Focal adhesion protein Kindlin-2 regulates bone homeostasis in mice

Huiling Cao , Qinnan Yan , Dong Wang , Yumei Lai , Bo Zhou , Qi Zhang , Wenfei Jin , Simin Lin , Yiming Lei , Liting Ma , Yuxi Guo , Yishu Wang , Yilin Wang , Xiaochun Bai , Chuanju Liu , Jian Q. Feng , Chuanyue Wu , Di Chen , Xu Cao , Guozhi Xiao

Bone Research ›› 2020, Vol. 8 ›› Issue (1) : 2

PDF
Bone Research ›› 2020, Vol. 8 ›› Issue (1) : 2 DOI: 10.1038/s41413-019-0073-8
Article

Focal adhesion protein Kindlin-2 regulates bone homeostasis in mice

Author information +
History +
PDF

Abstract

Our recent studies demonstrate that the focal adhesion protein Kindlin-2 is critical for chondrogenesis and early skeletal development. Here, we show that deleting Kindlin-2 from osteoblasts using the 2.3-kb mouse Col1a1-Cre transgene minimally impacts bone mass in mice, but deleting Kindlin-2 using the 10-kb mouse Dmp1-Cre transgene, which targets osteocytes and mature osteoblasts, results in striking osteopenia in mice. Kindlin-2 loss reduces the osteoblastic population but increases the osteoclastic and adipocytic populations in the bone microenvironment. Kindlin-2 loss upregulates sclerostin in osteocytes, downregulates β-catenin in osteoblasts, and inhibits osteoblast formation and differentiation in vitro and in vivo. Upregulation of β-catenin in the mutant cells reverses the osteopenia induced by Kindlin-2 deficiency. Kindlin-2 loss additionally increases the expression of RANKL in osteocytes and increases osteoclast formation and bone resorption. Kindlin-2 deletion in osteocytes promotes osteoclast formation in osteocyte/bone marrow monocyte cocultures, which is significantly blocked by an anti-RANKL-neutralizing antibody. Finally, Kindlin-2 loss increases osteocyte apoptosis and impairs osteocyte spreading and dendrite formation. Thus, we demonstrate an important role of Kindlin-2 in the regulation of bone homeostasis and provide a potential target for the treatment of metabolic bone diseases.

Cite this article

Download citation ▾
Huiling Cao, Qinnan Yan, Dong Wang, Yumei Lai, Bo Zhou, Qi Zhang, Wenfei Jin, Simin Lin, Yiming Lei, Liting Ma, Yuxi Guo, Yishu Wang, Yilin Wang, Xiaochun Bai, Chuanju Liu, Jian Q. Feng, Chuanyue Wu, Di Chen, Xu Cao, Guozhi Xiao. Focal adhesion protein Kindlin-2 regulates bone homeostasis in mice. Bone Research, 2020, 8(1): 2 DOI:10.1038/s41413-019-0073-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tatsumi S et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab., 2007, 5:464-475

[2]

Bonewald LF. The amazing osteocyte. J. Bone Min. Res, 2011, 26:229-238

[3]

Schaffler MB, Cheung WY, Majeska R, Kennedy O. Osteocytes: master orchestrators of bone. Calcif. Tissue Int., 2014, 94:5-24

[4]

Bellido T. Osteocyte-driven bone remodeling. Calcif. Tissue Int., 2014, 94:25-34

[5]

Prideaux M, Findlay DM, Atkins GJ. Osteocytes: the master cells in bone remodelling. Curr. Opin. Pharm., 2016, 28:24-30

[6]

Duan P, Bonewald LF. The role of the wnt/beta-catenin signaling pathway in formation and maintenance of bone and teeth. Int J. Biochem. Cell Biol., 2016, 77:23-29

[7]

Uda Y, Azab E, Sun N, Shi C, Pajevic PD. Osteocyte Mechanobiology. Curr. Osteoporos. Rep., 2017, 15:318-325

[8]

Galea GL, Lanyon LE, Price JS. Sclerostin's role in bone's adaptive response to mechanical loading. Bone, 2017, 96:38-44

[9]

Xiong J et al. Matrix-embedded cells control osteoclast formation. Nat. Med., 2011, 17:1235-1241

[10]

Nakashima T et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med., 2011, 17:1231-1234

[11]

Goldring SR. The osteocyte: key player in regulating bone turnover. RMD Open, 2015, 1

[12]

Winkler DG et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J., 2003, 22:6267-6276

[13]

Li X et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem., 2005, 280:19883-19887

[14]

Cosman F et al. Romosozumab treatment in postmenopausal women with osteoporosis. N. Engl. J. Med., 2016, 375:1532-1543

[15]

Kramer I et al. Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol. Cell. Biol., 2010, 30:3071-3085

[16]

Rognoni E, Ruppert R, Fassler R. The kindlin family: functions, signaling properties and implications for human disease. J. Cell Sci., 2016, 129:17-27

[17]

Calderwood DA, Campbell ID, Critchley DR. Talins and kindlins: partners in integrin-mediated adhesion. Nat. Rev. Mol. Cell Biol., 2013, 14:503-517

[18]

Bottcher RT et al. Kindlin-2 recruits paxillin and Arp2/3 to promote membrane protrusions during initial cell spreading. J. Cell Biol., 2017, 216:3785-3798

[19]

Wei X et al. Smurf1 inhibits integrin activation by controlling kindlin-2 ubiquitination and degradation. J. Cell Biol., 2017, 216:1455-1471

[20]

Li H et al. Structural basis of kindlin-mediated integrin recognition and activation. Proc. Natl Acad. Sci. USA, 2017, 114:9349-9354

[21]

Hirbawi J et al. The extreme C-terminal region of kindlin-2 is critical to its regulation of integrin activation. J. Biol. Chem., 2017, 292:14258-14269

