Augmenting MNK1/2 activation by c-FMS proteolysis promotes osteoclastogenesis and arthritic bone erosion

Se Hwan Mun , Seyeon Bae , Steven Zeng , Brian Oh , Carmen Chai , Matthew Jundong Kim , Haemin Kim , George Kalliolias , Chitra Lekha Dahia , Younseo Oh , Tae-Hwan Kim , Jong Dae Ji , Kyung-Hyun Park-Min

Bone Research ›› 2021, Vol. 9 ›› Issue (1) : 45

PDF
Bone Research ›› 2021, Vol. 9 ›› Issue (1) : 45 DOI: 10.1038/s41413-021-00162-0
Article

Augmenting MNK1/2 activation by c-FMS proteolysis promotes osteoclastogenesis and arthritic bone erosion

Author information +
History +
PDF

Abstract

Osteoclasts are bone-resorbing cells that play an essential role in homeostatic bone remodeling and pathological bone erosion. Macrophage colony stimulating factor (M-CSF) is abundant in rheumatoid arthritis (RA). However, the role of M-CSF in arthritic bone erosion is not completely understood. Here, we show that M-CSF can promote osteoclastogenesis by triggering the proteolysis of c-FMS, a receptor for M-CSF, leading to the generation of FMS intracellular domain (FICD) fragments. Increased levels of FICD fragments positively regulated osteoclastogenesis but had no effect on inflammatory responses. Moreover, myeloid cell-specific FICD expression in mice resulted in significantly increased osteoclast-mediated bone resorption in an inflammatory arthritis model. The FICD formed a complex with DAP5, and the FICD/DAP5 axis promoted osteoclast differentiation by activating the MNK1/2/EIF4E pathway and enhancing NFATc1 protein expression. Moreover, targeting the MNK1/2 pathway diminished arthritic bone erosion. These results identified a novel role of c-FMS proteolysis in osteoclastogenesis and the pathogenesis of arthritic bone erosion.

Cite this article

Download citation ▾
Se Hwan Mun, Seyeon Bae, Steven Zeng, Brian Oh, Carmen Chai, Matthew Jundong Kim, Haemin Kim, George Kalliolias, Chitra Lekha Dahia, Younseo Oh, Tae-Hwan Kim, Jong Dae Ji, Kyung-Hyun Park-Min. Augmenting MNK1/2 activation by c-FMS proteolysis promotes osteoclastogenesis and arthritic bone erosion. Bone Research, 2021, 9(1): 45 DOI:10.1038/s41413-021-00162-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Smolen JS et al. Rheumatoid arthritis. Nat. Rev. Dis. Prim., 2018, 4: 18001

[2]

Schett G, Gravallese E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat. Rev. Rheumatol., 2012, 8: 656-664

[3]

Guo Q et al. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res, 2018, 6: 15

[4]

Lin H et al. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science, 2008, 320: 807-811

[5]

Paniagua RT et al. c-Fms-mediated differentiation and priming of monocyte lineage cells play a central role in autoimmune arthritis. Arthritis Res Ther., 2010, 12: R32

[6]

Ohno H et al. The orally-active and selective c-Fms tyrosine kinase inhibitor Ki20227 inhibits disease progression in a collagen-induced arthritis mouse model. Eur. J. Immunol., 2008, 38: 283-291

[7]

Pollard JW. Trophic macrophages in development and disease. Nat. Rev. Immunol., 2009, 9: 259-270

[8]

Kühnle N, Dederer V, Lemberg MK. Intramembrane proteolysis at a glance: from signalling to protein degradation. J. Cell Sci, 2019, 132: jcs217745

[9]

Ivashkiv LB, Zhao B, Park-Min KH, Takami M. Feedback inhibition of osteoclastogenesis during inflammation by IL-10, M-CSF receptor shedding, and induction of IRF8. Ann. N. Y Acad. Sci., 2011, 1237: 88-94

[10]

Vahidi A, Glenn G, van der Geer P. Identification and mutagenesis of the TACE and gamma-secretase cleavage sites in the colony-stimulating factor 1 receptor. Biochem. Biophys. Res. Commun., 2014, 450: 782-787

[11]

Glenn G, van der Geer P. CSF-1 and TPA stimulate independent pathways leading to lysosomal degradation or regulated intramembrane proteolysis of the CSF-1 receptor. FEBS Lett., 2007, 581: 5377-5381

[12]

Tsukasaki M, Takayanagi H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat. Rev. Immunol., 2019, 19: 626-642

[13]

Park-Min KH. Mechanisms involved in normal and pathological osteoclastogenesis. Cell Mol. Life Sci., 2018, 75: 2519-2528

[14]

Novack DV, Teitelbaum SL. The osteoclast: friend or foe? Annu Rev. Pathol., 2008, 3: 457-484

[15]

Hamilton JA. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol., 2008, 8: 533-544

[16]

Ross FP, Teitelbaum SL. Alphavbeta3 and macrophage colony-stimulating factor: partners in osteoclast biology. Immunol. Rev., 2005, 208: 88-105

[17]

Gebauer F, Hentze MW. Molecular mechanisms of translational control. Nat. Rev. Mol. Cell Biol., 2004, 5: 827-835

[18]

