Subchondral bone microenvironment in osteoarthritis and pain

Yan Hu , Xiao Chen , Sicheng Wang , Yingying Jing , Jiacan Su

Bone Research ›› 2021, Vol. 9 ›› Issue (1) : 20

PDF
Bone Research ›› 2021, Vol. 9 ›› Issue (1) : 20 DOI: 10.1038/s41413-021-00147-z
Review Article

Subchondral bone microenvironment in osteoarthritis and pain

Author information +
History +
PDF

Abstract

Osteoarthritis comprises several joint disorders characterized by articular cartilage degeneration and persistent pain, causing disability and economic burden. The incidence of osteoarthritis is rapidly increasing worldwide due to aging and obesity trends. Basic and clinical research on osteoarthritis has been carried out for decades, but many questions remain unanswered. The exact role of subchondral bone during the initiation and progression osteoarthritis remains unclear. Accumulating evidence shows that subchondral bone lesions, including bone marrow edema and angiogenesis, develop earlier than cartilage degeneration. Clinical interventions targeting subchondral bone have shown therapeutic potential, while others targeting cartilage have yielded disappointing results. Abnormal subchondral bone remodeling, angiogenesis and sensory nerve innervation contribute directly or indirectly to cartilage destruction and pain. This review is about bone-cartilage crosstalk, the subchondral microenvironment and the critical role of both in osteoarthritis progression. It also provides an update on the pathogenesis of and interventions for osteoarthritis and future research targeting subchondral bone.

Cite this article

Download citation ▾
Yan Hu, Xiao Chen, Sicheng Wang, Yingying Jing, Jiacan Su. Subchondral bone microenvironment in osteoarthritis and pain. Bone Research, 2021, 9(1): 20 DOI:10.1038/s41413-021-00147-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet, 2019, 393: 1745-1759

[2]

Wilson AJ, Murphy WA, Hardy DC, Totty WG. Transient osteoporosis: transient bone marrow edema? Radiology, 1988, 167: 757-760

[3]

Zanetti M, Bruder E, Romero J, Hodler J. Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology, 2000, 215: 835-840

[4]

Roemer FW et al. MRI-detected subchondral bone marrow signal alterations of the knee joint: terminology, imaging appearance, relevance and radiological differential diagnosis. Osteoarthr. Cartil., 2009, 17: 1115-1131

[5]

Bowes MA et al. Osteoarthritic bone marrow lesions almost exclusively colocate with denuded cartilage: a 3D study using data from the osteoarthritis initiative. Ann. Rheum. Dis., 2016, 75: 1852-1857

[6]

Guermazi A et al. Prevalence of abnormalities in knees detected by MRI in Adults without knee osteoarthritis: population based observational study (Framingham Osteoarthritis Study). BMJ, 2012, 345

[7]

Sowers MF et al. Magnetic resonance-detected subchondral bone marrow and cartilage defect characteristics associated with pain and X-ray-defined knee osteoarthritis. Osteoarthr. Cartil., 2003, 11: 387-393

[8]

Felson DT et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann. Intern. Med., 2001, 134: 541-549

[9]

Perry TA et al. Association between bone marrow lesions & synovitis and symptoms in symptomatic knee osteoarthritis. Osteoarthr. Cartil., 2020, 28: 316-323

[10]

Kuttapitiya A et al. Microarray analysis of bone marrow lesions in osteoarthritis demonstrates upregulation of genes implicated in osteochondral turnover, neurogenesis and inflammation. Ann. Rheum. Dis., 2017, 76: 1764-1773

[11]

Lowitz T et al. Bone marrow lesions identified by MRI in knee osteoarthritis are associated with locally increased bone mineral density measured by QCT. Osteoarthr. Cartil., 2013, 21: 957-964

[12]

Raynauld JP et al. Correlation between bone lesion changes and cartilage volume loss in patients with osteoarthritis of the knee as assessed by quantitative magnetic resonance imaging over a 24-month period. Ann. Rheum. Dis., 2008, 67: 683-688

[13]

Muratovic D et al. Bone marrow lesions in knee osteoarthritis: regional differences in tibial subchondral bone microstructure and their association with cartilage degeneration. Osteoarthr. Cartil., 2019, 27: 1653-1662

[14]

Lee CH et al. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet, 2010, 376: 440-448

[15]

Shimomura K et al. The influence of skeletal maturity on allogenic synovial mesenchymal stem cell-based repair of cartilage in a large animal model. Biomaterials, 2010, 31: 8004-8011

[16]

Zhong J et al. Crosstalk between adipose-derived stem cells and chondrocytes: when growth factors matter. Bone Res., 2016, 4: 15036

[17]

McGonagle D, Baboolal TG, Jones E. Native joint-resident mesenchymal stem cells for cartilage repair in osteoarthritis. Nat. Rev. Rheumatol., 2017, 13: 719-730

[18]

Zhang W et al. The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. Biomaterials, 2013, 34: 713-723

[19]

Romeo SG et al. Endothelial proteolytic activity and interaction with non-resorbing osteoclasts mediate bone elongation. Nat. Cell Biol., 2019, 21: 430-441

[20]

Havelka S, Horn V, Spohrova D, Valouch P. The calcified-noncalcified cartilage interface: the tidemark. Acta Biol. Hung., 1984, 35: 271-279

[21]

Silvast TS, Jurvelin JS, Lammi MJ, Toyras J. PQCT study on diffusion and equilibrium distribution of iodinated anionic contrast agent in human articular cartilage–associations to matrix composition and integrity. Osteoarthr. Cartil., 2009, 17: 26-32

[22]

Flynn, C., M. Hurtig, C. & Linden, A. Z. Anionic contrast-enhanced microCT imaging correlates with biochemical and histological evaluations of osteoarthritic articular cartilage. Cartilage https://doi.org/10.1177/1947603520924748 (2020). Online ahead of print.

