PDF
Abstract
Rheumatoid arthritis and osteoarthritis, the most common forms of arthritis, are chronic, painful, and disabling conditions. Although both diseases differ in etiology, they manifest in progressive joint destruction characterized by pathological changes in the articular cartilage, bone, and synovium. While the potent anti-inflammatory properties of therapeutic (i.e., exogenous) glucocorticoids have been heavily researched and are widely used in clinical practice, the role of endogenous glucocorticoids in arthritis susceptibility and disease progression remains poorly understood. Current evidence from mouse models suggests that local endogenous glucocorticoid signaling is upregulated by the pro-inflammatory microenvironment in rheumatoid arthritis and by aging-related mechanisms in osteoarthritis. Furthermore, these models indicate that endogenous glucocorticoid signaling in macrophages, mast cells, and chondrocytes has anti-inflammatory effects, while signaling in fibroblast-like synoviocytes, myocytes, osteoblasts, and osteocytes has pro-inflammatory actions in rheumatoid arthritis. Conversely, in osteoarthritis, endogenous glucocorticoid signaling in both osteoblasts and chondrocytes has destructive actions. Together these studies provide insights into the role of endogenous glucocorticoids in the pathogenesis of both inflammatory and degenerative joint disease.
Cite this article
Download citation ▾
Eugenie Macfarlane, Markus J. Seibel, Hong Zhou.
Arthritis and the role of endogenous glucocorticoids.
Bone Research, 2020, 8(1): 33 DOI:10.1038/s41413-020-00112-2
| [1] |
James SL et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018, 392:1789-1858
|
| [2] |
March LM, Bachmeier CJM. 10 Economics of osteoarthritis: a global perspective. Baillière’s Clin. Rheumatol., 1997, 11:817-834
|
| [3] |
Murphy LB, Cisternas MG, Pasta DJ, Helmick CG, Yelin EH. Medical expenditures and earnings losses among US adults with arthritis in 2013. Arthritis Care Res., 2018, 70:869-876
|
| [4] |
Aletaha D et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheumatol., 2010, 62:2569-2581
|
| [5] |
Cross M et al. The global burden of hip and knee osteoarthritis: estimates from the Global Burden of Disease 2010 Study. Ann. Rheum. Dis., 2014, 73:1323-1330
|
| [6] |
The Joint Committee of the Medical Research Council and Nuffield Foundation. A comparison of cortisone and aspirin in the treatment of early cases of rheumatoid arthritis; a report by the Joint Committee of the Medical Research Council and Nuffield Foundation on clinical trials of cortisone, A.C.T.H., and other therapeutic measures in chronic rheumatic diseases. BMJ, 1954, 1:1223-1227
|
| [7] |
Hench PS et al. The effect of a hormone of the adrenal cortex (17-hydroxy-11-dehydrocorticosterone; compound E) and of pituitary adrenocorticotropic hormone on rheumatoid arthritis. Proc. Staff Meet. Mayo Clin., 1949, 24:181-197
|
| [8] |
The Joint Committee of the Medical Research Council and Nuffield Foundation. A comparison of prednisolone with aspirin or other analgesics in the treatment of rheumatoid arthritis. A second report by the joint committee of the Medical Research Council and Nuffield Foundation on clinical trials of cortisone, ACTH, and other therapeutic measures in chronic rheumatic diseases. Ann. Rheum. Dis., 1960, 19:331-337
|
| [9] |
Saag KG, Criswell LA, Sems KM, Nettleman MD, Kolluri S. Low-dose corticosteroids in rheumatoid arthritis. A meta-analysis of their moderate-term effectiveness. Arthritis Rheum., 1996, 39:1818-1825
|
| [10] |
McDonough AK, Curtis JR, Saag KG. The epidemiology of glucocorticoid-associated adverse events. Curr. Opin. Rheumatol., 2008, 20:131-137
|
| [11] |
McAlindon TE et al. Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis: a randomized clinical trial. JAMA, 2017, 317:1967-1975
|
| [12] |
Wernecke C, Braun HJ, Dragoo JL. The effect of intra-articular corticosteroids on articular cartilage: a systematic review. Orthop. J. Sports Med., 2015, 3:2325967115581163
|
| [13] |
Taurog JD, Chhabra A, Colbert RA. Ankylosing spondylitis and axial spondyloarthritis. N. Engl J. Med., 2016, 374:2563-2574
|
| [14] |
Ritchlin CT, Colbert RA, Gladman DD. Psoriatic arthritis. N. Engl J. Med., 2017, 376:957-970
|
| [15] |
Abosi OJ et al. Determining the risk of septic arthritis following intra-articular injection of drugs mixed at a tertiary care center, 2012–2017. Am. J. Infect. Control, 2019, 47:S49-S50
|
| [16] |
Roddy E, Zhang W, Doherty M. The changing epidemiology of gout. Nat. Clin. Pract. Rheumatol., 2007, 3:443-449
|
| [17] |
Emery P et al. Early referral recommendation for newly diagnosed rheumatoid arthritis: evidence based development of a clinical guide. Ann. Rheum. Dis., 2002, 61:290-297
|
| [18] |
Grassi W, De Angelis R, Lamanna G, Cervini C. The clinical features of rheumatoid arthritis. Eur. J. Radiol., 1998, 27:S18-S24
|
| [19] |
Finckh A, Liang MH, van Herckenrode CM, de Pablo P. Long-term impact of early treatment on radiographic progression in rheumatoid arthritis: a meta-analysis. Arthritis Rheum., 2006, 55:864-872
|
| [20] |
Goekoop-Ruiterman YPM et al. Comparison of treatment strategies in early rheumatoid arthritis: a randomized trial. Ann. Intern. Med., 2007, 146:406-415
|
| [21] |
Singh JA et al. 2015 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol., 2016, 68:1-26
|
| [22] |
Smolen JS et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann. Rheum. Dis., 2017, 76:960-977
|
| [23] |
Catrina AI, Ytterberg AJ, Reynisdottir G, Malmström V, Klareskog L. Lungs, joints and immunity against citrullinated proteins in rheumatoid arthritis. Nat. Rev. Rheumatol., 2014, 10:645-653
|
| [24] |
van Zanten A et al. Presence of anticitrullinated protein antibodies in a large population-based cohort from the Netherlands. Ann. Rheum. Dis., 2017, 76:1184-1190
|
| [25] |
