Classification of four distinct osteoarthritis subtypes with a knee joint tissue transcriptome atlas

Chunhui Yuan , Zongyou Pan , Kun Zhao , Jun Li , Zixuan Sheng , Xudong Yao , Hua Liu , Xiaolei Zhang , Yang Yang , Dongsheng Yu , Yu Zhang , Yuzi Xu , Zhi-Yong Zhang , Tianlong Huang , Wanlu Liu , Hongwei Ouyang

Bone Research ›› 2020, Vol. 8 ›› Issue (1) : 38

PDF
Bone Research ›› 2020, Vol. 8 ›› Issue (1) : 38 DOI: 10.1038/s41413-020-00109-x
Article

Classification of four distinct osteoarthritis subtypes with a knee joint tissue transcriptome atlas

Author information +
History +
PDF

Abstract

The limited molecular classifications and disease signatures of osteoarthritis (OA) impede the development of prediagnosis and targeted therapeutics for OA patients. To classify and understand the subtypes of OA, we collected three types of tissue including cartilage, subchondral bone, and synovium from multiple clinical centers and constructed an extensive transcriptome atlas of OA patients. By applying unsupervised clustering analysis to the cartilage transcriptome, OA patients were classified into four subtypes with distinct molecular signatures: a glycosaminoglycan metabolic disorder subtype (C1), a collagen metabolic disorder subtype (C2), an activated sensory neuron subtype (C3), and an inflammation subtype (C4). Through ligand-receptor crosstalk analysis of the three knee tissue types, we linked molecular functions with the clinical symptoms of different OA subtypes. For example, the Gene Ontology functional term of vasculature development was enriched in the subchondral bone-cartilage crosstalk of C2 and the cartilage-subchondral bone crosstalk of C4, which might lead to severe osteophytes in C2 patients and apparent joint space narrowing in C4 patients. Based on the marker genes of the four OA subtypes identified in this study, we modeled OA subtypes with two independent published RNA-seq datasets through random forest classification. The findings of this work contradicted traditional OA diagnosis by medical imaging and revealed distinct molecular subtypes in knee OA patients, which may allow for precise diagnosis and treatment of OA.

Cite this article

Download citation ▾
Chunhui Yuan, Zongyou Pan, Kun Zhao, Jun Li, Zixuan Sheng, Xudong Yao, Hua Liu, Xiaolei Zhang, Yang Yang, Dongsheng Yu, Yu Zhang, Yuzi Xu, Zhi-Yong Zhang, Tianlong Huang, Wanlu Liu, Hongwei Ouyang. Classification of four distinct osteoarthritis subtypes with a knee joint tissue transcriptome atlas. Bone Research, 2020, 8(1): 38 DOI:10.1038/s41413-020-00109-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lawrence RC et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis. Rheum., 2008, 58:26-35

[2]

Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann. NY Acad. Sci., 2010, 1192:230-237

[3]

Loeser RF, Collins JA, Diekman BO. Ageing and the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol., 2016, 12:412-420

[4]

Beyer C et al. Signature of circulating microRNAs in osteoarthritis. Ann. Rheum. Dis., 2015, 74

[5]

Glyn-Jones S et al. Osteoarthritis. Lancet, 2015, 386:376-387

[6]

Bennell KL, Hall M, Hinman RS. Osteoarthritis year in review 2015: rehabilitation and outcomes. Osteoarthr. Cartil., 2016, 24:58-70

[7]

Altman R et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis. Rheum., 1986, 29:1039-1049

[8]

Kraus VB et al. Predictive validity of biochemical biomarkers in knee osteoarthritis: data from the FNIH OA Biomarkers Consortium. Ann. Rheum. Dis., 2017, 76:186-195

[9]

Junker S et al. Differentiation of osteophyte types in osteoarthritis - proposal of a histological classification. Joint Bone Spine, 2016, 83:63-67

[10]

Farmer H et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 2005, 434:917-921

[11]

Perou CM et al. Molecular portraits of human breast tumours. Nature, 2000, 406:747-752

[12]

Martin JA, Buckwalter JA. Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology, 2002, 3:257-264

[13]

Alpern D et al. BRB-seq: ultra-affordable high-throughput transcriptomics enabled by bulk RNA barcoding and sequencing. Genome Biol., 2019, 20

[14]