[23]

Bhattarai, A. et al. Effects of human articular cartilage constituents on simultaneous diffusion of cationic and non-ionic contrast agents. J Orthop Res. https://doi.org/10.1002/jor.24824 (2020). Online ahead of print.

[24]

Pan J et al. In situ measurement of transport between subchondral bone and articular cartilage. J. Orthop. Res., 2009, 27: 47-52

[25]

Zhen G et al. Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med., 2013, 19: 704-712

[26]

Kwan TS et al. Modulation of OPG, RANK and RANKL by human chondrocytes and their implication during osteoarthritis. Rheumatol., 2009, 48: 1482-1490

[27]

Wang B, Jin H, Shu B, Mira RR, Chen D. Chondrocytes-specific expression of osteoprotegerin modulates osteoclast formation in metaphyseal bone. Sci. Rep., 2015, 5

[28]

Xiong J et al. Matrix-embedded cells control osteoclast formation. Nat. Med., 2011, 17: 1235-1241

[29]

Wang B et al. Chondrocyte beta-catenin signaling regulates postnatal bone remodeling through modulation of osteoclast formation in a murine model. Arthritis Rheumatol., 2014, 66: 107-120

[30]

Loeser RF. Aging processes and the development of osteoarthritis. Curr. Opin. Rheumatol., 2013, 25: 108-113

[31]

Hu K, Olsen BR. Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J. Clin. Invest., 2016, 126: 509-526

[32]

Imhof H et al. Subchondral bone and cartilage disease: a rediscovered functional unit. Invest Radiol., 2000, 35: 581-588

[33]

Lyons TJ, McClure SF, Stoddart RW, McClure J. The normal human chondro-osseous junctional region: evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces. BMC Musculoskelet. Disord., 2006, 7

[34]

Wu L, Prins HJ, Helder MN, C.A. vanBlitterswijk, Karperien M. Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources. Tissue Eng. Part A., 2012, 18: 1542-1551

[35]

Wu L et al. Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng. Part A., 2011, 17: 1425-1436

[36]

Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell Physiol., 2007, 213: 341-347

[37]

Zhang S et al. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials, 2018, 156: 16-27

[38]

Wong KL et al. Intra-articular injections of mesenchymal stem cell exosomes and hyaluronic acid improve structural and mechanical properties of repaired cartilage in a rabbit model. Arthroscopy, 2020, 36: 2215-2228.e2

[39]

Wang R et al. Intra-articular delivery of extracellular vesicles secreted by chondrogenic progenitor cells from mrl/mpj superhealer mice enhances articular cartilage repair in a mouse injury model. Stem Cell Res. Ther., 2020, 11: 93

[40]

Liu C et al. Kartogenin enhances the therapeutic effect of bone marrow mesenchymal stem cells derived exosomes in cartilage repair. Nanomedicine, 2020, 15: 273-288

[41]

Sanchez C et al. Subchondral bone osteoblasts induce phenotypic changes in human osteoarthritic chondrocytes. Osteoarthr. Cartil., 2005, 13: 988-997

[42]

Chen X, Zhi X, Wang J, Su J. RANKL signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation. Bone Res., 2018, 6: 34

[43]

Nakashima T et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med., 2011, 17: 1231-1234

[44]

Huiskes R, Ruimerman R, van Lenthe GH, Janssen JD. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature, 2000, 405: 704-706

[45]

Martinez-Calatrava MJ et al. RANKL synthesized by articular chondrocytes contributes to juxta-articular bone loss in chronic arthritis. Arthritis Res. Ther., 2012, 14: R149

[46]

Xiong J et al. Soluble RANKL contributes to osteoclast formation in adult mice but not ovariectomy-induced bone loss. Nat. Commun., 2018, 9

[47]

Shabestari M, Vik J, Reseland JE, Eriksen EF. Bone marrow lesions in hip osteoarthritis are characterized by increased bone turnover and enhanced angiogenesis. Osteoarthr. Cartil., 2016, 24: 1745-1752

[48]

Maas O, Joseph GB, Sommer G, Wild D, Kretzschmar M. Association between cartilage degeneration and subchondral bone remodeling in patients with knee osteoarthritis comparing MRI and (99m)Tc-DPD-SPECT/CT. Osteoarthr. Cartil., 2015, 23: 1713-1720

[49]