Syversen SW et al. High anti-cyclic citrullinated peptide levels and an algorithm of four variables predict radiographic progression in patients with rheumatoid arthritis: results from a 10-year longitudinal study. Ann. Rheum. Dis., 2008, 67:212-217
|
| [26] |
Clavel C et al. Induction of macrophage secretion of tumor necrosis factor α through Fcγ receptor IIa engagement by rheumatoid arthritis-specific autoantibodies to citrullinated proteins complexed with fibrinogen. Arthritis Rheum., 2008, 58:678-688
|
| [27] |
Harre U et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J. Clin. Investig., 2012, 122:1791-1802
|
| [28] |
Engdahl C et al. Periarticular bone loss in arthritis is induced by autoantibodies against citrullinated vimentin. J. Bone Miner. Res., 2017, 32:1681-1691
|
| [29] |
MacGregor AJ et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum., 2000, 43:30-37
|
| [30] |
Saag KG et al. Cigarette smoking and rheumatoid arthritis severity. Ann. Rheum. Dis., 1997, 56:463-469
|
| [31] |
Másdóttir B et al. Smoking, rheumatoid factor isotypes and severity of rheumatoid arthritis. Rheumatology, 2000, 39:1202-1205
|
| [32] |
Scher JU et al. Periodontal disease and the oral microbiota in new-onset rheumatoid arthritis. Arthritis Rheum., 2012, 64:3083-3094
|
| [33] |
Scher JU et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife, 2013, 2
|
| [34] |
Pianta A et al. Evidence of the immune relevance of Prevotella copri, a gut microbe, in patients with rheumatoid arthritis. Arthritis Rheumatol., 2017, 69:964-975
|
| [35] |
Stastny P. Association of the b-cell alloantigen DRw4 with rheumatoid arthritis. N. Engl J. Med., 1978, 298:869-871
|
| [36] |
Gregersen PK, Silver J, Winchester RJ. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum., 1987, 30:1205-1213
|
| [37] |
Weyand CM, Hicok KC, Conn DL, Goronzy JJ. The influence of HLA-DRB1 genes on disease severity in rheumatoid arthritis. Ann. Intern. Med., 1992, 117:801-806
|
| [38] |
Huizinga TW et al. Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins. Arthritis Rheum., 2005, 52:3433-3438
|
| [39] |
Padyukov L et al. A genome-wide association study suggests contrasting associations in ACPA-positive versus ACPA-negative rheumatoid arthritis. Ann. Rheum. Dis., 2011, 70:259-265
|
| [40] |
Derijk RH et al. A human glucocorticoid receptor gene variant that increases the stability of the glucocorticoid receptor beta-isoform mRNA is associated with rheumatoid arthritis. J. Rheumatol., 2001, 28:2383-2388
|
| [41] |
de Hair MJH et al. Features of the synovium of individuals at risk of developing rheumatoid arthritis: implications for understanding preclinical rheumatoid arthritis. Arthritis Rheumatol., 2014, 66:513-522
|
| [42] |
Shiozawa S, Shiozawa K, Fujita T. Morphologic observations in the early phase of the cartilage-pannus junction. Arthritis Rheum., 1983, 26:472-478
|
| [43] |
Bromley M, Woolley DE. Histopathology of the rheumatoid lesion. Arthritis Rheum., 1984, 27:857-863
|
| [44] |
Fassbender HG. The role of connective tissue cells in the synovial tissue. Rheumatol. Rehabil., 1979, 18:5-7
|
| [45] |
Fassbender HG, Simmling-Annefeld M. The potential aggressiveness of synovial tissue in rheumatoid arthritis. J. Pathol., 1983, 139:399-406
|
| [46] |
Fassbender HG. Histomorphological basis of articular cartilage destruction in rheumatoid arthritis. Coll. Relat. Res., 1983, 3:141-155
|
| [47] |
Fassbender HG. Is pannus a residue of inflammation? Arthritis Rheum., 1984, 27:956-957
|
| [48] |
Fassbender HG, Seibel M, Hebert T. Pathways of destruction in metacarpal and metatarsal joints of patients with rheumatoid arthritis. Scand. J. Rheumatol., 1992, 21:10-16
|
| [49] |
Elshabrawy HA et al. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis, 2015, 18:433-448
|
| [50] |
Lafyatis R et al. Anchorage-independent growth of synoviocytes from arthritic and normal joints. Stimulation by exogenous platelet-derived growth factor and inhibition by transforming growth factor-beta and retinoids. J. Clin. Investig., 1989, 83:1267-1276
|
| [51] |
Rinaldi N et al. Increased expression of integrins on fibroblast-like synoviocytes from rheumatoid arthritis in vitro correlates with enhanced binding to extracellular matrix proteins. Ann. Rheum. Dis., 1997, 56:45-51
|
| [52] |
Lefèvre S et al. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat. Med., 2009, 15:1414-1420
|
| [53] |
Tak PP, Bresnihan B. The pathogenesis and prevention of joint damage in rheumatoid arthritis: advances from synovial biopsy and tissue analysis. Arthritis Rheum., 2000, 43:2619-2633
|
| [54] |
Kennedy A, Fearon U, Veale D, Godson C. Macrophages in synovial inflammation. Front Immunol., 2011, 2:52
|
| [55] |
Fukui S et al. M1 and M2 monocytes in rheumatoid arthritis: a contribution of imbalance of M1/M2 monocytes to osteoclastogenesis. Front Immunol., 2018, 8:1958
|
| [56] |
Stockinger B, Veldhoen M. Differentiation and function of Th17 T cells. Curr. Opin. Immunol., 2007, 19:281-286
|
| [57] |
Ziolkowska M et al. High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin a-sensitive mechanism. J. Immunol., 2000, 164:2832-2838
|
| [58] |
Nakae S, Nambu A, Sudo K, Iwakura Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J. Immunol., 2003, 171:6173-6177
|
| [59] |
Pfeifle R et al. Regulation of autoantibody activity by the IL-23-TH17 axis determines the onset of autoimmune disease. Nat. Immunol., 2017, 18:104-113
|
| [60] |
Kobayashi I, Ziff M. Electron microscopic studies of the cartilage-pannus junction in rheumatoid arthritis. Arthritis Rheum., 1975, 18:475-483
|
| [61] |
Ainola M et al. Pannus invasion and cartilage degradation in rheumatoid arthritis: involvement of MMP-3 and interleukin-1b. Clin. Exp. Rheumatol., 2005, 23:644-650
|
| [62] |
Hembry RM, Bagga MR, Reynolds JJ, Hamblen DL. Immunolocalisation studies on six matrix metalloproteinases and their inhibitors, TIMP-1 and TIMP-2, in synovia from patients with osteo- and rheumatoid arthritis. Ann. Rheum. Dis., 1995, 54:25-32
