Chondrogenesis mediates progression of ankylosing spondylitis through heterotopic ossification

Tao Yu , Jianguo Zhang , Wei Zhu , Xiao Wang , Yun Bai , Bin Feng , Qianyu Zhuang , Chang Han , Shengru Wang , Qimiao Hu , Senbo An , Mei Wan , Shiwu Dong , Jianzhong Xu , Xisheng Weng , Xu Cao

Bone Research ›› 2021, Vol. 9 ›› Issue (1) : 19

PDF
Bone Research ›› 2021, Vol. 9 ›› Issue (1) : 19 DOI: 10.1038/s41413-021-00140-6
Article

Chondrogenesis mediates progression of ankylosing spondylitis through heterotopic ossification

Author information +
History +
PDF

Abstract

Ankylosing spondylitis (AS) is chronic inflammatory arthritis with a progressive fusion of axial joints. Anti-inflammatory treatments such as anti-TNF-α antibody therapy suppress inflammation but do not effectively halt the progression of spine fusion in AS patients. Here we report that the autoimmune inflammation of AS generates a microenvironment that promotes chondrogenesis in spine ligaments as the process of spine fusion. Chondrocyte differentiation was observed in the ligaments of patients with early-stage AS, and cartilage formation was followed by calcification. Moreover, a large number of giant osteoclasts were found in the inflammatory environment of ligaments and on bony surfaces of calcified cartilage. Resorption activity by these giant osteoclasts generated marrow with high levels of active TGF-β, which induced new bone formation in the ligaments. Notably, no Osterix+ osteoprogenitors were found in osteoclast resorption areas, indicating uncoupled bone resorption and formation. Even at the late and maturation stages, the uncoupled osteoclast resorption in bony interspinous ligament activates TGF-β to induce the progression of ossification in AS patients. Osteoclast resorption of calcified cartilage-initiated ossification in the progression of AS is a similar pathologic process of acquired heterotopic ossification (HO). Our finding of cartilage formation in the ligaments of AS patients revealed that the pathogenesis of spinal fusion is a process of HO and explained why anti-inflammatory treatments do not slow ankylosing once there is new bone formation in spinal soft tissues. Thus, inhibition of HO formation, such as osteoclast activity, cartilage formation, or TGF-β activity could be a potential therapy for AS.

Cite this article

Download citation ▾
Tao Yu, Jianguo Zhang, Wei Zhu, Xiao Wang, Yun Bai, Bin Feng, Qianyu Zhuang, Chang Han, Shengru Wang, Qimiao Hu, Senbo An, Mei Wan, Shiwu Dong, Jianzhong Xu, Xisheng Weng, Xu Cao. Chondrogenesis mediates progression of ankylosing spondylitis through heterotopic ossification. Bone Research, 2021, 9(1): 19 DOI:10.1038/s41413-021-00140-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dean LE et al. Global prevalence of ankylosing spondylitis. Rheumatology (Oxford), 2014, 53: 650-657

[2]

Zhu W et al. Ankylosing spondylitis: etiology, pathogenesis, and treatments. Bone Res, 2019, 7: 22

[3]

Brewerton DA et al. Ankylosing spondylitis and HL-A 27. Lancet, 1973, 1: 904-907

[4]

Lories RJ. Advances in understanding the pathophysiology of spondyloarthritis. Best. Pr. Res Clin. Rheumatol., 2018, 32: 331-341

[5]

Sieper J et al. Persistent reduction of spinal inflammation as assessed by magnetic resonance imaging in patients with ankylosing spondylitis after 2 years of treatment with the anti-tumour necrosis factor agent infliximab. Rheumatology (Oxford), 2005, 44: 1525-1530

[6]

Schett G, Rudwaleit M. Can we stop progression of ankylosing spondylitis? Best. Pr. Res Clin. Rheumatol., 2010, 24: 363-371

[7]

Poddubnyy D, Rudwaleit M. Adalimumab for the treatment of ankylosing spondylitis and nonradiographic axial spondyloarthritis—a five-year update. Expert Opin. Biol. Ther., 2013, 13: 1599-1611

[8]

Keffer J et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J., 1991, 10: 4025-4031

[9]

Uderhardt S et al. Blockade of Dickkopf (DKK)-1 induces fusion of sacroiliac joints. Ann. Rheum. Dis., 2010, 69: 592-597

[10]