Wang F et al. The bone marrow edema links to an osteoclastic environment and precedes synovitis during the development of collagen induced arthritis. Front Immunol., 2019, 10: 884

[50]

Siebelt M et al. Inhibited osteoclastic bone resorption through alendronate treatment in rats reduces severe osteoarthritis progression. Bone, 2014, 66: 163-170

[51]

Mohan G et al. Pre-emptive, early, and delayed alendronate treatment in a rat model of knee osteoarthritis: effect on subchondral trabecular bone microarchitecture and cartilage degradation of the tibia, bone/cartilage turnover, and joint discomfort. Osteoarthr. Cartil., 2013, 21: 1595-1604

[52]

Burr DB, Gallant MA. Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol., 2012, 8: 665-673

[53]

Frost HM. From Wolff’s law to the utah paradigm: insights about bone physiology and its clinical applications. Anat. Rec., 2001, 262: 398-419

[54]

Gatenholm B, Lindahl C, Brittberg M, Stadelmann VA. Spatially matching morphometric assessment of cartilage and subchondral bone in osteoarthritic human knee joint with micro-computed tomography. Bone, 2019, 120: 393-402

[55]

Holzer LA et al. Microstructural analysis of subchondral bone in knee osteoarthritis. Osteoporos. Int., 2020, 31: 2037-2045

[56]

Pouran B et al. Solute transport at the interface of cartilage and subchondral bone plate: effect of micro-architecture. J. Biomech., 2017, 52: 148-154

[57]

Bonewald LF. The amazing osteocyte. J. Bone Min. Res., 2011, 26: 229-238

[58]

Tang SY, Herber RP, Ho SP, Alliston T. Matrix metalloproteinase-13 is required for osteocytic perilacunar remodeling and maintains bone fracture resistance. J. Bone Min. Res., 2012, 27: 1936-1950

[59]

Qing H et al. Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J. Bone Min. Res., 2012, 27: 1018-1029

[60]

Kogawa M et al. Sclerostin regulates release of bone mineral by osteocytes by induction of carbonic anhydrase 2. J. Bone Min. Res., 2013, 28: 2436-2448

[61]

Mazur CM et al. Osteocyte dysfunction promotes osteoarthritis through MMP13-dependent suppression of subchondral bone homeostasis. Bone Res., 2019, 7: 34

[62]

Chen Y et al. Subchondral trabecular rod loss and plate thickening in the development of osteoarthritis. J. Bone Min. Res., 2018, 33: 316-327

[63]

Shiraishi K et al. In vivo analysis of subchondral trabecular bone in patients with osteoarthritis of the knee using second-generation high-resolution peripheral quantitative computed tomography (HR-pQCT). Bone, 2020, 132: 115155

[64]

Chen L et al. Horizontal fissuring at the osteochondral interface: a novel and unique pathological feature in patients with obesity-related osteoarthritis. Ann. Rheum. Dis., 2020, 79: 811-818

[65]

Hoechel S, Deyhle H, Toranelli M, Muller-Gerbl M. Osteoarthritis alters the patellar bones subchondral trabecular architecture. J. Orthop. Res., 2017, 35: 1982-1989

[66]

Schett G et al. Diabetes is an independent predictor for severe osteoarthritis: results from a longitudinal cohort study. Diabetes Care., 2013, 36: 403-409

[67]

Chen Y et al. Abnormal subchondral bone remodeling and its association with articular cartilage degradation in knees of type 2 diabetes patients. Bone Res., 2017, 5: 17034

[68]

Xu X et al. Transforming growth factor-beta in stem cells and tissue homeostasis. Bone Res., 2018, 6: 2

[69]

Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFbeta activation. J. Cell Sci., 2003, 116: 217-224

[70]

Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates tgf-beta and promotes tumor invasion and angiogenesis. Genes Dev., 2000, 14: 163-176

[71]

Werb Z. ECM and cell surface proteolysis: regulating cellular ecology. Cell, 1997, 91: 439-442

[72]

Agah A, Kyriakides TR, Lawler J, Bornstein P. The lack of thrombospondin-1 (TSP1) dictates the course of wound healing in double-TSP1/TSP2-null mice. Am. J. Pathol., 2002, 161: 831-839

[73]

Lyons RM, Keski-Oja J, Moses HL. Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium. J. Cell Biol., 1988, 106: 1659-1665

[74]

Dickinson ME et al. Chromosomal localization of seven members of the murine TGF-beta superfamily suggests close linkage to several morphogenetic mutant loci. Genomics, 1990, 6: 505-520

[75]

Teitelbaum SL. Bone resorption by osteoclasts. Science, 2000, 289: 1504-1508

[76]

Ten DP, Hill CS. New insights into TGF-beta-smad signalling. Trends Biochem Sci., 2004, 29: 265-273

[77]

Xian L et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat. Med., 2012, 18: 1095-1101

[78]

Miyoshi H, Ajima R, Luo CT, Yamaguchi TP, Stappenbeck TS. Wnt5a potentiates TGF-beta signaling to promote colonic crypt regeneration after tissue injury. Science, 2012, 338: 108-113

[79]

Mesa KR et al. Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool. Nature, 2015, 522: 94-97

[80]