Kiselev VY et al. SC3: consensus clustering of single-cell RNA-seq data. Nat. Methods, 2017, 14:483-486

[15]

Luo W, Friedman MS, Shedden K, Hankenson KD, Woolf PJ. GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinform., 2009, 10

[16]

Appleton CT, Pitelka V, Henry J, Beier F. Global analyses of gene expression in early experimental osteoarthritis. Arthritis. Rheum., 2007, 56:1854-1868

[17]

Fisch KM et al. Identification of transcription factors responsible for dysregulated networks in human osteoarthritis cartilage by global gene expression analysis. Osteoarthr. Cartil., 2018, 26:1531-1538

[18]

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 2014, 15

[19]

Wu G, Haw R. Functional interaction network construction and analysis for disease discovery. Methods Mol. Biol., 2017, 1558:235-253

[20]

Qin Y, Zhang C. The regulatory role of IFN-gamma on the proliferation and differentiation of hematopoietic stem and progenitor cells. Stem Cell Rev., 2017, 13:705-712

[21]

Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol., 2011, 7:33-42

[22]

El Kasmi KC et al. Cutting edge: a transcriptional repressor and corepressor induced by the STAT3-regulated anti-inflammatory signaling pathway. J Immunol, 2007, 179:7215-7219

[23]

Ally A et al. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell, 2017, 169:1327-1341

[24]

Newman AM et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods, 2015, 12:453-457

[25]

Siebuhr AS et al. Inflammation (or synovitis)-driven osteoarthritis: an opportunity for personalizing prognosis and treatment? Scand. J. Rheumatol., 2016, 45:87-98

[26]

Rahmati M, Mobasheri A, Mozafari M. Inflammatory mediators in osteoarthritis: a critical review of the state-of-the-art, current prospects, and future challenges. Bone, 2016, 85:81-90

[27]

Mahjoub M, Berenbaum F, Houard X. Why subchondral bone in osteoarthritis? The importance of the cartilage bone interface in osteoarthritis. Osteoporos Int., 2012, 23 Suppl 8 S841-S846

[28]

Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat. Rev. Genet., 2003, 4:638-649

[29]

Kumar S et al. Identification and initial characterization of 5000 expressed sequenced tags (ESTs) each from adult human normal and osteoarthritic cartilage cDNA libraries. Osteoarthritis Cartilage, 2001, 9:641-653

[30]

Steiglitz BM, Keene DR, Greenspan DS. PCOLCE2 encodes a functional procollagen C-proteinase enhancer (PCPE2) that is a collagen-binding protein differing in distribution of expression and post-translational modification from the previously described PCPE1. J. Biol. Chem., 2002, 277:49820-49830

[31]

Skonier J et al. beta ig-h3: a transforming growth factor-beta-responsive gene encoding a secreted protein that inhibits cell attachment in vitro and suppresses the growth of CHO cells in nude mice. DNA Cell Biol., 1994, 13:571-584

[32]

Ruiz M et al. TGFbetai is involved in the chondrogenic differentiation of mesenchymal stem cells and is dysregulated in osteoarthritis. Osteoarthr. Cartil., 2019, 27:493-503

[33]

Takahata Y et al. Sox4 is involved in osteoarthritic cartilage deterioration through induction of ADAMTS4 and ADAMTS5. FASEB J, 2019, 33:619-630

[34]

Zhu YJ, Jiang DM. LncRNA PART1 modulates chondrocyte proliferation, apoptosis, and extracellular matrix degradation in osteoarthritis via regulating miR-373-3p/SOX4 axis. Eur. Rev. Med. Pharmacol. Sci., 2019, 23:8175-8185

[35]

Goldstein AL, Hannappel E, Sosne G, Kleinman HK. Thymosin beta4: a multi-functional regenerative peptide. Basic properties and clinical applications. Expert Opin Biol Ther, 2012, 12:37-51

[36]

Blain EJ, Mason DJ, Duance VC. The effect of thymosin beta4 on articular cartilage chondrocyte matrix metalloproteinase expression. Biochemical. Soc. Trans., 2002, 30:879-882

[37]

Nissinen L, Kahari VM. Matrix metalloproteinases in inflammation. Biochim. Biophys. Acta, 2014, 1840:2571-2580

[38]

Xia W, Liu Y, Jiao J. GRM7 regulates embryonic neurogenesis via CREB and YAP. Stem Cell Rep., 2015, 4:795-810

[39]

Soul, J. et al. Stratification of knee osteoarthritis: two major patient subgroups identified by genome-wide expression analysis of articular cartilage. Ann. Rheum. Dis. 77, 423 (2018).