|
| [63] |
Mimata Y et al. Interleukin-6 upregulates expression of ADAMTS-4 in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Int J. Rheum. Dis., 2012, 15:36-44
|
| [64] |
Vankemmelbeke MN et al. Expression and activity of ADAMTS-5 in synovium. Eur. J. Biochem., 2001, 268:1259-1268
|
| [65] |
Hou W-S et al. Cathepsin K is a critical protease in synovial fibroblast-mediated collagen degradation. Am. J. Pathol., 2001, 159:2167-2177
|
| [66] |
Chabaud M et al. Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis. Cytokine, 2000, 12:1092-1099
|
| [67] |
Mitchell NS, Shepard N. Changes in proteoglycan and collagen in cartilage in rheumatoid arthritis. J. Bone Jt. Surg. Am., 1978, 60:342-348
|
| [68] |
Korb-Pap A et al. Early structural changes in cartilage and bone are required for the attachment and invasion of inflamed synovial tissue during destructive inflammatory arthritis. Ann. Rheum. Dis., 2012, 71:1004-1011
|
| [69] |
Mazzetti I et al. Differential roles of nitric oxide and oxygen radicals in chondrocytes affected by osteoarthritis and rheumatoid arthritis. Clin. Sci., 2001, 101:593-539
|
| [70] |
Aida Y et al. The effect of IL-1β on the expression of inflammatory cytokines and their receptors in human chondrocytes. Life Sci., 2006, 79:764-771
|
| [71] |
Pap T et al. Modulation of fibroblast-mediated cartilage degradation by articular chondrocytes in rheumatoid arthritis. Arthritis Rheum., 2000, 43:2531-2536
|
| [72] |
Yatsugi N et al. Apoptosis of articular chondrocytes in rheumatoid arthritis and osteoarthritis: correlation of apoptosis with degree of cartilage destruction and expression of apoptosis-related proteins of p53 and c-myc. J. Orthop. Sci., 2000, 5:150-156
|
| [73] |
Machold KP et al. Very recent onset arthritis-clinical, laboratory, and radiological findings during the first year of disease. J. Rheumatol., 2002, 29:2278-2287
|
| [74] |
van der Heijde DM. Joint erosions and patients with early rheumatoid arthritis. Rheumatology, 1995, 34:74-78
|
| [75] |
Ødegård S et al. Association of early radiographic damage with impaired physical function in rheumatoid arthritis: a ten-year, longitudinal observational study in 238 patients. Arthritis Rheum., 2006, 54:68-75
|
| [76] |
McGonagle D, Tan AL, Moller Dohn U, Ostergaard M, Benjamin M. Microanatomic studies to define predictive factors for the topography of periarticular erosion formation in inflammatory arthritis. Arthritis Rheum., 2009, 60:1042-1051
|
| [77] |
Cambré I et al. Mechanical strain determines the site-specific localization of inflammation and tissue damage in arthritis. Nat. Commun., 2018, 9:4613-4613
|
| [78] |
Gravallese EM et al. Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum., 2000, 43:250-258
|
| [79] |
Bromley M, Woolley DE. Chondroclasts and osteoclasts at subchondral sites of erosion in the rheumatoid joint. Arthritis Rheum., 1984, 27:968-975
|
| [80] |
Pettit AR, Walsh NC, Manning C, Goldring SR, Gravallese EM. RANKL protein is expressed at the pannus-bone interface at sites of articular bone erosion in rheumatoid arthritis. Rheumatology, 2006, 45:1068-1076
|
| [81] |
Romas E et al. Osteoprotegerin reduces osteoclast numbers and prevents bone erosion in collagen-induced arthritis. Am. J. Pathol., 2002, 161:1419-1427
|
| [82] |
Pettit AR et al. TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am. J. Pathol., 2001, 159:1689-1699
|
| [83] |
Kleyer A et al. Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann. Rheum. Dis., 2014, 73:854-860
|
| [84] |
Oray M, Abu Samra K, Ebrahimiadib N, Meese H, Foster CS. Long-term side effects of glucocorticoids. Expert Opin. Drug Saf., 2016, 15:457-465
|
| [85] |
Hardy RS, Zhou H, Seibel MJ, Cooper MS. Glucocorticoids and bone: consequences of endogenous and exogenous excess and replacement therapy. Endocr. Rev., 2018, 39:519-548
|
| [86] |
Huscher D et al. Dose-related patterns of glucocorticoid-induced side effects. Ann. Rheum. Dis., 2009, 68:1119-1124
|
| [87] |
Hoes JN et al. EULAR evidence-based recommendations on the management of systemic glucocorticoid therapy in rheumatic diseases. Ann. Rheum. Dis., 2007, 66:1560-1567
|
| [88] |
Ho CTK et al. Management of rheumatoid arthritis: 2019 updated consensus recommendations from the Hong Kong Society of Rheumatology. Clin. Rheumatol., 2019, 38:3331-3350
|
| [89] |
Makrygiannakis D et al. Local administration of glucocorticoids decreases synovial citrullination in rheumatoid arthritis. Arthritis Res. Ther., 2012, 14:R20
|
| [90] |
Fingerle-Rowson G et al. Regulation of macrophage migration inhibitory factor expression by glucocorticoids in vivo. Am. J. Pathol., 2003, 162:47-56
|
| [91] |
Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat. Rev. Immunol., 2017, 17:233-247
|
| [92] |
Franco LM et al. Immune regulation by glucocorticoids can be linked to cell type-dependent transcriptional responses. J. Exp. Med., 2019, 216:384-406
|
| [93] |
Galon J et al. Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB J., 2002, 16:61-71
|
| [94] |
Barczyk K et al. Glucocorticoids promote survival of anti-inflammatory macrophages via stimulation of adenosine receptor A3. Blood, 2010, 116:446-455
|
| [95] |
Huang Y, Cai GQ, Peng JP, Shen C. Glucocorticoids induce apoptosis and matrix metalloproteinase-13 expression in chondrocytes through the NOX4/ROS/p38 MAPK pathway. J. Steroid Biochem. Mol. Biol., 2018, 181:52-62
|
| [96] |
Peat G, McCarney R, Croft P. Knee pain and osteoarthritis in older adults: a review of community burden and current use of primary health care. Ann. Rheum. Dis., 2001, 60:91-97
|
| [97] |
Hunter DJ, McDougall JJ, Keefe FJ. The symptoms of osteoarthritis and the genesis of pain. Rheum. Dis. Clin. North Am., 2008, 34:623-643
|
| [98] |
Hannan MT, Felson DT, Pincus T. Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. J. Rheumatol., 2000, 27:1513-1517
|
| [99] |