Lovisa S et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat. Med., 2015, 21: 998-1009

[81]

Dole NS et al. Osteocyte-intrinsic TGF-beta signaling regulates bone quality through perilacunar/canalicular remodeling. Cell Rep., 2017, 21: 2585-2596

[82]

Wang X et al. Aberrant TGF-beta activation in bone tendon insertion induces enthesopathy-like disease. J. Clin. Invest., 2018, 128: 846-860

[83]

Janssens K et al. Mutations in the gene encoding the latency-associated peptide of TGF-beta 1 cause Camurati-Engelmann disease. Nat. Genet., 2000, 26: 273-275

[84]

Whyte MP et al. Camurati-Engelmann disease: unique variant featuring a novel mutation in TGFbeta1 encoding transforming growth factor beta 1 and a missense change in TNFSF11 encoding RANK ligand. J. Bone Min. Res., 2011, 26: 920-933

[85]

Buscemi L et al. The single-molecule mechanics of the latent TGF-beta1 complex. Curr. Biol., 2011, 21: 2046-2054

[86]

Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature, 2014, 507: 323-328

[87]

Hu Y et al. Defactinib attenuates osteoarthritis by inhibiting positive feedback loop between H-type vessels and MSCs in subchondral bone. J. Orthop. Transl., 2020, 24: 12-22

[88]

Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature, 2011, 473: 298-307

[89]

Chen WC et al. Cellular kinetics of perivascular MSC precursors. Stem Cells Int., 2013, 2013: 983059

[90]

Liu T et al. PDGF-mediated mesenchymal transformation renders endothelial resistance to anti-VEGF treatment in glioblastoma. Nat. Commun., 2018, 9

[91]

Sacchetti B et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell, 2007, 131: 324-336

[92]

Ramasamy SK, Kusumbe AP, Wang L, Adams RH. Endothelial notch activity promotes angiogenesis and osteogenesis in bone. Nature, 2014, 507: 376-380

[93]

Lechertier T et al. Pericyte FAK negatively regulates Gas6/Axl signalling to suppress tumour angiogenesis and tumour growth. Nat. Commun., 2020, 11

[94]

Bragdon B et al. Earliest phases of chondrogenesis are dependent upon angiogenesis during ectopic bone formation in mice. Bone, 2017, 101: 49-61

[95]

Sun P et al. Regulation of body length and bone mass by Gpr126/Adgrg6. Sci. Adv., 2020, 6: eaaz0368

[96]

Gerber HP et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med., 1999, 5: 623-628

[97]

Kubo S et al. Blocking vascular endothelial growth factor with soluble Flt-1 Improves the chondrogenic potential of mouse skeletal muscle-derived stem cells. Arthritis Rheum., 2009, 60: 155-165

[98]

Matsumoto T et al. Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble flt-1. Arthritis Rheum., 2009, 60: 1390-1405

[99]

Shukunami C, Hiraki Y. Role of cartilage-derived anti-angiogenic factor, chondromodulin-i, during endochondral bone formation. Osteoarthr. Cartil., 2001, 9 Suppl A S91-S101

[100]

Pfander D, Cramer T, Deuerling D, Weseloh G, Swoboda B. Expression of thrombospondin-1 and its receptor CD36 in human osteoarthritic cartilage. Ann. Rheum. Dis., 2000, 59: 448-454

[101]

Moses MA et al. Troponin I is present in human cartilage and inhibits angiogenesis. Proc. Natl Acad. Sci. USA, 1999, 96: 2645-2650

[102]

Huang Y et al. 3D high-frequency ultrasound imaging of cartilage-bone interface compared with micro-CT. Biomed. Res Int., 2020, 2020: 6906148

[103]

Franses RE, McWilliams DF, Mapp PI, Walsh DA. Osteochondral angiogenesis and increased protease inhibitor expression in OA. Osteoarthr. Cartil., 2010, 18: 563-571

[104]

Lu J et al. Positive-feedback regulation of subchondral H-type vessel formation by chondrocyte promotes osteoarthritis development in mice. J. Bone Min. Res., 2018, 33: 909-920

[105]

Mapp PI, Walsh DA. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat. Rev. Rheumatol., 2012, 8: 390-398

[106]

Walsh DA et al. Innervation and neurokinin receptors during angiogenesis in the rat sponge granuloma. Histochem J., 1996, 28: 759-769

[107]

Walsh DA et al. Angiogenesis and nerve growth factor at the osteochondral junction in rheumatoid arthritis and osteoarthritis. Rheumatology, 2010, 49: 1852-1861

[108]

Yu X et al. NGF increases FGF2 expression and promotes endothelial cell migration and tube formation through PI3K/Akt and ERK/MAPK pathways in human chondrocytes. Osteoarthr. Cartil., 2019, 27: 526-534

[109]

Carmeliet P, Tessier-Lavigne M. Common mechanisms of nerve and blood vessel wiring. Nature, 2005, 436: 193-200

[110]

Hukkanen M et al. Rapid proliferation of calcitonin gene-related peptide-immunoreactive nerves during healing of rat tibial fracture suggests neural involvement in bone growth and remodelling. Neuroscience, 1993, 54: 969-979

