A variant in IL6ST with a selective IL-11 signaling defect in human and mouse

Tobias Schwerd , Freia Krause , Stephen R. F. Twigg , Dominik Aschenbrenner , Yin-Huai Chen , Uwe Borgmeyer , Miryam Müller , Santiago Manrique , Neele Schumacher , Steven A. Wall , Jonathan Jung , Timo Damm , Claus-Christian Glüer , Jürgen Scheller , Stefan Rose-John , E. Yvonne Jones , Arian Laurence , Andrew O. M. Wilkie , Dirk Schmidt-Arras , Holm H. Uhlig

Bone Research ›› 2020, Vol. 8 ›› Issue (1) : 24

PDF
Bone Research ›› 2020, Vol. 8 ›› Issue (1) : 24 DOI: 10.1038/s41413-020-0098-z
Article

A variant in IL6ST with a selective IL-11 signaling defect in human and mouse

Author information +
History +
PDF

Abstract

The GP130 cytokine receptor subunit encoded by IL6ST is the shared receptor for ten cytokines of the IL-6 family. We describe a homozygous non-synonymous variant in IL6ST (p.R281Q) in a patient with craniosynostosis and retained deciduous teeth. We characterize the impact of the variant on cytokine signaling in vitro using transfected cell lines as well as primary patient-derived cells and support these findings using a mouse model with the corresponding genome-edited variant Il6st p.R279Q. We show that human GP130 p.R281Q is associated with selective loss of IL-11 signaling without affecting IL-6, IL-27, OSM, LIF, CT1, CLC, and CNTF signaling. In mice Il6st p.R279Q lowers litter size and causes facial synostosis and teeth abnormalities. The effect on IL-11 signaling caused by the GP130 variant shows incomplete penetrance but phenocopies aspects of IL11RA deficiency in humans and mice. Our data show that a genetic variant in a pleiotropic cytokine receptor can have remarkably selective defects.

Cite this article

Download citation ▾
Tobias Schwerd, Freia Krause, Stephen R. F. Twigg, Dominik Aschenbrenner, Yin-Huai Chen, Uwe Borgmeyer, Miryam Müller, Santiago Manrique, Neele Schumacher, Steven A. Wall, Jonathan Jung, Timo Damm, Claus-Christian Glüer, Jürgen Scheller, Stefan Rose-John, E. Yvonne Jones, Arian Laurence, Andrew O. M. Wilkie, Dirk Schmidt-Arras, Holm H. Uhlig. A variant in IL6ST with a selective IL-11 signaling defect in human and mouse. Bone Research, 2020, 8(1): 24 DOI:10.1038/s41413-020-0098-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Murakami M, Kamimura D, Hirano T. Pleiotropy and specificity: insights from the interleukin 6 family of cytokines. Immunity, 2019, 50:812-831

[2]

Kawasaki K et al. Osteoclasts are present in gp130-deficient mice. Endocrinology, 1997, 138:4959-4965

[3]

Shin HI et al. Gp130-mediated signaling is necessary for normal osteoblastic function in vivo and in vitro. Endocrinology, 2004, 145:1376-1385

[4]

Itoh S et al. A critical role for interleukin-6 family-mediated Stat3 activation in osteoblast differentiation and bone formation. Bone, 2006, 39:505-512

[5]

Nieminen P et al. Inactivation of IL11 signaling causes craniosynostosis, delayed tooth eruption, and supernumerary teeth. Am. J. Hum. Genet, 2011, 89:67-81

[6]

Sims NA et al. Interleukin-11 receptor signaling is required for normal bone remodeling. J. Bone Min. Res, 2005, 20:1093-1102

[7]

Gahr M, Muller W, Allgeier B, Speer CP. A boy with recurrent infections, impaired PMN-chemotaxis, increased IgE concentrations and cranial synostosis-a variant of the hyper-IgE syndrome? Helv. Paediatr. Acta, 1987, 42:185-190

[8]

Grimbacher B et al. Hyper-IgE syndrome with recurrent infections—an autosomal dominant multisystem disorder. N. Engl. J. Med., 1999, 340:692-702

[9]