Bannuru RR et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthr. Cartil., 2019, 27:1578-1589
|
| [100] |
Hochberg MC et al. American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis Care Res., 2012, 64:465-474
|
| [101] |
Jafarzadeh SR, Felson DT. Updated estimates suggest a much higher prevalence of arthritis in United States adults than previous ones. Arthritis Rheum., 2018, 70:185-192
|
| [102] |
Martin JA, Brown TD, Heiner AD, Buckwalter JA. Chondrocyte senescence, joint loading and osteoarthritis. Clin. Orthop. Relat. Res., 2004, 427:S96-S103
|
| [103] |
Gao SG et al. Correlation between senescence-associated beta-galactosidase expression in articular cartilage and disease severity of patients with knee osteoarthritis. Int. J. Rheum. Dis., 2016, 19:226-232
|
| [104] |
Price JS et al. The role of chondrocyte senescence in osteoarthritis. Aging Cell, 2002, 1:57-65
|
| [105] |
Singh P, Marcu KB, Goldring MB, Otero M. Phenotypic instability of chondrocytes in osteoarthritis: on a path to hypertrophy. Ann. N. Y. Acad. Sci., 2019, 1442:17-34
|
| [106] |
Wu W et al. Sites of collagenase cleavage and denaturation of type II collagen in aging and osteoarthritic articular cartilage and their relationship to the distribution of matrix metalloproteinase 1 and matrix metalloproteinase 13. Arthritis Rheum., 2002, 46:2087-2094
|
| [107] |
Dai SM et al. Catabolic stress induces features of chondrocyte senescence through overexpression of caveolin 1: possible involvement of caveolin 1-induced down-regulation of articular chondrocytes in the pathogenesis of osteoarthritis. Arthritis Rheum., 2006, 54:818-831
|
| [108] |
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell, 2013, 153:1194-1217
|
| [109] |
Harman D. The free radical theory of aging: effect of age on serum copper levels. J. Gerontol., 1965, 20:151-153
|
| [110] |
Harman D. The biologic clock: the mitochondria? J. Am. Geriatr. Soc., 1972, 20:145-147
|
| [111] |
Maneiro E et al. Mitochondrial respiratory activity is altered in osteoarthritic human articular chondrocytes. Arthritis Rheum., 2003, 48:700-708
|
| [112] |
Ruiz-Romero C et al. Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics: a decrease in mitochondrial superoxide dismutase points to a redox imbalance. Mol. Cell Proteom., 2009, 8:172-189
|
| [113] |
Gavriilidis C, Miwa S, von Zglinicki T, Taylor RW, Young DA. Mitochondrial dysfunction in osteoarthritis is associated with down-regulation of superoxide dismutase 2. Arthritis Rheum., 2013, 65:378-387
|
| [114] |
Scott JL et al. Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann. Rheum. Dis., 2010, 69:1502-1510
|
| [115] |
Koike M et al. Mechanical overloading causes mitochondrial superoxide and SOD2 imbalance in chondrocytes resulting in cartilage degeneration. Sci. Rep., 2015, 5
|
| [116] |
Verzijl N et al. Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis. Arthritis Rheum., 2002, 46:114-123
|
| [117] |
Odetti P et al. Advanced glycation end products and bone loss during aging. Ann. N. Y. Acad. Sci., 2005, 1043:710-717
|
| [118] |
Rasheed Z, Akhtar N, Haqqi TM. Advanced glycation end products induce the expression of interleukin-6 and interleukin-8 by receptor for advanced glycation end product-mediated activation of mitogen-activated protein kinases and nuclear factor-κB in human osteoarthritis chondrocytes. Rheumatology, 2010, 50:838-851
|
| [119] |
Loeser RF et al. Articular chondrocytes express the receptor for advanced glycation end products: potential role in osteoarthritis. Arthritis Rheum., 2005, 52:2376-2385
|
| [120] |
DeGroot J et al. Accumulation of advanced glycation end products as a molecular mechanism for aging as a risk factor in osteoarthritis. Arthritis Rheum., 2004, 50:1207-1215
|
| [121] |
Shane Anderson A, Loeser RF. Why is osteoarthritis an age-related disease? Best. Pract. Res. Clin. Rheumatol., 2010, 24:15-26
|
| [122] |
Franceschi C et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci., 2000, 908:244-254
|
| [123] |
Loeser RF. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthr. Cartil., 2009, 17:971-979
|
| [124] |
Cooper C et al. Risk factors for the incidence and progression of radiographic knee osteoarthritis. Arthritis Rheum., 2000, 43:995-1000
|
| [125] |
Silverwood V et al. Current evidence on risk factors for knee osteoarthritis in older adults: a systematic review and meta-analysis. Osteoarthr. Cartil., 2015, 23:507-515
|
| [126] |
Felson DT, Zhang Y, Anthony JM, Naimark A, Anderson JJ. Weight loss reduces the risk for symptomatic knee osteoarthritis in women: the Framingham Study. Ann. Intern. Med., 1992, 116:535-539
|
| [127] |
Atukorala I et al. Is there a dose-response relationship between weight loss and symptom improvement in persons with knee osteoarthritis? Arthritis Care Res., 2016, 68:1106-1114
|
| [128] |
Runhaar J et al. Prevention of incident knee osteoarthritis by moderate weight loss in overweight and obese females. Arthritis Care Res., 2016, 68:1428-1433
|
| [129] |
Riddle DL, Stratford PW. Body weight changes and corresponding changes in pain and function in persons with symptomatic knee osteoarthritis: a cohort study. Arthritis Care Res., 2013, 65:15-22
|
| [130] |
Reyes C et al. Association between overweight and obesity and risk of clinically diagnosed knee, hip, and hand osteoarthritis: a population-based cohort study. Arthritis Rheumatol., 2016, 68:1869-1875
|
| [131] |
Leyland KM et al. Obesity and the relative risk of knee replacement surgery in patients with knee osteoarthritis: a prospective cohort study. Arthritis Rheumatol., 2016, 68:817-825
|
| [132] |
Messier SP, Gutekunst DJ, Davis C, DeVita P. Weight loss reduces knee-joint loads in overweight and obese older adults with knee osteoarthritis. Arthritis Rheum., 2005, 52:2026-2032
|
| [133] |
Blazek K, Favre J, Asay J, Erhart-Hledik J, Andriacchi T. Age and obesity alter the relationship between femoral articular cartilage thickness and ambulatory loads in individuals without osteoarthritis. J. Orthop. Res., 2014, 32:394-402