[111]

Chen X et al. Osteoblast-osteoclast interactions. Connect Tissue Res., 2018, 59: 99-107

[112]

Kim T et al. ATP6v0d2 deficiency increases bone mass, but does not influence ovariectomy-induced bone loss. Biochem Biophys. Res Commun., 2010, 403: 73-78

[113]

Suri S et al. Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis. Ann. Rheum. Dis., 2007, 66: 1423-1428

[114]

Aso K et al. Contribution of nerves within osteochondral channels to osteoarthritis knee pain in humans and rats. Osteoarthr. Cartil., 2020, 9: 1245-1254

[115]

Moses MA, Sudhalter J, Langer R. Identification of an inhibitor of neovascularization from cartilage. Science, 1990, 248: 1408-1410

[116]

Hamilton JL et al. Targeting VEGF and its receptors for the treatment of osteoarthritis and associated pain. J. Bone Min. Res., 2016, 31: 911-924

[117]

Barranco C. Osteoarthritis: animal data show VEGF blocker inhibits post-traumatic OA. Nat. Rev. Rheumatol., 2014, 10: 638

[118]

Xie H et al. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat. Med., 2014, 20: 1270-1278

[119]

Su W et al. Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development. JCI Insight, 2020, 5

[120]

Wang Y et al. TNF-alpha-induced LRG1 promotes angiogenesis and mesenchymal stem cell migration in the subchondral bone during osteoarthritis. Cell Death Dis., 2017, 8

[121]

Kisand K, Tamm AE, Lintrop M, Tamm AO. New insights into the natural course of knee osteoarthritis: early regulation of cytokines and growth factors, with emphasis on sex-dependent angiogenesis and tissue remodeling. A pilot study. Osteoarthr. Cartil., 2018, 26: 1045-1054

[122]

Sun HB. Mechanical loading, cartilage degradation, and arthritis. Ann. N. Y Acad. Sci., 2010, 1211: 37-50

[123]

Hinterwimmer S et al. Cartilage atrophy in the knees of patients after seven weeks of partial load bearing. Arthritis Rheum., 2004, 50: 2516-2520

[124]

Souza RB et al. Effects of unloading on knee articular cartilage T1rho and T2 magnetic resonance imaging relaxation times: a case series. J. Orthop. Sports Phys. Ther., 2012, 42: 511-520

[125]

Messier SP et al. Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis: the IDEA randomized clinical trial. JAMA, 2013, 310: 1263-1273

[126]

Kulkarni K, Karssiens T, Kumar V, Pandit H. Obesity and osteoarthritis. Maturitas, 2016, 89: 22-28

[127]

Voinier D et al. Using cumulative load to explain how body mass index and daily walking relate to worsening knee cartilage damage over two years: the MOST study. Arthritis Rheumatol., 2020, 72: 957-965

[128]

Delco ML, Bonnevie ED, Bonassar LJ, Fortier LA. Mitochondrial dysfunction is an acute response of articular chondrocytes to mechanical injury. J. Orthop. Res., 2018, 36: 739-750

[129]

Chang SH et al. Excessive mechanical loading promotes osteoarthritis through the gremlin-1-NF-κB pathway. Nat. Commun., 2019, 10

[130]

Fahy N, Alini M, Stoddart MJ. Mechanical stimulation of mesenchymal stem cells: implications for cartilage tissue engineering. J. Orthop. Res., 2018, 36: 52-63

[131]

Reynaud B, Quinn TM. Anisotropic hydraulic permeability in compressed articular cartilage. J. Biomech., 2006, 39: 131-137

[132]

Hoenig E et al. Mechanical properties of native and tissue-engineered cartilage depend on carrier permeability: a bioreactor study. Tissue Eng. Part A, 2013, 19: 1534-1542

[133]

Nakagawa K et al. Cyclic compression-induced P38 activation and subsequent MMP13 expression requires Rho/ROCK activity in bovine cartilage explants. Inflamm. Res., 2012, 61: 1093-1100

[134]

Patwari P, Cheng DM, Cole AA, Kuettner KE, Grodzinsky AJ. Analysis of the relationship between peak stress and proteoglycan loss following injurious compression of human post-mortem knee and ankle cartilage. Biomech. Model Mechanobiol., 2007, 6: 83-89

[135]

Iijima H et al. Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis. Osteoarthr. Cartil., 2016, 24: 354-363

[136]

Steinmetz NJ, Aisenbrey EA, Westbrook KK, Qi HJ, Bryant SJ. Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering. Acta Biomater., 2015, 21: 142-153

[137]

Kasper G et al. Mesenchymal stem cells regulate angiogenesis according to their mechanical environment. Stem Cells, 2007, 25: 903-910

[138]

Schreivogel S, Kuchibhotla V, Knaus P, Duda GN, Petersen A. Load-induced osteogenic differentiation of mesenchymal stromal cells is caused by mechano-regulated autocrine signaling. J. Tissue Eng. Regen. Med., 2019, 13: 1992-2008

[139]

Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell, 2013, 153: 1194-1217

[140]