[22]

Jobard F et al. Identification of mutations in a new gene encoding a FERM family protein with a pleckstrin homology domain in Kindler syndrome. Hum. Mol. Genet., 2003, 12:925-935

[23]

Siegel DH et al. Loss of kindlin-1, a human homolog of the Caenorhabditis elegans actin-extracellular-matrix linker protein UNC-112, causes Kindler syndrome. Am. J. Hum. Genet., 2003, 73:174-187

[24]

Svensson L et al. Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat. Med., 2009, 15:306-312

[25]

Moser M, Nieswandt B, Ussar S, Pozgajova M, Fassler R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat. Med., 2008, 14:325-330

[26]

Schmidt S et al. Kindlin-3-mediated signaling from multiple integrin classes is required for osteoclast-mediated bone resorption. J. Cell Biol., 2011, 192:883-897

[27]

Malinin NL et al. A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans. Nat. Med., 2009, 15:313-318

[28]

Montanez E et al. Kindlin-2 controls bidirectional signaling of integrins. Genes Dev., 2008, 22:1325-1330

[29]

Wu C et al. Kindlin-2 controls TGF-beta signalling and Sox9 expression to regulate chondrogenesis. Nat. Commun., 2015, 6

[30]

Guo L et al. Kindlin-2 regulates mesenchymal stem cell differentiation through control of YAP1/TAZ. J. Cell Biol., 2018, 217:1431-1451

[31]

Lu Y et al. DMP1-targeted Cre expression in odontoblasts and osteocytes. J. Dent. Res., 2007, 86:320-325

[32]

Panaroni C, Tzeng YS, Saeed H, Wu JY. Mesenchymal progenitors and the osteoblast lineage in bone marrow hematopoietic niches. Curr. Osteoporos. Rep., 2014, 12:22-32

[33]

Vaananen HK, Laitala-Leinonen T. Osteoclast lineage and function. Arch. Biochem. Biophys., 2008, 473:132-138

[34]

Pusztaszeri MP, Seelentag W, Bosman FT. Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J. Histochem. Cytochem., 2006, 54:385-395

[35]

Flynn L, Woodhouse KA. Adipose tissue engineering with cells in engineered matrices. Organogenesis, 2008, 4:228-235

[36]

Ou Y et al. Kindlin-2 interacts with beta-catenin and YB-1 to enhance EGFR transcription during glioma progression. Oncotarget, 2016, 7:74872-74885

[37]

Yu Y et al. Kindlin 2 forms a transcriptional complex with beta-catenin and TCF4 to enhance Wnt signalling. EMBO Rep., 2012, 13:750-758

[38]

Lin J et al. Kindlin-2 promotes hepatocellular carcinoma invasion and metastasis by increasing Wnt/beta-catenin signaling. J. Exp. Clin. Cancer Res., 2017, 36:134

[39]

Plotkin LI et al. Inhibition of osteocyte apoptosis prevents the increase in osteocytic receptor activator of nuclear factor kappaB ligand (RANKL) but does not stop bone resorption or the loss of bone induced by unloading. J. Biol. Chem., 2015, 290:18934-18942

[40]

Cabahug-Zuckerman P et al. Osteocyte apoptosis caused by hindlimb unloading is required to trigger osteocyte RANKL production and subsequent resorption of cortical and trabecular bone in mice femurs. J. Bone Min. Res., 2016, 31:1356-1365

[41]

Lim J, Burclaff J, He G, Mills JC, Long F. Unintended targeting of Dmp1-Cre reveals a critical role for Bmpr1a signaling in the gastrointestinal mesenchyme of adult mice. Bone Res., 2017, 5:16049

[42]

Dacquin R, Starbuck M, Schinke T, Karsenty G. Mouse alpha1(I)-collagen promoter is the best known promoter to drive efficient Cre recombinase expression in osteoblast. Dev. Dyn., 2002, 224:245-251

[43]

Harada N et al. Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J., 1999, 18:5931-5942

[44]

Bouxsein ML et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Min. Res., 2010, 25:1468-1486

[45]

Zhu K et al. Impaired bone homeostasis in amyotrophic lateral sclerosis mice with muscle atrophy. J. Biol. Chem., 2015, 290:8081-8094

[46]

Zhu K et al. ATF4 promotes bone angiogenesis by increasing vegf expression and release in the bone environment. J. Bone Min. Res., 2013, 28:1870-1884

[47]

Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol., 2018, 36:411-420

[48]

Becht Etienne, McInnes Leland, Healy John, Dutertre Charles-Antoine, Kwok Immanuel W H, Ng Lai Guan, Ginhoux Florent, Newell Evan W. Dimensionality reduction for visualizing single-cell data using UMAP. Nature Biotechnology, 2018, 37 1 38-44

[49]

Maaten Lvd, Hinton G. Visualizing data using t-SNE. J. Mach. Learn. Res., 2008, 9:2579-2605

[50]

Cao H et al. Critical role of AKT protein in myeloma-induced osteoclast formation and osteolysis. J. Biol. Chem., 2013, 288:30399-30410

[51]

Cao H et al. Activating transcription factor 4 regulates osteoclast differentiation in mice. J. Clin. Investig., 2010, 120:2755-2766

[52]

Xiao G et al. Critical role of filamin-binding LIM protein 1 (FBLP-1)/migfilin in regulation of bone remodeling. J. Biol. Chem., 2012, 287:21450-21460

[53]

Zhang X et al. Activating transcription factor 4 is critical for proliferation and survival in primary bone marrow stromal cells and calvarial osteoblasts. J. Cell Biochem., 2008, 105:885-895

[54]

Ran FA et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc., 2013, 8:2281-2308

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/