A novel negative regulatory mechanism of Smurf2 in BMP/Smad signaling in bone

Junichi Kushioka , Takashi Kaito , Rintaro Okada , Hiroyuki Ishiguro , Zeynep Bal , Joe Kodama , Ryota Chijimatsu , Melanie Pye , Masahiro Narimatsu , Jeffrey L. Wrana , Yasumichi Inoue , Hiroko Ninomiya , Shin Yamamoto , Takashi Saitou , Hideki Yoshikawa , Takeshi Imamura

Bone Research ›› 2020, Vol. 8 ›› Issue (1) : 41

PDF
Bone Research ›› 2020, Vol. 8 ›› Issue (1) : 41 DOI: 10.1038/s41413-020-00115-z
Article

A novel negative regulatory mechanism of Smurf2 in BMP/Smad signaling in bone

Author information +
History +
PDF

Abstract

Transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) play important roles in bone metabolism. Smad ubiquitination regulatory factors (Smurfs) regulate TGF-β/BMP signaling via ubiquitination, resulting in degradation of signaling molecules to prevent excessive activation of TGF-β/BMP signaling. Though Smurf2 has been shown to negatively regulate TGF-β/Smad signaling, its involvement in BMP/Smad signaling in bone metabolism has not been thoroughly investigated. In the present study, we sought to evaluate the role of Smurf2 in BMP/Smad signaling in bone metabolism. Absorbable collagen sponges containing 3 μg of recombinant human BMP2 (rhBMP2) were implanted in the dorsal muscle pouches of wild type (WT) and Smurf2 −/− mice. The rhBMP2-induced ectopic bone in Smurf2 /− mice showed greater bone mass, higher mineral apposition and bone formation rates, and greater osteoblast numbers than the ectopic bone in WT mice. In WT mice, the ectopic bone consisted of a thin discontinuous outer cortical shell and scant inner trabecular bone. In contrast, in Smurf2 −/− mice, the induced bone consisted of a thick, continuous outer cortical shell and abundant inner trabecular bone. Additionally, rhBMP2-stimulated bone marrow stromal cells (BMSCs) from Smurf2 −/− mice showed increased osteogenic differentiation. Smurf2 induced the ubiquitination of Smad1/5. BMP/Smad signaling was enhanced in Smurf2 −/− BMSCs stimulated with rhBMP2, and the inhibition of BMP/Smad signaling suppressed osteogenic differentiation of these BMSCs. These findings demonstrate that Smurf2 negatively regulates BMP/Smad signaling, thereby identifying a new regulatory mechanism in bone metabolism.

Cite this article

Download citation ▾
Junichi Kushioka, Takashi Kaito, Rintaro Okada, Hiroyuki Ishiguro, Zeynep Bal, Joe Kodama, Ryota Chijimatsu, Melanie Pye, Masahiro Narimatsu, Jeffrey L. Wrana, Yasumichi Inoue, Hiroko Ninomiya, Shin Yamamoto, Takashi Saitou, Hideki Yoshikawa, Takeshi Imamura. A novel negative regulatory mechanism of Smurf2 in BMP/Smad signaling in bone. Bone Research, 2020, 8(1): 41 DOI:10.1038/s41413-020-00115-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Krane SM. Identifying genes that regulate bone remodeling as potential therapeutic targets. J. Exp. Med., 2005, 201:841-843

[2]

Wu M, Chen G, Li YP. TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res., 2016, 4:16009

[3]

Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res., 2015, 3:15005

[4]

Shen J, Li S, Chen D. TGF-β signaling and the development of osteoarthritis. Bone Res., 2014, 2:14002

[5]

Zheng L et al. Aberrant activation of latent transforming growth factor-β initiates the onset of temporomandibular joint osteoarthritis. Bone Res., 2018, 6:26

[6]

Miyazono K, Maeda S, Imamura T. BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev., 2005, 16:251-263

[7]

Imamura T, Oshima Y, Hikita A. Regulation of TGF-beta family signalling by ubiquitination and deubiquitination. J. Biochem., 2013, 154:481-489

[8]

Rotin D, Kumar S. Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell Biol., 2009, 10:398-409

[9]

Koganti P, Levy-Cohen G, Blank M. Smurfs in protein homeostasis, signaling, and cancer. Front. Oncol., 2018, 8:295

[10]

Yamashita M et al. Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Cell, 2005, 121:101-113

[11]

Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GH. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature, 1999, 400:687-693

[12]

Sapkota G, Alarcon C, Spagnoli FM, Brivanlou AH, Massague J. Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol. Cell, 2007, 25:441-454

[13]

Lin X, Liang M, Feng XH. Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J. Biol. Chem., 2000, 275:36818-36822

[14]

Bonni S et al. TGF-beta induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation. Nat. Cell Biol., 2001, 3:587-595

[15]

Xu Z et al. SMURF2 regulates bone homeostasis by disrupting SMAD3 interaction with vitamin D receptor in osteoblasts. Nat. Commun., 2017, 8

[16]

Yu PB et al. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat. Chem. Biol., 2008, 4:33-41

[17]

Lin T, Wang XL, Zettervall SL, Cai Y, Guzman RJ. Dorsomorphin homologue 1, a highly selective small-molecule bone morphogenetic protein inhibitor, suppresses medial artery calcification. J. Vasc. Surg., 2017, 66:586-593