Diekman BO et al. Expression of p16(INK) (4A) is a biomarker of chondrocyte aging but does not cause osteoarthritis. Aging Cell., 2018, 17

[141]

Chen D et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res., 2017, 5: 16044

[142]

Jeon OH et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med., 2017, 23: 775-781

[143]

Malaise O et al. Mesenchymal stem cell senescence alleviates their intrinsic and seno-suppressive paracrine properties contributing to osteoarthritis development. Aging (Albany NY)., 2019, 11: 9128-9146

[144]

Zhao Y et al. Age-related changes in nucleus pulposus mesenchymal stem cells: an in vitro study in rats. Stem Cells Int., 2017, 2017: 6761572

[145]

Dai, J. et al. Osteoclast-derived exosomal let-7a-5p targets Smad2 to promote the hypertrophic differentiation of chondrocytes. Am. J. Physiol. Cell Physiol. https://doi.org/10.1152/ajpcell.00039.2020 (2020). Online ahead of print.

[146]

Bacon K, LaValley MP, Jafarzadeh SR, Felson D. Does cartilage loss cause pain in osteoarthritis and if so, how much? Ann. Rheum. Dis., 2020, 79: 1105-1110

[147]

Thakur M, Dickenson AH, Baron R. Osteoarthritis pain: nociceptive or neuropathic? Nat. Rev. Rheumatol., 2014, 10: 374-380

[148]

Gregori D et al. Association of pharmacological treatments with long-term pain control in patients with knee osteoarthritis: a systematic review and meta-analysis. JAMA, 2018, 320: 2564-2579

[149]

Dimitroulas T, Duarte RV, Behura A, Kitas GD, Raphael JH. Neuropathic pain in osteoarthritis: a review of pathophysiological mechanisms and implications for treatment. Semin Arthritis Rheum., 2014, 44: 145-154

[150]

Malfait AM, Schnitzer TJ. Towards a mechanism-based approach to pain management in osteoarthritis. Nat. Rev. Rheumatol., 2013, 9: 654-664

[151]

Iadarola MJ, Sapio MR, Raithel SJ, Mannes AJ, Brown DC. Long-term pain relief in canine osteoarthritis by a single intra-articular injection of resiniferatoxin, a potent TRPV1 Agonist. Pain, 2018, 159: 2105-2114

[152]

McDougall, J. J. & Muley, M. M. The role of proteases in pain. In Pain Control. Handbook of Experimental Pharmacology Vol. 227 (ed. Schaible, H.G.) 239–260 (Springer, Berlin, Heidelberg, 2015).

[153]

Mantyh PW, Pinnock RD, Downes CP, Goedert M, Hunt SP. Correlation between inositol phospholipid hydrolysis and substance P receptors in rat CNS. Nature, 1984, 309: 795-797

[154]

Hong HS et al. A new role of substance P as an injury-inducible messenger for mobilization of CD29+ stromal-like cells. Nat. Med., 2009, 15: 425-435

[155]

Lindh C, Liu Z, Lyrenas S, Ordeberg G, Nyberg F. Elevated cerebrospinal fluid substance p-like immunoreactivity in patients with painful osteoarthritis, but not in patients with rhizopatic pain from a herniated lumbar disc. Scand. J. Rheumatol., 1997, 26: 468-472

[156]

Marshall KW, Chiu B, Inman RD. Substance P and arthritis: analysis of plasma and synovial fluid levels. Arthritis Rheum., 1990, 33: 87-90

[157]

Warner SC et al. Pain in knee osteoarthritis is associated with variation in the neurokinin 1/substance P receptor (TACR1) gene. Eur. J. Pain., 2017, 21: 1277-1284

[158]

Li H et al. TNF-alpha increases the expression of inflammatory factors in synovial fibroblasts by inhibiting the PI3K/AKT pathway in a rat model of monosodium iodoacetate-induced osteoarthritis. Exp. Ther. Med., 2018, 16: 4737-4744

[159]

Fleischmann RM et al. A phase ii trial of lutikizumab, an anti-interleukin-1alpha/beta dual variable domain immunoglobulin, in knee osteoarthritis patients with synovitis. Arthritis Rheumatol., 2019, 71: 1056-1069

[160]

Azim S et al. Interleukin-6 and leptin levels are associated with preoperative pain severity in patients with osteoarthritis but not with acute pain after total knee arthroplasty. Knee, 2018, 25: 25-33

[161]

Ni S et al. Sensory innervation in porous endplates by netrin-1 from osteoclasts mediates PGE2-induced spinal hypersensitivity in mice. Nat. Commun., 2019, 10

[162]

Brown KK et al. P38 MAP kinase inhibitors as potential therapeutics for the treatment of joint degeneration and pain associated with osteoarthritis. J. Inflamm. (Lond.)., 2008, 5: 22

[163]

Taheem DK, Jell G, Gentleman E. Hypoxia inducible factor-1alpha in osteochondral tissue engineering. Tissue Eng. Part B Rev., 2020, 26: 105-115

[164]

Orfanidou T, Iliopoulos D, Malizos KN, Tsezou A. Involvement of SOX-9 and FGF-23 in RUNX-2 regulation in osteoarthritic chondrocytes. J. Cell Mol. Med., 2009, 13: 3186-3194