|
| [134] |
Carman WJ, Sowers M, Hawthorne VM, Weissfeld LA. Obesity as a risk factor for osteoarthritis of the hand and wrist: a prospective study. Am. J. Epidemiol., 1994, 139:119-129
|
| [135] |
Marshall M et al. Subsets of symptomatic hand osteoarthritis in community-dwelling older adults in the United Kingdom: prevalence, inter-relationships, risk factor profiles and clinical characteristics at baseline and 3-years. Osteoarthr. Cartil., 2013, 21:1674-1684
|
| [136] |
Cicuttini FM, Baker JR, Spector TD. The association of obesity with osteoarthritis of the hand and knee in women: a twin study. J. Rheumatol., 1996, 23:1221-1226
|
| [137] |
Grotle M, Hagen KB, Natvig B, Dahl FA, Kvien TK. Obesity and osteoarthritis in knee, hip and/or hand: an epidemiological study in the general population with 10 years follow-up. BMC Musculoskelet. Disord., 2008, 9
|
| [138] |
Elliott KS et al. Evaluation of the genetic overlap between osteoarthritis with body mass index and height using genome-wide association scan data. Ann. Rheum. Dis., 2013, 72:935-941
|
| [139] |
Zhai G, Ding C, Stankovich J, Cicuttini F, Jones G. The genetic contribution to longitudinal changes in knee structure and muscle strength: a sibpair study. Arthritis Rheumatol., 2005, 52:2830-2834
|
| [140] |
Zhai G, Hart DJ, Kato BS, MacGregor A, Spector TD. Genetic influence on the progression of radiographic knee osteoarthritis: a longitudinal twin study. Osteoarthr. Cartil., 2007, 15:222-225
|
| [141] |
Neame RL, Muir K, Doherty S, Doherty M. Genetic risk of knee osteoarthritis: a sibling study. Ann. Rheum. Dis., 2004, 63:1022-1027
|
| [142] |
min JL, Meulenbelt I, Kloppenburg M, van Duijn CM, Slagboom PE. Mutation analysis of candidate genes within the 2q33.3 linkage area for familial early-onset generalised osteoarthritis. Eur. J. Hum. Genet., 2007, 15:791-799
|
| [143] |
Ingvarsson T et al. A large Icelandic family with early osteoarthritis of the hip associated with a susceptibility locus on chromosome 16p. Arthritis Rheum., 2001, 44:2548-2555
|
| [144] |
Jakkula E et al. The role of sequence variations within the genes encoding collagen II, IX and XI in non-syndromic, early-onset osteoarthritis. Osteoarthr. Cartil., 2005, 13:497-507
|
| [145] |
Liu J, Cai W, Zhang H, He C, Deng L. Rs143383 in the growth differentiation factor 5 (GDF5) gene significantly associated with osteoarthritis (OA)—a comprehensive meta-analysis. Int J. Med. Sci., 2013, 10:312-319
|
| [146] |
Tawonsawatruk T et al. A genetic association study between growth differentiation factor 5 (GDF 5) polymorphism and knee osteoarthritis in Thai population. J. Orthop. Surg. Res., 2011, 6:47
|
| [147] |
Miyamoto Y et al. A functional polymorphism in the 5′ UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat. Genet., 2007, 39:529-533
|
| [148] |
Harada M et al. Developmental failure of the intra-articular ligaments in mice with absence of growth differentiation factor 5. Osteoarthr. Cartil., 2007, 15:468-474
|
| [149] |
Buxton P, Edwards C, Archer CW, Francis-West P. Growth/differentiation factor-5 (GDF-5) and skeletal development. JBJS, 2001, 83:S23-S30
|
| [150] |
Kraus VB, Blanco FJ, Englund M, Karsdal MA, Lohmander LS. Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthr. Cartil., 2015, 23:1233-1241
|
| [151] |
Grynpas MD, Alpert B, Katz I, Lieberman I, Pritzker KPH. Subchondral bone in osteoarthritis. Calcif. Tissue Int., 1991, 49:20-26
|
| [152] |
Cox LGE, van Donkelaar CC, van Rietbergen B, Emans PJ, Ito K. Decreased bone tissue mineralization can partly explain subchondral sclerosis observed in osteoarthritis. Bone, 2012, 50:1152-1161
|
| [153] |
Couchourel D et al. Altered mineralization of human osteoarthritic osteoblasts is attributable to abnormal type I collagen production. Arthritis Rheum., 2009, 60:1438-1450
|
| [154] |
Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis., 1957, 16:494-502
|
| [155] |
Spector TD et al. Definition of osteoarthritis of the knee for epidemiological studies. Ann. Rheum. Dis., 1993, 52:790-794
|
| [156] |
Altman R et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum., 1986, 29:1039-1049
|
| [157] |
Singh S, Jones BJ, Crawford R, Xiao Y. Characterization of a mesenchymal-like stem cell population from osteophyte tissue. Stem Cells Dev., 2008, 17:245-254
|
| [158] |
Felson DT et al. Osteophytes and progression of knee osteoarthritis. Rheumatology, 2004, 44:100-104
|
| [159] |
Nagaosa Y, Lanyon P, Doherty M. Characterisation of size and direction of osteophyte in knee osteoarthritis: a radiographic study. Ann. Rheum. Dis., 2002, 61:319-324
|
| [160] |
van der Kraan PM, van den Berg WB. Osteophytes: relevance and biology. Osteoarthr. Cartil., 2007, 15:237-244
|
| [161] |
Pritzker KPH et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr. Cartil., 2006, 14:13-29
|
| [162] |
Glasson SS, Chambers MG, Van Den Berg WB, Little CB. The OARSI histopathology initiative—recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthr. Cartil., 2010, 18:S17-S23
|
| [163] |
Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis. Instr. Course Lect., 2005, 54:465-480
|
| [164] |
Collins DH, McElligott TF. Sulphate (35SO4) uptake by chondrocytes in relation to histological changes in osteoarthritic human articular cartilage. Ann. Rheum. Dis., 1960, 19:318-330
|
| [165] |
McDevitt CA, Muir H. Biochemical changes in the cartilage of the knee in experimental and natural osteoarthritis in the dog. J. Bone Jt. Surg. Br., 1976, 58:94-101
|
| [166] |
von der Mark K et al. Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. Arthritis Rheum., 1992, 35:806-811
|
| [167] |
Blanco FJ, Ochs RL, Schwarz H, Lotz M. Chondrocyte apoptosis induced by nitric oxide. Am. J. Pathol., 1995, 146:75-85
|
| [168] |
Radin EL, Paul IL, Rose RM. Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet, 1972, 1:519-522
|
| [169] |
