Inhibition of cyclooxygenase-2 activity in subchondral bone modifies a subtype of osteoarthritis

Manli Tu , Mi Yang , Nanxi Yu , Gehua Zhen , Mei Wan , Wenlong Liu , Baochao Ji , Hairong Ma , Qiaoyue Guo , Peijian Tong , Li Cao , Xianghang Luo , Xu Cao

Bone Research ›› 2019, Vol. 7 ›› Issue (1) : 29

PDF
Bone Research ›› 2019, Vol. 7 ›› Issue (1) : 29 DOI: 10.1038/s41413-019-0071-x
Article

Inhibition of cyclooxygenase-2 activity in subchondral bone modifies a subtype of osteoarthritis

Author information +
History +
PDF

Abstract

Osteoarthritis (OA) causes the destruction of joints. Its pathogenesis is still under investigation, and there is no effective disease-modifying therapy. Here, we report that elevated cyclooxygenase-2 (COX-2) expression in the osteocytes of subchondral bone causes both spontaneous OA and rheumatoid arthritis (RA). The knockout of COX-2 in osteocytes or treatment with a COX-2 inhibitor effectively rescues the structure of subchondral bone and attenuates cartilage degeneration in spontaneous OA (STR/Ort) mice and tumor necrosis factor-α transgenic RA mice. Thus, elevated COX-2 expression in subchondral bone induces both OA-associated and RA-associated joint cartilage degeneration. The inhibition of COX-2 expression can potentially modify joint destruction in patients with arthritis.

Cite this article

Download citation ▾
Manli Tu, Mi Yang, Nanxi Yu, Gehua Zhen, Mei Wan, Wenlong Liu, Baochao Ji, Hairong Ma, Qiaoyue Guo, Peijian Tong, Li Cao, Xianghang Luo, Xu Cao. Inhibition of cyclooxygenase-2 activity in subchondral bone modifies a subtype of osteoarthritis. Bone Research, 2019, 7(1): 29 DOI:10.1038/s41413-019-0071-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Busija L et al. Osteoarthritis. Best Pract. Res. Clin. Rheumatol., 2010, 24:757-768

[2]

Buckwalter JA, Martin JA. Osteoarthritis. Adv. Drug Deliv. Rev., 2006, 58:150-167

[3]

Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet, 2016, 388:2023-2038

[4]

McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. New Engl. J. Med., 2011, 365:2205-2219

[5]

Glyn-Jones S et al. Osteoarthritis. Lancet, 2015, 386:376-387

[6]

Sampson ER et al. Teriparatide as a chondroregenerative therapy for injury-induced osteoarthritis. Sci. Transl. Med., 2011, 3:101ra193

[7]

Hiligsmann M et al. Health economics in the field of osteoarthritis: an expert’s consensus paper from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Semin. Arthritis Rheum., 2013, 43:303-313

[8]

Staines KA, Poulet B, Wentworth DN, Pitsillides AA. The STR/ort mouse model of spontaneous osteoarthritis—an update. Osteoarthr. Cartil., 2017, 25:802-808

[9]

Mason RM et al. The STR/ort mouse and its use as a model of osteoarthritis. Osteoarthr. Cartil., 2001, 9:85-91

[10]

Steinmeyer J, Konttinen YT. Oral treatment options for degenerative joint disease-presence and future. Adv. Drug Deliv. Rev., 2006, 58:168-211

[11]

Crofford LJ et al. Basic biology and clinical application of specific cyclooxygenase-2 inhibitors. Arthritis Rheum., 2000, 43:4-13

[12]

Blackwell KA, Raisz LG, Pilbeam CC. Prostaglandins in bone: bad cop, good cop? Trends Endocrinol. Metab., 2010, 21:294-301

[13]

Chen H et al. Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat. Commun., 2019, 10

[14]

Zhen G et al. Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med., 2013, 19:704-712

[15]

Pritzker KP et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr. Cartil., 2006, 14:13-29

[16]

Lu Y et al. DMP1-targeted Cre expression in odontoblasts and osteocytes. J. Dent. Res., 2007, 86:320-325

