 2008, 283: 10892-10903

[36]

Menendez-Montes I et al. Myocardial VHL-HIF signaling controls an embryonic metabolic switch essential for cardiac maturation. Dev. Cell, 2016, 39: 724-739

[37]

Nasto LA et al. Mitochondrial-derived reactive oxygen species (ROS) play a causal role in aging-related intervertebral disc degeneration. J. Orthop. Res., 2013, 31: 1150-1157

[38]

Suzuki S et al. Excessive reactive oxygen species are therapeutic targets for intervertebral disc degeneration. Arthritis Res. Ther., 2015, 17: 316

[39]

Jin H et al. TGF-beta signaling plays an essential role in the growth and maintenance of intervertebral disc tissue. FEBS Lett., 2011, 585: 1209-1215

[40]

Wu Z et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 1999, 98: 115-124

[41]

Ryu SW, Han EC, Yoon J, Choi C. The mitochondrial fusion-related proteins Mfn2 and OPA1 are transcriptionally induced during differentiation of bone marrow progenitors to immature dendritic cells. Mol. Cells, 2015, 38: 89-94

[42]

Kato TM et al. Ant1 mutant mice bridge the mitochondrial and serotonergic dysfunctions in bipolar disorder. Mol. Psychiatry, 2018, 23: 2039-2049

[43]

Nabben M et al. The effect of UCP3 overexpression on mitochondrial ROS production in skeletal muscle of young versus aged mice. FEBS Lett., 2008, 582: 4147-4152

[44]

Portal-Nunez S et al. Adverse effects of diabetes mellitus on the skeleton of aging mice. J. Gerontol. Ser. A Biol. Sci. Med. Sci., 2016, 71: 290-299

[45]

Pockert AJ et al. Modified expression of the ADAMTS enzymes and tissue inhibitor of metalloproteinases 3 during human intervertebral disc degeneration. Arthritis Rheum., 2009, 60: 482-491

[46]

Cesi G, Walbrecq G, Zimmer A, Kreis S, Haan C. ROS production induced by BRAF inhibitor treatment rewires metabolic processes affecting cell growth of melanoma cells. Mol. Cancer, 2017, 16

[47]

Miyauchi Y et al. HIF1alpha is required for osteoclast activation by estrogen deficiency in postmenopausal osteoporosis. Proc. Natl Acad. Sci. U. S. A., 2013, 110: 16568-16573

[48]

Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it? Spine, 2006, 31: 2151-2161

[49]

Bouaziz W et al. Interaction of HIF1alpha and beta-catenin inhibits matrix metalloproteinase 13 expression and prevents cartilage damage in mice. Proc. Natl. Acad. Sci. USA., 2016, 113: 5453-5458

[50]

Yang S et al. Hypoxia-inducible factor-2alpha is a catabolic regulator of osteoarthritic cartilage destruction. Nat. Med., 2010, 16: 687-693

[51]

Weng T et al. Loss of Vhl in cartilage accelerated the progression of age-associated and surgically induced murine osteoarthritis. Osteoarthr. Cartil., 2014, 22: 1197-1205

[52]

Feng S et al. Mechanical activation of hypoxia-inducible factor 1alpha drives endothelial dysfunction at atheroprone sites. Arterioscler. Thromb., 2017, 37: 2087-2101

[53]

Cantley J et al. Deletion of the von Hippel-Lindau gene in pancreatic beta cells impairs glucose homeostasis in mice. J. Clin. Investig., 2009, 119: 125-135

[54]

De Bock K et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell, 2013, 154: 651-663

[55]

Nishida T, Kubota S, Aoyama E, Takigawa M. Impaired glycolytic metabolism causes chondrocyte hypertrophy-like changes via promotion of phospho-Smad1/5/8 translocation into nucleus. Osteoarthr. Cartil., 2013, 21: 700-709

[56]

Semba H et al. HIF-1alpha-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity. Nat. Commun., 2016, 7

[57]

Podichetty VK. The aging spine: the role of inflammatory mediators in intervertebral disc degeneration. Cell Mol. Biol., 2007, 53: 4-18

[58]

Liu X et al. BMI1 and MEL18 promote colitis-associated cancer in mice via REG3B and STAT3. Gastroenterology, 2017, 153: 1607-1620

[59]

Sakai D et al. Migration of bone marrow-derived cells for endogenous repair in a new tail-looping disc degeneration model in the mouse: a pilot study. Spine J., 2015, 15: 1356-1365

[60]

Bian Q et al. Mechanosignaling activation of TGFbeta maintains intervertebral disc homeostasis. Bone Res., 2017, 5: 17008

[61]

Bian Q et al. Excessive activation of TGFbeta by spinal instability causes vertebral endplate sclerosis. Sci. Rep., 2016, 6

[62]

Tang, J. et al. Fibroblast growth factor receptor 3 inhibits osteoarthritis progression in knee joints of adult mice. Arthritis Rheumatol. 68, 2432–2443 (2016).

[63]

Wang Z et al. Loss of Fgfr1 in chondrocytes inhibits osteoarthritis by promoting autophagic activity in temporomandibular joint. J. Biol. Chem., 2018, 293: 8761-8774

[64]

Sakai D et al. Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat. Commun., 2012, 3

[65]

Gosset M, Berenbaum F, Thirion S, Jacques C. Primary culture and phenotyping of murine chondrocytes. Nat. Protoc., 2008, 3: 1253-1260

Funding

National Natural Science Foundation of China (National Science Foundation of China)(81530071)

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/