Radin EL et al. Mechanical determinants of osteoarthrosis. Semin. Arthritis Rheum., 1991, 21:12-21
|
| [170] |
Castañeda S, Roman-Blas JA, Largo R, Herrero-Beaumont G. Osteoarthritis: a progressive disease with changing phenotypes. Rheumatology, 2013, 53:1-3
|
| [171] |
Aho O-M, Finnilä M, Thevenot J, Saarakkala S, Lehenkari P. Subchondral bone histology and grading in osteoarthritis. PLOS One, 2017, 12
|
| [172] |
Brown TD, Radin EL, Martin RB, Burr DB. Finite element studies of some juxtarticular stress changes due to localized subchondral stiffening. J. Biomech., 1984, 17:11-24
|
| [173] |
Zanetti M, Bruder E, Romero J, Hodler J. Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology, 2000, 215:835-840
|
| [174] |
Inoue H. Alterations in the collagen framework of osteoarthritic cartilage and subchondral bone. Int. Orthop., 1981, 5:47-52
|
| [175] |
Hunter DJ et al. Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. Arthritis Rheum., 2006, 54:1529-1535
|
| [176] |
Tanamas SK et al. Bone marrow lesions in people with knee osteoarthritis predict progression of disease and joint replacement: a longitudinal study. Rheumatology, 2010, 49:2413-2419
|
| [177] |
Bowes MA et al. Osteoarthritic bone marrow lesions almost exclusively colocate with denuded cartilage: a 3D study using data from the osteoarthritis initiative. Ann. Rheum. Dis., 2016, 75:1852-1857
|
| [178] |
Wluka AE et al. Bone marrow lesions predict increase in knee cartilage defects and loss of cartilage volume in middle-aged women without knee pain over 2 years. Ann. Rheum. Dis., 2009, 68:850-855
|
| [179] |
Zhen G et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med., 2013, 19:704-712
|
| [180] |
Xie L et al. Systemic neutralization of TGF-β attenuates osteoarthritis. Ann. N. Y. Acad. Sci., 2016, 1376:53-64
|
| [181] |
Tang Y et al. TGF-β1–induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat. Med., 2009, 15:757-765
|
| [182] |
Wang Y et al. Correlation between plasma, synovial fluid and articular cartilage interleukin-18 with radiographic severity in 33 patients with osteoarthritis of the knee. Clin. Exp. Med., 2014, 14:297-304
|
| [183] |
Chen Y et al. Subchondral trabecular rod loss and plate thickening in the development of osteoarthritis. J. Bone Miner. Res., 2018, 33:316-327
|
| [184] |
Shiraishi K et al. In vivo analysis of subchondral trabecular bone in patients with osteoarthritis of the knee using second-generation high-resolution peripheral quantitative computed tomography (HR-pQCT). Bone, 2020, 132:115155
|
| [185] |
Fukushima K et al. Relationship between synovial inflammatory cytokines and progression of osteoarthritis after hip arthroscopy: experimental assessment. J. Orthop. Surg., 2018, 26:2309499018770922
|
| [186] |
Felson DT et al. Synovitis and the risk of knee osteoarthritis: the MOST study. Osteoarthr. Cartil., 2016, 24:458-464
|
| [187] |
Roemer FW et al. Presence of MRI-detected joint effusion and synovitis increases the risk of cartilage loss in knees without osteoarthritis at 30-month follow-up: the MOST study. Ann. Rheum. Dis., 2011, 70:1804-1809
|
| [188] |
Benito MJ, Veale DJ, FitzGerald O, van den Berg WB, Bresnihan B. Synovial tissue inflammation in early and late osteoarthritis. Ann. Rheum. Dis., 2005, 64:1263-1267
|
| [189] |
Faúndez J, Cotoras P, Irarrázaval S. Are intraarticular steroids effective for knee osteoarthritis? Medwave, 2016, 16
|
| [190] |
Raynauld J-P et al. Safety and efficacy of long-term intraarticular steroid injections in osteoarthritis of the knee: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum., 2003, 48:370-377
|
| [191] |
Waarsing JH, Bierma-Zeinstra SMA, Weinans H. Distinct subtypes of knee osteoarthritis: data from the osteoarthritis initiative. Rheumatology, 2015, 54:1650-1658
|
| [192] |
Meulenbelt I et al. Clusters of biochemical markers are associated with radiographic subtypes of osteoarthritis (OA) in subject with familial OA at multiple sites. The GARP study. Osteoarthr. Cartil., 2007, 15:379-385
|
| [193] |
Felson DT. Identifying different osteoarthritis phenotypes through epidemiology. Osteoarthr. Cartil., 2010, 18:601-604
|
| [194] |
Dell’Isola A, Steultjens M. Classification of patients with knee osteoarthritis in clinical phenotypes: data from the Osteoarthritis Initiative. PLoS One, 2018, 13
|
| [195] |
Little CB, Zaki S. What constitutes an “animal model of osteoarthritis”—the need for consensus? Osteoarthr. Cartil., 2012, 20:261-267
|
| [196] |
Cole TJ et al. Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes Dev., 1995, 9:1608-1621
|
| [197] |
Li A et al. Deletion of mesenchymal glucocorticoid receptor attenuates embryonic lung development and abdominal wall closure. PLOS One, 2013, 8
|
| [198] |
Zhou H et al. Glucocorticoid-dependent Wnt signaling by mature osteoblasts is a key regulator of cranial skeletal development in mice. Development, 2009, 136:427-436
|
| [199] |
Pivonello R et al. Pathophysiology of diabetes mellitus in cushing’s syndrome. Neuroendocrinology, 2010, 92:77-81
|
| [200] |
Mizoguchi K, Ishige A, Takeda S, Aburada M, Tabira T. Endogenous glucocorticoids are essential for maintaining prefrontal cortical cognitive function. J. Neurosci., 2004, 24:5492-5499
|
| [201] |
Brewer JA et al. T-cell glucocorticoid receptor is required to suppress COX-2-mediated lethal immune activation. Nat. Med., 2003, 9:1318-1322
|
| [202] |
Sher LB et al. Transgenic expression of 11β-hydroxysteroid dehydrogenase type 2 in osteoblasts reveals an anabolic role for endogenous glucocorticoids in bone. Endocrinology, 2004, 145:922-929
|
| [203] |
Kalak R et al. Endogenous glucocorticoid signalling in osteoblasts is necessary to maintain normal bone structure in mice. Bone, 2009, 45:61-67
|
| [204] |
Funder JW, Pearce PT, Smith R, Smith AI. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science, 1988, 242:583-585
|
| [205] |