[17]

Kalajzic I et al. In vitro and in vivo approaches to study osteocyte biology. Bone, 2013, 54:296-306

[18]

Styrkarsdottir U et al. Whole-genome sequencing identifies rare genotypes in COMP and CHADL associated with high risk of hip osteoarthritis. Nat. Genet., 2017, 49:801-805

[19]

Evangelou E et al. A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip. Ann. Rheum. Dis., 2014, 73:2130-2136

[20]

Liu Y et al. Genetic determinants of radiographic knee osteoarthritis in African Americans. J. Rheuma., 2017, 44:1652-1658

[21]

Valdes AM et al. Genome-wide association scan identifies a prostaglandin-endoperoxide synthase 2 variant involved in risk of knee osteoarthritis. Am. J. Hum. Genet., 2008, 82:1231-1240

[22]

Xu X et al. Aberrant activation of TGF-beta in subchondral bone at the onset of rheumatoid arthritis joint destruction. J. Bone Miner. Res., 2015, 30:2033-2043

[23]

Strong, L. C. Genetic nature of the constitutional states of cancer susceptibility and resistance in mice and men. Yale J. Biol. Med. 17, 289–299 (1944).

[24]

Pasold J et al. High bone mass in the STR/ort mouse results from increased bone formation and impaired bone resorption and is associated with extramedullary hematopoiesis. J. Bone Miner. Metab., 2013, 31:71-81

[25]

Watters JW et al. Inverse relationship between matrix remodeling and lipid metabolism during osteoarthritis progression in the STR/Ort mouse. Arthritis Rheum., 2007, 56:2999-3009

[26]

Hackinger S et al. Evaluation of shared genetic aetiology between osteoarthritis and bone mineral density identifies SMAD3 as a novel osteoarthritis risk locus. Hum. Mol. Genet., 2017, 26:3850-3858

[27]

Schneider E. M., Du W., Fiedler J., Hogel J., Gunther K. P., Brenner H., Brenner R. E.. The (-765 G->C) promoter variant of the COX-2/PTGS2 gene is associated with a lower risk for end-stage hip and knee osteoarthritis. Annals of the Rheumatic Diseases, 2010, 70 8 1458-1460

[28]

Güler, V. G. et al. The association between cyclooxygenase-2 (COX-2/PTGS2) gene polymorphism and osteoarthritis. Eklem Hast. Cerrahisi. 22, 22–27 (2011).

[29]

Papafili A et al. Common promoter variant in cyclooxygenase-2 represses gene expression: evidence of role in acute-phase inflammatory response. Arterioscler. Thromb. Vasc. Biol., 2002, 22:1631-1636

[30]

Muraoka T, Hagino H, Okano T, Enokida M, Teshima R. Role of subchondral bone in osteoarthritis development: a comparative study of two strains of guinea pigs with and without spontaneously occurring osteoarthritis. Arthritis Rheum., 2007, 56:3366-3374

[31]

Funck-Brentano T, Cohen-Solal M. Subchondral bone and osteoarthritis. Curr. Opin. Rheumatol., 2015, 27:420-426

[32]

Jee WS, Mori S, Li XJ, Chan S. Prostaglandin E2 enhances cortical bone mass and activates intracortical bone remodeling in intact and ovariectomized female rats. Bone, 1990, 11:253-266

[33]

Antman EM et al. Use of nonsteroidal antiinflammatory drugs: an update for clinicians: a scientific statement from the American Heart Association. Circulation, 2007, 115:1634-1642

[34]

Wagner, S., Bindler, J. & Andriambeloson, E. Animal models of collagen-induced arthritis. Curr. Protoc. Pharmacol. Chapter 5, Unit 5 51, https://doi.org/10.1002/0471141755.ph0551s43 (2008).

[35]

Stern AR, Bonewald LF. Isolation of osteocytes from mature and aged murine bone. Methods Mol. Biol., 2015, 1226:3-10

Funding

U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)(AR071432)

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/