[18]

Dinter T, Bocobo GA, Yu PB. Pharmacologic strategies for assaying bmp signaling function. Methods Mol. Biol., 2019, 1891:221-233

[19]

Blank M et al. A tumor suppressor function of Smurf2 associated with controlling chromatin landscape and genome stability through RNF20. Nat. Med., 2012, 18:227-234

[20]

Huntley R, Jensen E, Gopalakrishnan R, Mansky KC. Bone morphogenetic proteins: their role in regulating osteoclast differentiation. Bone Rep., 2019, 10:100207

[21]

Guo Y et al. BMP-IHH-mediated interplay between mesenchymal stem cells and osteoclasts supports calvarial bone homeostasis and repair. Bone Res., 2018, 6:30

[22]

Ebisawa T et al. Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J. Biol. Chem., 2001, 276:12477-12480

[23]

Murakami G, Watabe T, Takaoka K, Miyazono K, Imamura T. Cooperative inhibition of bone morphogenetic protein signaling by Smurf1 and inhibitory Smads. Mol. Biol. Cell, 2003, 14:2809-2817

[24]

Li, Y. et al. VprBP mitigates TGF-beta and Activin signaling by promoting Smurf1-mediated type I receptor degradation. J. Mol. Cell Biol. 12, 138–151 (2020).

[25]

Huang H, Veien ES, Zhang H, Ayers DC, Song J. Skeletal characterization of Smurf2-deficient mice and in vitro analysis of Smurf2-deficient chondrocytes. PLoS ONE, 2016, 11

[26]

Fukunaga E et al. Smurf2 induces ubiquitin-dependent degradation of Smurf1 to prevent migration of breast cancer cells. J. Biol. Chem., 2008, 283:35660-35667

[27]

Uezumi A, Fukada S, Yamamoto N, Takeda S, Tsuchida K. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat. Cell Biol., 2010, 12:143-152

[28]

Kusano, T. et al. Desloratadine inhibits heterotopic ossification by suppression of BMP2-Smad1/5/8 signaling. J. Orthop. Res. (2020). https://doi.org/10.1002/jor.24625 [Online ahead of print].

[29]

Tang LY et al. Ablation of Smurf2 reveals an inhibition in TGF-β signalling through multiple mono-ubiquitination of Smad3. Embo J., 2011, 30:4777-4789

[30]

Eichhorn PJ et al. USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma. Nat. Med., 2012, 18:429-435

[31]

Zhou F et al. USP4 inhibits SMAD4 monoubiquitination and promotes activin and BMP signaling. Embo J., 2017, 36:1623-1639

[32]

Narimatsu M et al. Regulation of planar cell polarity by Smurf ubiquitin ligases. Cell, 2009, 137:295-307

[33]

Rigueur D, Lyons KM. Whole-mount skeletal staining. Methods Mol. Biol., 2014, 1130:113-121

[34]

Kuriyama K, Higuchi C, Tanaka K, Yoshikawa H, Itoh K. A novel anti-rheumatic drug, T-614, stimulates osteoblastic differentiation in vitro and bone morphogenetic protein-2-induced bone formation in vivo. Biochem. Biophys. Res. Commun., 2002, 299:903-909

[35]

Kanayama S et al. ONO-1301 enhances in vitro osteoblast differentiation and in vivo bone formation induced by bone morphogenetic protein. Spine (Philos. Pa 1976), 2018, 43:E616-E624

[36]

Morimoto T et al. Effect of intermittent administration of teriparatide (Parathyroid Hormone 1-34) on bone morphogenetic protein-induced bone formation in a rat model of spinal fusion. J. Bone Jt. Surg. Am., 2014, 96

[37]

Kitaguchi K et al. Effects of single or combination therapy of teriparatide and anti-RANKL monoclonal antibody on bone defect regeneration in mice. Bone, 2018, 106:1-10

[38]

Dempster DW et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Min. Res., 2013, 28:2-17

[39]

Chijimatsu R et al. Impact of dexamethasone concentration on cartilage tissue formation from human synovial derived stem cells in vitro. Cytotechnology, 2018, 70:819-829

[40]

Edgar CM et al. Autogenous regulation of a network of bone morphogenetic proteins (BMPs) mediates the osteogenic differentiation in murine marrow stromal cells. Bone, 2007, 40:1389-1398

[41]

Hu M et al. Activated invariant NKT cells regulate osteoclast development and function. J. Immunol., 2011, 186:2910-2917

[42]

Noguchi T et al. Oxygen ultra-fine bubbles water administration prevents bone loss of glucocorticoid-induced osteoporosis in mice by suppressing osteoclast differentiation. Osteoporos. Int., 2017, 28:1063-1075

[43]

Lv YJ et al. Resveratrol counteracts bone loss via mitofilin-mediated osteogenic improvement of mesenchymal stem cells in senescence-accelerated mice. Theranostics, 2018, 8:2387-2406

[44]

Miyazaki T et al. Oversulfated chondroitin sulfate-E binds to BMP-4 and enhances osteoblast differentiation. J. Cell Physiol., 2008, 217:769-777

[45]

Takeda M et al. Interaction with Smad4 is indispensable for suppression of BMP signaling by c-Ski. Mol. Biol. Cell, 2004, 15:963-972

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/