Agarwal AK, Monder C, Eckstein B, White PC. Cloning and expression of rat cDNA encoding corticosteroid 11 beta-dehydrogenase. J. Biol. Chem., 1989, 264:18939-18943
|
| [206] |
Tannin GM, Agarwal AK, Monder C, New MI, White PC. The human gene for 11 beta-hydroxysteroid dehydrogenase. Structure, tissue distribution, and chromosomal localization. J. Biol. Chem., 1991, 266:16653-16658
|
| [207] |
Edwards CRW et al. Localisation of 11β-hydroxysteroid dehydrogenase-tissue specific protector of the mineralocorticoid receptor. Lancet, 1988, 332:986-989
|
| [208] |
Davies TH, Ning YM, Sánchez ER. A new first step in activation of steroid receptors: hormone-induced switching of fkbp51 and fkbp52 immunophilins. J. Biol. Chem., 2002, 277:4597-4600
|
| [209] |
Sundahl N, Bridelance J, Libert C, De Bosscher K, Beck IM. Selective glucocorticoid receptor modulation: new directions with non-steroidal scaffolds. Pharmacol. Ther., 2015, 152:28-41
|
| [210] |
Henneicke H, Gasparini SJ, Brennan-Speranza TC, Zhou H, Seibel MJ. Glucocorticoids and bone: local effects and systemic implications. Trends Endocrinol. Metab., 2014, 25:197-211
|
| [211] |
Reichardt HM et al. DNA binding of the glucocorticoid receptor is not essential for survival. Cell, 1998, 93:531-541
|
| [212] |
Silverman MN et al. Glucocorticoid receptor dimerization is required for proper recovery of LPS-induced inflammation, sickness behavior and metabolism in mice. Mol. Psychiatry, 2013, 18:1006-1017
|
| [213] |
Kleiman A et al. Glucocorticoid receptor dimerization is required for survival in septic shock via suppression of interleukin-1 in macrophages. FASEB J., 2012, 26:722-729
|
| [214] |
Baschant U et al. Glucocorticoid therapy of antigen-induced arthritis depends on the dimerized glucocorticoid receptor in T cells. Proc. Natl Acad. Sci. USA, 2011, 108:19317-19322
|
| [215] |
Kleiman A, Tuckermann JP. Glucocorticoid receptor action in beneficial and side effects of steroid therapy: lessons from conditional knockout mice. Mol. Cell. Endocrinol., 2007, 275:98-108
|
| [216] |
Bevaart L, Vervoordeldonk MJ, Tak PP. Evaluation of therapeutic targets in animal models of arthritis: how does it relate to rheumatoid arthritis? Arthritis Rheum., 2010, 62:2192-2205
|
| [217] |
Christensen AD, Haase C, Cook AD, Hamilton JA. K/BxN serum-transfer arthritis as a model for human inflammatory arthritis. Front. Immunol, 2016, 7:213
|
| [218] |
Hermus ARMM, Sweep CGJ. Cytokines and the hypothalamic-pituitary-adrenal axis. J. Steroid Biochem. Mol. Biol., 1990, 37:867-871
|
| [219] |
Hardy RS et al. Differential expression, function and response to inflammatory stimuli of 11β-hydroxysteroid dehydrogenase type 1 in human fibroblasts: a mechanism for tissue-specific regulation of inflammation. Arthritis Res. Ther., 2006, 8:R108
|
| [220] |
Cooper MS et al. Modulation of 11β-hydroxysteroid dehydrogenase isozymes by proinflammatory cytokines in osteoblasts: an autocrine switch from glucocorticoid inactivation to activation. J. Bone Miner. Res., 2001, 16:1037-1044
|
| [221] |
Neeck G, Federlin K, Graef V, Rusch D, Schmidt KL. Adrenal secretion of cortisol in patients with rheumatoid arthritis. J. Rheumatol., 1990, 17:24-29
|
| [222] |
Gudbjornsson B, Skogseid B, Oberg K, Wide L, Hallgren R. Intact adrenocorticotropic hormone secretion but impaired cortisol response in patients with active rheumatoid arthritis. Effect of glucocorticoids. J. Rheumatol., 1996, 23:596-602
|
| [223] |
Hardy RS et al. Local and systemic glucocorticoid metabolism in inflammatory arthritis. Ann. Rheum. Dis., 2008, 67:1204-1210
|
| [224] |
Nanus DE et al. TNFα regulates cortisol metabolism in vivo in patients with inflammatory arthritis. Ann. Rheum. Dis., 2015, 74:464-469
|
| [225] |
Sattler J et al. Role of 11β-HSD type 1 in abnormal HPA axis activity during immune-mediated arthritis. Endocr. Connect, 2018, 7:385-394
|
| [226] |
Hardy RS et al. 11beta-hydroxysteroid dehydrogenase type 1 regulates synovitis, joint destruction, and systemic bone loss in chronic polyarthritis. J. Autoimmun., 2018, 92:104-113
|
| [227] |
Ergang P et al. Local metabolism of glucocorticoids and its role in rat adjuvant arthritis. Mol. Cell. Endocrinol., 2010, 323:155-160
|
| [228] |
Tomlinson JW et al. Regulation of expression of 11β-hydroxysteroid dehydrogenase type 1 in adipose tissue: tissue-specific induction by cytokines. Endocrinology, 2001, 142:1982-1989
|
| [229] |
Sternberg EM et al. Inflammatory mediator-induced hypothalamic-pituitary-adrenal axis activation is defective in streptococcal cell wall arthritis-susceptible Lewis rats. Proc. Natl Acad. Sci. U.S.A., 1989, 86:2374-2378
|
| [230] |
Coutinho AE et al. 11β-hydroxysteroid dehydrogenase type 1, but not type 2, deficiency worsens acute inflammation and experimental arthritis in mice. Endocrinology, 2012, 153:234-240
|
| [231] |
Koenen M et al. Glucocorticoid receptor in stromal cells is essential for glucocorticoid-mediated suppression of inflammation in arthritis. Ann. Rheum. Dis., 2018, 77:1610-1618
|
| [232] |
Tronche F et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat. Genet., 1999, 23:99-103
|
| [233] |
Lim H-Y, Müller N, Herold MJ, van den Brandt J, Reichardt HM. Glucocorticoids exert opposing effects on macrophage function dependent on their concentration. Immunology, 2007, 122:47-53
|
| [234] |
Bhattacharyya S, Brown DE, Brewer JA, Vogt SK, Muglia LJ. Macrophage glucocorticoid receptors regulate Toll-like receptor 4-mediated inflammatory responses by selective inhibition of p38 MAP kinase. Blood, 2007, 109:4313-4319
|
| [235] |
Zhang Z et al. Macrophage 11β-HSD-1 deficiency promotes inflammatory angiogenesis. J. Endocrinol., 2017, 234:291-299
|
| [236] |
Coutinho AE et al. Mast cells express 11β-hydroxysteroid dehydrogenase type 1: a role in restraining mast cell degranulation. PLOS One, 2013, 8
|
| [237] |
Wei L et al. Chondrocyte death induced by pathological concentration of chemokine stromal cell-derived factor-1. J. Rheumatol., 2006, 33:1818-1826