Hoger PH, Boltshauser E, Hitzig WH. Craniosynostosis in hyper-IgE-syndrome. Eur. J. Pediatr., 1985, 144:414-417

[10]

Grimbacher B, Holland SM, Puck JM. Hyper-IgE syndromes. Immunol. Rev., 2005, 203:244-250

[11]

Holland SM et al. STAT3 mutations in the hyper-IgE syndrome. N. Engl. J. Med., 2007, 357:1608-1619

[12]

Minegishi Y et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature, 2007, 448:1058-1062

[13]

Smithwick EM et al. Cranial synostosis in Job’s syndrome. Lancet, 1978, 1:826

[14]

Brischoux-Boucher E et al. IL11RA-related Crouzon-like autosomal recessive craniosynostosis in 10 new patients: resemblances and differences. Clin. Genet., 2018, 94:373-380

[15]

Keupp K et al. Mutations in the interleukin receptor IL11RA cause autosomal recessive Crouzon-like craniosynostosis. Mol. Genet. Genomic Med., 2013, 1:223-237

[16]

Korakavi N, Prokop JW, Seaver LH. Evolution of the phenotype of craniosynostosis with dental anomalies syndrome and report of IL11RA variant population frequencies in a Crouzon-like autosomal recessive syndrome. Am. J. Med. Genet. A, 2019, 179:668-673

[17]

Miller KA et al. Diagnostic value of exome and whole genome sequencing in craniosynostosis. J. Med. Genet., 2017, 54:260

[18]

Papachristoforou R, Petrou PP, Sawyer H, Williams M, Drousiotou A. A novel large deletion encompassing the whole of the galactose-1-phosphate uridyltransferase (GALT) gene and extending into the adjacent interleukin 11 receptor alpha (IL11RA) gene causes classic galactosemia associated with additional phenotypic abnormalities. JIMD Rep., 2014, 12:91-98

[19]

Schwerd T et al. A biallelic mutation in IL6ST encoding the GP130 co-receptor causes immunodeficiency and craniosynostosis. J. Exp. Med., 2017, 214:2547-2562

[20]

Shahin T et al. Selective loss of function variants in IL6ST cause Hyper-IgE syndrome with distinct impairments of T-cell phenotype and function. Haematologica, 2019, 104:609-621

[21]

Chen, Y. H. et al. Absence of GP130 cytokine receptor signaling causes extended Stuve-Wiedemann syndrome. J. Exp. Med. 217, pii: e20191306 (2020).

[22]

Matadeen R, Hon WC, Heath JK, Jones EY, Fuller S. The dynamics of signal triggering in a gp130-receptor complex. Structure, 2007, 15:441-448

[23]

Fischer M et al. I. A bioactive designer cytokine for human hematopoietic progenitor cell expansion. Nat. Biotechnol., 1997, 15:142-145

[24]

Dams-Kozlowska H et al. A designer hyper interleukin 11 (H11) is a biologically active cytokine. BMC Biotechnol., 2012, 12

[25]

Robb L et al. Infertility in female mice lacking the receptor for interleukin 11 is due to a defective uterine response to implantation. Nat. Med, 1998, 4:303-308

[26]

Agthe M et al. Mutations in craniosynostosis patients cause defective interleukin-11 receptor maturation and drive craniosynostosis-like disease in mice. Cell Rep., 2018, 25:10-18 e15

[27]

Leonard WJ, Lin JX, O’Shea JJ. The gammac family of cytokines: basic biology to therapeutic ramifications. Immunity, 2019, 50:832-850

[28]

Rose-John, S. Interleukin-6 family xytokines. Cold Spring Harb. Perspect. Biol. 10, pii: a028415 (2018).