[165]

Martel-Pelletier J et al. Neutral proteases capable of proteoglycan digesting activity in osteoarthritic and normal human articular cartilage. Arthritis Rheum., 1984, 27: 305-312

[166]

Larkin J et al. Translational development of an ADAMTS-5 antibody for osteoarthritis disease modification. Osteoarthr. Cartil., 2015, 23: 1254-1266

[167]

French HP, Smart KM, Doyle F. Prevalence of neuropathic pain in knee or hip osteoarthritis: a systematic review and meta-analysis. Semin Arthritis Rheum., 2017, 47: 1-8

[168]

Wiffen PJ et al. Gabapentin for chronic neuropathic pain in adults. Cochrane Database Syst. Rev., 2017, 6: CD007938

[169]

Finnerup NB et al. Neuropathic pain: an updated grading system for research and clinical practice. Pain, 2016, 157: 1599-1606

[170]

Schaible HG et al. Joint pain. Exp. Brain Res., 2009, 196: 153-162

[171]

McDougall JJ, Andruski B, Schuelert N, Hallgrimsson B, Matyas JR. Unravelling the relationship between age, nociception and joint destruction in naturally occurring osteoarthritis of dunkin hartley guinea pigs. Pain, 2009, 141: 222-232

[172]

Liu-Bryan R, Terkeltaub R. Emerging regulators of the inflammatory process in osteoarthritis. Nat. Rev. Rheumatol., 2015, 11: 35-44

[173]

Suokas AK et al. Quantitative sensory testing in painful osteoarthritis: a systematic review and meta-analysis. Osteoarthr. Cartil., 2012, 20: 1075-1085

[174]

Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain, 2011, 152: S2-S15

[175]

Kosek E, Ordeberg G. Abnormalities of somatosensory perception in patients with painful osteoarthritis normalize following successful treatment. Eur. J. Pain., 2000, 4: 229-238

[176]

Graven-Nielsen T, Wodehouse T, Langford RM, Arendt-Nielsen L, Kidd BL. Normalization of widespread hyperesthesia and facilitated spatial summation of deep-tissue pain in knee osteoarthritis patients after knee replacement. Arthritis Rheum., 2012, 64: 2907-2916

[177]

Rinonapoli G, Coaccioli S, Panella L. Tapentadol in the treatment of osteoarthritis: pharmacological rationale and clinical evidence. J. Pain. Res., 2019, 12: 1529-1536

[178]

Zhu S et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J. Clin. Invest., 2019, 129: 1076-1093

[179]

Zhu J et al. Aberrant subchondral osteoblastic metabolism modifies NaV1.8 for osteoarthritis. Elife, 2020, 9

[180]

Fukuda T et al. Sema3A regulates bone-mass accrual through sensory innervations. Nature, 2013, 497: 490-493

[181]

Levi B. “TrkA”cking why “no pain, no gain” is the rule for bone formation. Sci. Transl. Med., 2017, 9: eaan3780

[182]

Chen H et al. Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat. Commun., 2019, 10

[183]

Richmond J et al. Treatment of osteoarthritis of the knee (Nonarthroplasty). J. Am. Acad. Orthop. Surg., 2009, 17: 591-600

[184]

Cui Z et al. Halofuginone attenuates osteoarthritis by inhibition of TGF-beta activity and H-type vessel formation in subchondral bone. Ann. Rheum. Dis., 2016, 75: 1714-1721

[185]

Kadri A et al. Osteoprotegerin inhibits cartilage degradation through an effect on trabecular bone in murine experimental osteoarthritis. Arthritis Rheum., 2008, 58: 2379-2386

[186]

Kadri A et al. Inhibition of bone resorption blunts osteoarthritis in mice with high bone remodelling. Ann. Rheum. Dis., 2010, 69: 1533-1538

[187]

Wang L, Huang B, Chen X, Su J. New insight into unexpected bone formation by denosumab. Drug Discov. Today, 2020, 25: 1919-1922

[188]

Wan L et al. A magnetic-field guided interface coassembly approach to magnetic mesoporous silica nanochains for osteoclast-targeted inhibition and heterogeneous nanocatalysis. Adv. Mater., 2018, 30

[189]

Yue Q et al. Plasmolysis-inspired nanoengineering of functional yolk-shell microspheres with magnetic core and mesoporous silica shell. J. Am. Chem. Soc., 2017, 139: 15486-15493

[190]

Song H et al. Reversal of osteoporotic activity by endothelial cell-secreted bone targeting and biocompatible exosomes. Nano Lett., 2019, 19: 3040-3048

[191]

Metavarayuth K et al. Nanotopographical cues mediate osteogenesis of stem cells on virus substrates through BMP-2 intermediate. Nano Lett., 2019, 19: 8372-8380

[192]

Nagai T et al. Bevacizumab, an anti-vascular endothelial growth factor antibody, inhibits osteoarthritis. Arthritis Res Ther., 2014, 16: 427

[193]