|
| [238] |
Tu J et al. Endogenous glucocorticoid signaling in chondrocytes attenuates joint inflammation and damage. FASEB J., 2018, 32:478-487
|
| [239] |
Henneicke H et al. Corticosterone selectively targets endo-cortical surfaces by an osteoblast-dependent mechanism. Bone, 2011, 49:733-742
|
| [240] |
Buttgereit F et al. Transgenic disruption of glucocorticoid signaling in mature osteoblasts and osteocytes attenuates K/BxN mouse serum-induced arthritis in vivo. Arthritis Rheum., 2009, 60:1998-2007
|
| [241] |
Tu J et al. Transgenic disruption of glucocorticoid signaling in osteoblasts attenuates joint inflammation in collagen antibody-induced arthritis. Am. J. Pathol., 2016, 186:1293-1301
|
| [242] |
Spies CM et al. Acute murine antigen-induced arthritis is not affected by disruption of osteoblastic glucocorticoid signalling. BMC Musculoskelet. Disord., 2014, 15
|
| [243] |
Zheng B, Zhang Z, Black CM, de Crombrugghe B, Denton CP. Ligand-dependent genetic recombination in fibroblasts: a potentially powerful technique for investigating gene function in fibrosis. Am. J. Pathol., 2002, 160:1609-1617
|
| [244] |
Yiallouris A et al. Adrenal aging and its implications on stress responsiveness in humans. Front. Endocrinol., 2019, 10:54
|
| [245] |
Wilkinson CW et al. Human glucocorticoid feedback inhibition is reduced in older individuals: evening study 1. J. Clin. Endocrinol. Metab., 2001, 86:545-550
|
| [246] |
Cooper MS et al. Osteoblastic 11β‐hydroxysteroid dehydrogenase type 1 activity increases with age and glucocorticoid exposure. J. Bone Miner. Res., 2002, 17:979-986
|
| [247] |
Weinstein RS et al. Endogenous glucocorticoids decrease skeletal angiogenesis, vascularity, hydration, and strength in aged mice. Aging Cell, 2010, 9:147-161
|
| [248] |
Khoromi S et al. Effects of chronic osteoarthritis pain on neuroendocrine function in men. J. Clin. Endocrinol. Metab., 2006, 91:4313-4318
|
| [249] |
Liu JJW et al. Sex differences in salivary cortisol reactivity to the Trier Social Stress Test (TSST): a meta-analysis. Psychoneuroendocrinology, 2017, 82:26-37
|
| [250] |
Carlesso LC, Sturgeon JA, Zautra AJ. Exploring the relationship between disease-related pain and cortisol levels in women with osteoarthritis. Osteoarthr. Cartil., 2016, 24:2048-2054
|
| [251] |
Herbert MS et al. Ethnicity, cortisol, and experimental pain responses among persons with symptomatic knee osteoarthritis. Clin. J. Pain., 2017, 33:820-826
|
| [252] |
Tu J et al. Disruption of glucocorticoid signalling in osteoblasts attenuates age-related surgically induced osteoarthritis. Osteoarthr. Cartil., 2019, 27:1518-1525
|
| [253] |
Hopwood B, Tsykin A, Findlay DM, Fazzalari NL. Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling, Wnt and transforming growth factor-β/bone morphogenic protein signalling. Arthritis Res. Ther., 2007, 9:R100
|
| [254] |
Lories RJ, Monteagudo S. Review article: is Wnt signaling an attractive target for the treatment of osteoarthritis? Rheumatol. Ther., 2020, 7:259-270
|
| [255] |
Yazici Y et al. A novel Wnt pathway inhibitor, SM04690, for the treatment of moderate to severe osteoarthritis of the knee: results of a 24-week, randomized, controlled, phase 1 study. Osteoarthr. Cartil., 2017, 25:1598-1606
|
| [256] |
Funck-Brentano T et al. Dkk-1-mediated inhibition of Wnt signaling in bone ameliorates osteoarthritis in mice. Arthritis Rheumatol., 2014, 66:3028-3039
|
| [257] |
Hardy R et al. Synovial DKK1 expression is regulated by local glucocorticoid metabolism in inflammatory arthritis. Arthritis Res. Ther., 2012, 14:R226
|
| [258] |
Zhou H, Mak W, Zheng Y, Dunstan CR, Seibel MJ. Osteoblasts directly control lineage commitment of mesenchymal progenitor cells through Wnt signaling. J. Biol. Chem., 2008, 283:1936-1945
|
| [259] |
Song CZ, Tian X, Gelehrter TD. Glucocorticoid receptor inhibits transforming growth factor-beta signaling by directly targeting the transcriptional activation function of Smad3. Proc. Natl Acad. Sci. U.S.A., 1999, 96:11776-11781
|
| [260] |
Wen FQ et al. Glucocorticoids modulate TGF-beta production. Inflammation, 2002, 26:279-290
|
| [261] |
Simon D, Fernando C, Czernichow P, Prieur A-M. Linear growth and final height in patients with systemic juvenile idiopathic arthritis treated with longterm glucocorticoids. J. Rheumatol., 2002, 29:1296-1300
|
| [262] |
Chrysis D, Ritzen E, Savendahl L. Growth retardation induced by dexamethasone is associated with increased apoptosis of the growth plate chondrocytes. J. Endocrinol., 2003, 176:331-338
|
| [263] |
DiBattista JA et al. Reduced expression of glucocorticoid receptor levels in human osteoarthritic chondrocytes. Role in the suppression of metalloprotease synthesis. J. Clin. Endocrinol. Metab., 1993, 76:1128-1134
|
| [264] |
Macfarlane, E., Tuckermann, J., Seibel, M. J. & Zhou, H. Targeted deletion of the glucocorticoid receptor in chondrocytes attenuates cartilage degradation in murine osteoarthritis. American Society for Bone and Mineral Research’s Annual Meeting, Seattle, WA, United States (conference held virtually). J Bone Miner Res (2020).
|
| [265] |
Hood S, Amir S. The aging clock: circadian rhythms and later life. J. Clin. Investig., 2017, 127:437-446
|
| [266] |
Nader N, Chrousos GP, Kino T. Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications. FASEB J., 2009, 23:1572-1583
|
| [267] |
Olejníková L, Polidarová L, Sumová A. Stress affects expression of the clock gene Bmal1 in the suprachiasmatic nucleus of neonatal rats via glucocorticoid-dependent mechanism. Acta Physiol., 2018, 223
|
| [268] |
Dudek M et al. The chondrocyte clock gene Bmal1 controls cartilage homeostasis and integrity. J. Clin. Investig., 2016, 126:365-376
|
| [269] |
Snelling SJB, Forster A, Mukherjee S, Price AJ, Poulsen RC. The chondrocyte-intrinsic circadian clock is disrupted in human osteoarthritis. Chronobiol. Int., 2016, 33:574-579
|