[40]

Sudhof TC. The synaptic vesicle cycle. Annu. Rev. Neurosci., 2004, 27:509-547

[41]

Xiong Y et al. A comparison of mRNA sequencing with random primed and 3’-directed libraries. Sci. Rep., 2017, 7

[42]

Wu B et al. Nano genome altas (NGA) of body wide organ responses. Biomaterials, 2019, 205:38-49

[43]

Van Spil WE, Kubassova O, Boesen M, Bay-Jensen AC, Mobasheri A. Osteoarthritis phenotypes and novel therapeutic targets. Biochem. Pharmacol., 2019, 165:41-48

[44]

Martin I et al. Quantitative analysis of gene expression in human articular cartilage from normal and osteoarthritic joints. Osteoarthr. Cartil., 2001, 9:112-118

[45]

Gelse K, Soder S, Eger W, Diemtar T, Aigner T. Osteophyte development—molecular characterization of differentiation stages. Osteoarthr. Cartil., 2003, 11:141-148

[46]

Kahai S, Vary CP, Gao Y, Seth A. Collagen, type V, alpha1 (COL5A1) is regulated by TGF-beta in osteoblasts. Matrix Biol., 2004, 23:445-455

[47]

Schwab W, Funk RH. Innervation pattern of different cartilaginous tissues in the rat. Acta Anat., 1998, 163:184-190

[48]

Grässel, S. & Muschter, D. Peripheral nerve fibers and their neurotransmitters in osteoarthritis pathology. Int. J. Mol. Sci. 18, 931 (2017).

[49]

Suri S et al. Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis. Ann. Rheum. Dis., 2007, 66:1423-1428

[50]

Ashraf S et al. Increased vascular penetration and nerve growth in the meniscus: a potential source of pain in osteoarthritis. Ann. Rheum. Dis., 2011, 70:523-529

[51]

Malik M et al. Monocyte migration and LFA-1-mediated attachment to brain microvascular endothelia is regulated by SDF-1 alpha through Lyn kinase. J. Immunol., 2008, 181:4632-4637

[52]

Oberlin E et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature, 1996, 382:833-835

[53]

Ip WKE, Hoshi N, Shouval DS, Snapper S, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science, 2017, 356:513-519

[54]

Zhang, Y., Chen, X., Tong, Y., Luo, J. & Bi, Q. Development and Prospect of Intra-Articular Injection in the Treatment of Osteoarthritis: A Review. J. Pain. Res. 13, 1941–1955 (2020).

[55]

Moskowitz RW. Role of collagen hydrolysate in bone and joint disease. Semin. Arthritis. Rheum., 2000, 30:87-99

[56]

Lugo JP, Saiyed ZM, Lane NE. Efficacy and tolerability of an undenatured type II collagen supplement in modulating knee osteoarthritis symptoms: a multicenter randomized, double-blind, placebo-controlled study. Nutr. J., 2016, 15

[57]

Lane NE, Corr M. Osteoarthritis in 2016: Anti-NGF treatments for pain - two steps forward, one step back? Nat. Rev. Rheumatol., 2017, 13:76-78

[58]

Conaghan PG, Cook AD, Hamilton JA, Tak PP. Therapeutic options for targeting inflammatory osteoarthritis pain. Nat. Rev. Rheumatol., 2019, 15:355-363

[59]

da Costa BR et al. Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis: a network meta-analysis. Lancet, 2017, 390:e21-e33

[60]

da Costa BR, Hari R, Jüni P. Intra-articular corticosteroids for osteoarthritis of the knee. JAMA, 2016, 316:2671-2672

[61]

Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis., 1957, 16:494-502

[62]

Altman RD, Gold GE. Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthr. Cartil., 2007, 15 Suppl A A1-A56

[63]

Dobin A et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 2013, 29:15-21

[64]

Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014, 30:923-930

Funding

the National Key R&D Program of China (2017YFA0104900), the National Natural Science Foundation of China (81630065, 31830029, 81802195) grants and China Postdoctoral Science Foundation (2017M621913).

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/