Baraliakos X, Listing J, Rudwaleit M, Sieper J, Braun J. The relationship between inflammation and new bone formation in patients with ankylosing spondylitis. Arthritis Res Ther., 2008, 10: R104

[11]

van der Heijde D et al. Radiographic findings following two years of infliximab therapy in patients with ankylosing spondylitis. Arthritis Rheum., 2008, 58: 3063-3070

[12]

van der Heijde D et al. Radiographic progression of ankylosing spondylitis after up to two years of treatment with etanercept. Arthritis Rheum., 2008, 58: 1324-1331

[13]

Rudwaleit M et al. Magnetic resonance imaging of the spine and the sacroiliac joints in ankylosing spondylitis and undifferentiated spondyloarthritis during treatment with etanercept. Ann. Rheum. Dis., 2005, 64: 1305-1310

[14]

Baraliakos X et al. Outcome of patients with active ankylosing spondylitis after two years of therapy with etanercept: clinical and magnetic resonance imaging data. Arthritis Rheum., 2005, 53: 856-863

[15]

Maksymowych WP. Disease modification in ankylosing spondylitis. Nat. Rev. Rheumatol., 2010, 6: 75-81

[16]

Lories RJU, Derese I, de Bari C, Luyten FP. Evidence for uncoupling of inflammation and joint remodeling in a mouse model of spondylarthritis. Arthritis Rheum., 2007, 56: 489-497

[17]

van der Heijde D et al. MRI inflammation at the vertebral unit only marginally predicts new syndesmophyte formation: a multilevel analysis in patients with ankylosing spondylitis. Ann. Rheum. Dis., 2012, 71: 369-373

[18]

François RJ, Gardner DL, Degrave EJ, Bywaters EG. Histopathologic evidence that sacroiliitis in ankylosing spondylitis is not merely enthesitis. Arthritis Rheum., 2000, 43: 2011-2024

[19]

Magrey M, Khan MA. Osteoporosis in ankylosing spondylitis. Curr. Rheumatol. Rep., 2010, 12: 332-336

[20]

Hinze AM, Louie GH. Osteoporosis management in ankylosing spondylitis. Curr. Treatm Opt. Rheumatol., 2016, 2: 271-282

[21]

Davey-Ranasinghe N, Deodhar A. Osteoporosis and vertebral fractures in ankylosing spondylitis. Curr. Opin. Rheumatol., 2013, 25: 509-516

[22]

Ulu MA, Batmaz İ, Dilek B, Çevik R. Prevalence of osteoporosis and vertebral fractures and related factors in patients with ankylosing spondylitis. Chin. Med J., 2014, 127: 2740-2747

[23]

Beek KJ et al. Long-term treatment with TNF-alpha inhibitors improves bone mineral density but not vertebral fracture progression in ankylosing spondylitis. J. Bone Min. Res, 2019, 34: 1041-1048

[24]

Appel H et al. Immunohistochemical analysis of hip arthritis in ankylosing spondylitis: evaluation of the bone-cartilage interface and subchondral bone marrow. Arthritis Rheum., 2006, 54: 1805-1813

[25]

Appel H et al. Immunohistologic analysis of zygapophyseal joints in patients with ankylosing spondylitis. Arthritis Rheum., 2006, 54: 2845-2851

[26]

Van Offel JF et al. Influence of cyclic intravenous pamidronate on proinflammatory monocytic cytokine profiles and bone density in rheumatoid arthritis treated with low dose prednisolone and methotrexate. Clin. Exp. Rheumatol., 2001, 19: 13-20

[27]

Viapiana O et al. Bisphosphonates vs infliximab in ankylosing spondylitis treatment. Rheumatology (Oxford), 2014, 53: 90-94

[28]

Singh R, Menon Y, Cuchacovich R, Espinoza LR. A six-month randomized, controlled, double-blind, dose-response comparison of intravenous pamidronate (60 mg versus 10 mg) in the treatment of nonsteroidal antiinflammatory drug-refractory ankylosing spondylitis: comment on the article by Maksymowych et al. Arthritis Rheum., 2003, 48: 583-584

[29]

Maksymowych WP et al. Clinical and radiological amelioration of refractory peripheral spondyloarthritis by pulse intravenous pamidronate therapy. J. Rheumatol., 2001, 28: 144-155

[30]

Toussirot E, Wendling D. Antiinflammatory treatment with bisphosphonates in ankylosing spondylitis. Curr. Opin. Rheumatol., 2007, 19: 340-345

[31]