[29]

Twigg StephenRF, Wilkie AndrewOM. A genetic-pathophysiological framework for craniosynostosis. Am. J. Hum. Genet., 2015, 97:359-377

[30]

Boulet SL, Rasmussen SA, Honein MA. A population-based study of craniosynostosis in metropolitan Atlanta, 1989-2003. Am. J. Med. Genet. A, 2008, 146A:984-991

[31]

Sanchez-Lara PA et al. Fetal constraint as a potential risk factor for craniosynostosis. Am. J. Med. Genet. A, 2010, 152A:394-400

[32]

Durham E, Howie RN, Warren G, LaRue A, Cray J. Direct effects of nicotine exposure on murine calvaria and calvarial cells. Sci. Rep., 2019, 9

[33]

Einarson A, Riordan S. Smoking in pregnancy and lactation: a review of risks and cessation strategies. Eur. J. Clin. Pharm., 2009, 65:325-330

[34]

Carmichael SL et al. Craniosynostosis and risk factors related to thyroid dysfunction. Am. J. Med. Genet. A, 2015, 167A:701-707

[35]

Zhao H et al. The suture provides a niche for mesenchymal stem cells of craniofacial bones. Nat. Cell Biol., 2015, 17:386-396

[36]

Ahmad M et al. Cell-based RNAi screening and high-content analysis in primary calvarian osteoblasts applied to identification of osteoblast differentiation regulators. Sci. Rep., 2018, 8

[37]

Suga K et al. Interleukin-11 induces osteoblast differentiation and acts synergistically with bone morphogenetic protein-2 in C3H10T1/2 cells. J. Interferon Cytokine Res., 2001, 21:695-707

[38]

Takeuchi Y et al. Interleukin-11 as a stimulatory factor for bone formation prevents bone loss with advancing age in mice. J. Biol. Chem., 2002, 277:49011-49018

[39]

Kudo O et al. Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone, 2003, 32:1-7

[40]

Twigg SR et al. Skeletal analysis of the Fgfr3(P244R) mouse, a genetic model for the Muenke craniosynostosis syndrome. Dev. Dyn., 2009, 238:331-342

[41]

Sanchez-Cuenca J, Martin JC, Pellicer A, Simon C. Cytokine pleiotropy and redundancy-gp130 cytokines in human implantation. Immunol. Today, 1999, 20:57-59

[42]

Stewart CL. Reproduction: the unusual suspect. Nature, 2007, 450:619

[43]

Dimitriadis E, Salamonsen LA, Robb L. Expression of interleukin-11 during the human menstrual cycle: coincidence with stromal cell decidualization and relationship to leukaemia inhibitory factor and prolactin. Mol. Hum. Reprod., 2000, 6:907-914

[44]

Boulanger MJ, Chow DC, Brevnova EE, Garcia KC. Hexameric structure and assembly of the interleukin-6/IL-6 alpha-receptor/gp130 complex. Science, 2003, 300:2101-2104

[45]

Casanova JL, Conley ME, Seligman SJ, Abel L, Notarangelo LD. Guidelines for genetic studies in single patients: lessons from primary immunodeficiencies. J. Exp. Med, 2014, 211:2137-2149

[46]

Ran FA et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc., 2013, 8:2281-2308

[47]

Webb B, Sali A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics, 2014, 47:5 6 1-32

[48]

Shapovalov MV, Dunbrack RL Jr. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure, 2011, 19:844-858

[49]

Case, D. et al. Amber 2017, University of California, San Francisco. (2017).

[50]

Pettersen EF et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25:1605-1612

[51]

Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79:926-935

[52]

Madeira F et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res., 2019, 47:W636-W641

[53]

Haeussler M et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol., 2016, 17

[54]

Nandurkar HH et al. Adult mice with targeted mutation of the interleukin-11 receptor (IL11Ra) display normal hematopoiesis. Blood, 1997, 90:2148-2159

[55]

Goujon M et al. New bioinformatics analysis tools framework at EMBL-EBI. Nucleic acids Res., 2010, 38:W695-W699

Funding

Crohn's and Colitis UK (Crohn's & Colitis UK)

Leona M. and Harry B. Helmsley Charitable Trust (Helmsley Charitable Trust)

Deutsche Forschungsgemeinschaft (German Research Foundation)(SCHW1730/1-1)

Wellcome Trust (Wellcome)(093329)

Exzellenzclusters Entzündungsforschung (Excellence Cluster "Inflammation at Interfaces")

RCUK | Medical Research Council (MRC)(G9900061)

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/