Schnitzer TJ et al. Effect of tanezumab on joint pain, physical function, and patient global assessment of osteoarthritis among patients with osteoarthritis of the hip or knee: a randomized clinical trial. JAMA, 2019, 322: 37-48

[194]

Ashraf S, Mapp PI, Walsh DA. Contributions of angiogenesis to inflammation, joint damage, and pain in a rat model of osteoarthritis. Arthritis Rheum., 2011, 63: 2700-2710

[195]

Hsieh JL et al. Intraarticular gene transfer of thrombospondin-1 suppresses the disease progression of experimental osteoarthritis. J. Orthop. Res., 2010, 28: 1300-1306

[196]

Hayami T et al. Expression of the cartilage derived anti-angiogenic factor chondromodulin-i decreases in the early stage of experimental osteoarthritis. J. Rheumatol., 2003, 30: 2207-2217

[197]

Kim YM et al. Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J. Biol. Chem., 2002, 277: 27872-27879

[198]

Kurosaka D et al. Inhibition of arthritis by systemic administration of endostatin in passive murine collagen induced arthritis. Ann. Rheum. Dis., 2003, 62: 677-679

[199]

Bini A, Wu D, Schnuer J, Kudryk BJ. Characterization of stromelysin 1 (MMP-3), matrilysin (MMP-7), and membrane type 1 matrix metalloproteinase (MT1-MMP) derived fibrin(Ogen) fragments D-dimer and D-like monomer: NH2-terminal sequences of late-stage digest fragments. Biochemistry, 1999, 38: 13928-13936

[200]

Webb AH et al. Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma. BMC Cancer, 2017, 17

[201]

Hawinkels LJ et al. VEGF release by MMP-9 mediated heparan sulphate cleavage induces colorectal cancer angiogenesis. Eur. J. Cancer, 2008, 44: 1904-1913

[202]

Levi E et al. Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1. Proc. Natl Acad. Sci. USA, 1996, 93: 7069-7074

[203]

Dai H et al. Eliminating senescent chondrogenic progenitor cells enhances chondrogenesis under intermittent hydrostatic pressure for the treatment of OA. Stem Cell Res. Ther., 2020, 11: 199

[204]

Gao C, Ning B, Sang C, Zhang Y. Rapamycin prevents the intervertebral disc degeneration via inhibiting differentiation and senescence of annulus fibrosus cells. Aging., 2018, 10: 131-143

[205]

Yuan C et al. Classification of four distinct osteoarthritis subtypes with a knee joint tissue transcriptome atlas. Bone Res., 2020, 8: 38

[206]

Jevsevar DS. Treatment of osteoarthritis of the knee: evidence-based guideline, 2nd edition. J. Am. Acad. Orthop. Surg., 2013, 21: 571-576

[207]

Nissen SE et al. Cardiovascular safety of celecoxib, naproxen, or ibuprofen for arthritis. N. Engl. J. Med., 2016, 375: 2519-2529

[208]

Chan FK et al. Celecoxib versus omeprazole and diclofenac in patients with osteoarthritis and rheumatoid arthritis (CONDOR): a randomised trial. Lancet, 2010, 376: 173-179

[209]

Makris UE, Abrams RC, Gurland B, Reid MC. Management of persistent pain in the older patient: a clinical review. JAMA, 2014, 312: 825-836

[210]

Gil HY et al. A novel application of buprenorphine transdermal patch to relieve pain in the knee joint of knee osteoarthritis patients: a retrospective case-control study. J. Clin. Med., 2019, 8: 1009

[211]

Da CB et al. Oral or transdermal opioids for osteoarthritis of the knee or hip. Cochrane Database Syst. Rev., 2014, 9: CD003115

[212]

Da CB, Hari R, Juni P. Intra-articular corticosteroids for osteoarthritis of the knee. JAMA, 2016, 316: 2671-2672

[213]

McAlindon TE et al. Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis: a randomized clinical trial. JAMA, 2017, 317: 1967-1975

[214]

Deyle GD et al. Physical therapy versus glucocorticoid injection for osteoarthritis of the knee. N. Engl. J. Med., 2020, 382: 1420-1429

[215]

Lo GH, LaValley M, McAlindon T, Felson DT. Intra-articular hyaluronic acid in treatment of knee osteoarthritis: a meta-analysis. JAMA, 2003, 290: 3115-3121

[216]

Laslett LL et al. Zoledronic acid reduces knee pain and bone marrow lesions over 1 year: a randomised controlled trial. Ann. Rheum. Dis., 2012, 71: 1322-1328

[217]

Lane NE et al. Tanezumab for the treatment of pain from osteoarthritis of the knee. N. Engl. J. Med., 2010, 363: 1521-1531

[218]

Zhao L et al. Exploration of CRISPR/Cas9-based gene editing as therapy for osteoarthritis. Ann. Rheum. Dis., 2019, 78: 676-682

Funding

Ministry of Science and Technology of the People’s Republic of China (Chinese Ministry of Science and Technology)(2018YFC2001500)

National Natural Science Foundation of China (National Science Foundation of China)(91749204;81771491;81871099)

Medical specialty construction project in Shanghai Baoshan District(BSZK-2018-B06)

AI Summary AI Mindmap
PDF

227

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/