Haibel H et al. Treatment of active ankylosing spondylitis with pamidronate. Rheumatology (Oxford), 2003, 42: 1018-1020

[32]

Wang X et al. Inhibition of overactive TGF-β attenuates progression of heterotopic ossification in mice. Nat. Commun., 2018, 9

[33]

Shafritz AB et al. Overexpression of an osteogenic morphogen in fibrodysplasia ossificans progressiva. N. Engl. J. Med., 1996, 335: 555-561

[34]

Shore EM et al. Paternally inherited inactivating mutations of the GNAS1 gene in progressive osseous heteroplasia. N. Engl. J. Med, 2002, 346: 99-106

[35]

Kaplan FS et al. The histopathology of fibrodysplasia ossificans progressiva. An endochondral process. J. Bone Joint Surg. Am., 1993, 75: 220-230

[36]

Sorkin M et al. Regulation of heterotopic ossification by monocytes in a mouse model of aberrant wound healing. Nat. Commun., 2020, 11

[37]

Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFbeta activation. J. Cell Sci., 2003, 116: 217-224

[38]

Taylan A et al. Evaluation of the T helper 17 axis in ankylosing spondylitis. Rheumatol. Int., 2012, 32: 2511-2515

[39]

Visvanathan S et al. Effects of infliximab on markers of inflammation and bone turnover and associations with bone mineral density in patients with ankylosing spondylitis. Ann. Rheum. Dis., 2009, 68: 175-182

[40]

Tang Y et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat. Med, 2009, 15: 757-765

[41]

Zhen G et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med, 2013, 19: 704-712

[42]

Medici D, Olsen BR. The role of endothelial-mesenchymal transition in heterotopic ossification. J. Bone Min. Res., 2012, 27: 1619-1622

[43]

Crane JL, Cao X. Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling. J. Clin. Invest, 2014, 124: 466-472

[44]

Blaney Davidson EN, van der Kraan PM, van den Berg WB. TGF-beta and osteoarthritis. Osteoarthr. Cartil., 2007, 15: 597-604

[45]

Sarahrudi K et al. Elevated transforming growth factor-beta 1 (TGF-β1) levels in human fracture healing. Injury, 2011, 42: 833-837

[46]

O’Brien EJO, Frank CB, Shrive NG, Hallgrímsson B, Hart DA. Heterotopic mineralization (ossification or calcification) in tendinopathy or following surgical tendon trauma. Int J. Exp. Pathol., 2012, 93: 319-331

[47]

Wozney JM et al. Novel regulators of bone formation: molecular clones and activities. Science, 1988, 242: 1528-1534

[48]

Xie H et al. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat. Med, 2014, 20: 1270-1278

[49]

Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature, 2014, 507: 323-328

[50]

Ramasamy SK, Kusumbe AP, Wang L, Adams RH. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature, 2014, 507: 376-380

[51]

Zhu S et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J. Clin. Invest, 2019, 129: 1076-1093

[52]

Ni S et al. Sensory innervation in porous endplates by Netrin-1 from osteoclasts mediates PGE2-induced spinal hypersensitivity in mice. Nat. Commun., 2019, 10

[53]

Medici D et al. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat. Med, 2010, 16: 1400-1406

[54]

Fields AJ, Liebenberg EC, Lotz JC. Innervation of pathologies in the lumbar vertebral end plate and intervertebral disc. Spine J., 2014, 14: 513-521

[55]

Smolen JS et al. Treating axial spondyloarthritis and peripheral spondyloarthritis, especially psoriatic arthritis, to target: 2017 update of recommendations by an international task force. Ann. Rheum. Dis., 2018, 77: 3-17

[56]

Sieper J et al. Effect of continuous versus on-demand treatment of ankylosing spondylitis with diclofenac over 2years on radiographic progression of the spine: results from a randomised multicentre trial (ENRADAS). Ann. Rheum. Dis., 2016, 75: 1438-1443

[57]

Deodhar A, Yu D. Switching tumor necrosis factor inhibitors in the treatment of axial spondyloarthritis. Semin Arthritis Rheum., 2017, 47: 343-350

[58]

Hebeisen M et al. Response to tumor necrosis factor inhibition in male and female patients with ankylosing spondylitis: data from a Swiss cohort. J. Rheumatol., 2018, 45: 506-512

[59]

van Kuijk AA, Geurts AC, van Kuppevelt HJ. Neurogenic heterotopic ossification in spinal cord injury. Spinal Cord., 2002, 40: 313-326

Funding

FOX

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/