Imataka H, Olsen HS, Sonenberg N. A new translational regulator with homology to eukaryotic translation initiation factor 4G. EMBO J., 1997, 16: 817-825

[19]

Yoffe Y et al. Cap-independent translation by DAP5 controls cell fate decisions in human embryonic stem cells. Genes Dev., 2016, 30: 1991-2004

[20]

Park-Min KH et al. Inhibition of osteoclastogenesis and inflammatory bone resorption by targeting BET proteins and epigenetic regulation. Nat. Commun., 2014, 5

[21]

Lanz TA et al. The gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester reduces A beta levels in vivo in plasmaand cerebrospinal fluid in young (plaque-free) and aged (plaque-bearing) Tg2576 mice. J. Pharmacol. Exp. Ther., 2003, 305: 864-871

[22]

Stanley ER, Chitu V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb. Perspect. Biol., 2014, 6: a021857

[23]

Pfaff M, Du X, Ginsberg MH. Calpain cleavage of integrin beta cytoplasmic domains. FEBS Lett., 1999, 460: 17-22

[24]

Deshpande RV et al. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation. J. Biol. Chem., 1995, 270: 2497-2505

[25]

Svensson L et al. Calpain 2 controls turnover of LFA-1 adhesions on migrating T lymphocytes. PLoS One, 2010, 5: e15090

[26]

Marzia M et al. Calpain is required for normal osteoclast function and is down-regulated by calcitonin. J. Biol. Chem., 2006, 281: 9745-9754

[27]

Yaroslavskiy BB, Sharrow AC, Wells A, Robinson LJ, Blair HC. Necessity of inositol (1,4,5)-trisphosphate receptor 1 and mu-calpain in NO-induced osteoclast motility. J. Cell Sci., 2007, 120: 2884-2894

[28]

Kuhn R, Schwenk F, Aguet M, Rajewsky K. Inducible gene targeting in mice. Science, 1995, 269: 1427-1429

[29]

Liu Z et al. GPS-CCD: a novel computational program for the prediction of calpain cleavage sites. PLoS One, 2011, 6: e19001

[30]

Kouskoff V et al. Organ-specific disease provoked by systemic autoimmunity. Cell, 1996, 87: 811-822

[31]

Negishi-Koga T, Takayanagi H. Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Immunol. Rev., 2009, 231: 241-256

[32]

Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell, 2009, 136: 731-745

[33]

Huynh H, Wan Y. mTORC1 impedes osteoclast differentiation via calcineurin and NFATc1. Commun. Biol., 2018, 1: 29

[34]

Grzmil M et al. MNK1 pathway activity maintains protein synthesis in rapalog-treated gliomas. J. Clin. Investig., 2014, 124: 742-754

[35]

Pyronnet S et al. Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. EMBO J., 1999, 18: 270-279

[36]

Bukhari SIA et al. A specialized mechanism of translation mediated by FXR1a-associated microRNP in cellular quiescence. Mol. Cell, 2016, 61: 760-773

[37]

Mun SH, Park PSU, Park-Min KH. The M-CSF receptor in osteoclasts and beyond. Exp. Mol. Med, 2020, 52: 1239-1254

[38]

Hamilton JA, Cook AD, Tak PP. Anti-colony-stimulating factor therapies for inflammatory and autoimmune diseases. Nat. Rev. Drug Discov., 2016, 16: 53-70

[39]

Ishiguro N et al. Efficacy of denosumab with regard to bone destruction in prognostic subgroups of Japanese rheumatoid arthritis patients from the phase II DRIVE study. Rheumatol. (Oxf.), 2019, 58: 997-1005

[40]

Cohen SB et al. Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum., 2008, 58: 1299-1309

[41]

Syversen SW et al. High anti-cyclic citrullinated peptide levels and an algorithm of four variables predict radiographic progression in patients with rheumatoid arthritis: results from a 10-year longitudinal study. Ann. Rheum. Dis., 2008, 67: 212-217

[42]

Lindqvist E, Eberhardt K, Bendtzen K, Heinegard D, Saxne T. Prognostic laboratory markers of joint damage in rheumatoid arthritis. Ann. Rheum. Dis., 2005, 64: 196-201

[43]

Kim KW, Kim BM, Moon HW, Lee SH, Kim HR. Role of C-reactive protein in osteoclastogenesis in rheumatoid arthritis. Arthritis Res. Ther., 2015, 17: 41

[44]

Cho IJ et al. Effects of C-reactive protein on bone cells. Life Sci., 2016, 145: 1-8

[45]

Carlberg K, Tapley P, Haystead C, Rohrschneider L. The role of kinase activity and the kinase insert region in ligand-induced internalization and degradation of the c-fms protein. EMBO J., 1991, 10: 877-883

[46]

Terpos E, Sezer O, Croucher P, Dimopoulos MA. Myeloma bone disease and proteasome inhibition therapies. Blood, 2007, 110: 1098-1104

[47]

Lee K et al. Blocking of the ubiquitin-proteasome system prevents inflammation-induced bone loss by accelerating M-CSF receptor c-Fms degradation in osteoclast differentiation. Int. J. Mol. Sci., 2017, 18: 2054

Funding

U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)(AR069562)

U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)

AI Summary AI Mindmap
PDF

88

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/