Inhibition of cyclooxygenase-2 activity in subchondral bone modifies a subtype of osteoarthritis

Manli Tu , Mi Yang , Nanxi Yu , Gehua Zhen , Mei Wan , Wenlong Liu , Baochao Ji , Hairong Ma , Qiaoyue Guo , Peijian Tong , Li Cao , Xianghang Luo , Xu Cao

Bone Research ›› 2019, Vol. 7 ›› Issue (1) : 29

PDF
Bone Research ›› 2019, Vol. 7 ›› Issue (1) :29 DOI: 10.1038/s41413-019-0071-x
Article
research-article

Inhibition of cyclooxygenase-2 activity in subchondral bone modifies a subtype of osteoarthritis

Author information +
History +
PDF

Abstract

Osteoarthritis (OA) causes the destruction of joints. Its pathogenesis is still under investigation, and there is no effective disease-modifying therapy. Here, we report that elevated cyclooxygenase-2 (COX-2) expression in the osteocytes of subchondral bone causes both spontaneous OA and rheumatoid arthritis (RA). The knockout of COX-2 in osteocytes or treatment with a COX-2 inhibitor effectively rescues the structure of subchondral bone and attenuates cartilage degeneration in spontaneous OA (STR/Ort) mice and tumor necrosis factor-α transgenic RA mice. Thus, elevated COX-2 expression in subchondral bone induces both OA-associated and RA-associated joint cartilage degeneration. The inhibition of COX-2 expression can potentially modify joint destruction in patients with arthritis.

Cite this article

Download citation ▾
Manli Tu, Mi Yang, Nanxi Yu, Gehua Zhen, Mei Wan, Wenlong Liu, Baochao Ji, Hairong Ma, Qiaoyue Guo, Peijian Tong, Li Cao, Xianghang Luo, Xu Cao. Inhibition of cyclooxygenase-2 activity in subchondral bone modifies a subtype of osteoarthritis. Bone Research, 2019, 7(1): 29 DOI:10.1038/s41413-019-0071-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Busija L, et al. . Osteoarthritis. Best Pract. Res. Clin. Rheumatol., 2010, 24: 757-768.

[2]

Buckwalter JA, Martin JA. Osteoarthritis. Adv. Drug Deliv. Rev., 2006, 58: 150-167.

[3]

Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet, 2016, 388: 2023-2038.

[4]

McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. New Engl. J. Med., 2011, 365: 2205-2219.

[5]

Glyn-Jones S, et al. . Osteoarthritis. Lancet, 2015, 386: 376-387.

[6]

Sampson ER, et al. . Teriparatide as a chondroregenerative therapy for injury-induced osteoarthritis. Sci. Transl. Med., 2011, 3: 101ra193.

[7]

Hiligsmann M, et al. . Health economics in the field of osteoarthritis: an expert’s consensus paper from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Semin. Arthritis Rheum., 2013, 43: 303-313.

[8]

Staines KA, Poulet B, Wentworth DN, Pitsillides AA. The STR/ort mouse model of spontaneous osteoarthritis—an update. Osteoarthr. Cartil., 2017, 25: 802-808.

[9]

Mason RM, et al. . The STR/ort mouse and its use as a model of osteoarthritis. Osteoarthr. Cartil., 2001, 9: 85-91.

[10]

Steinmeyer J, Konttinen YT. Oral treatment options for degenerative joint disease-presence and future. Adv. Drug Deliv. Rev., 2006, 58: 168-211.

[11]

Crofford LJ, et al. . Basic biology and clinical application of specific cyclooxygenase-2 inhibitors. Arthritis Rheum., 2000, 43: 4-13.

[12]

Blackwell KA, Raisz LG, Pilbeam CC. Prostaglandins in bone: bad cop, good cop?. Trends Endocrinol. Metab., 2010, 21: 294-301.

[13]

Chen H, et al. . Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat. Commun., 2019, 10181

[14]

Zhen G, et al. . Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med., 2013, 19: 704-712.

[15]

Pritzker KP, et al. . Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr. Cartil., 2006, 14: 13-29.

[16]

Lu Y, et al. . DMP1-targeted Cre expression in odontoblasts and osteocytes. J. Dent. Res., 2007, 86: 320-325.

[17]

Kalajzic I, et al. . In vitro and in vivo approaches to study osteocyte biology. Bone, 2013, 54: 296-306.

[18]

Styrkarsdottir U, et al. . Whole-genome sequencing identifies rare genotypes in COMP and CHADL associated with high risk of hip osteoarthritis. Nat. Genet., 2017, 49: 801-805.

[19]

Evangelou E, et al. . A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip. Ann. Rheum. Dis., 2014, 73: 2130-2136.

[20]

Liu Y, et al. . Genetic determinants of radiographic knee osteoarthritis in African Americans. J. Rheuma., 2017, 44: 1652-1658.

[21]

Valdes AM, et al. . Genome-wide association scan identifies a prostaglandin-endoperoxide synthase 2 variant involved in risk of knee osteoarthritis. Am. J. Hum. Genet., 2008, 82: 1231-1240.

[22]

Xu X, et al. . Aberrant activation of TGF-beta in subchondral bone at the onset of rheumatoid arthritis joint destruction. J. Bone Miner. Res., 2015, 30: 2033-2043.

[23]

Strong, L. C. Genetic nature of the constitutional states of cancer susceptibility and resistance in mice and men. Yale J. Biol. Med. 17, 289–299 (1944).

[24]

Pasold J, et al. . High bone mass in the STR/ort mouse results from increased bone formation and impaired bone resorption and is associated with extramedullary hematopoiesis. J. Bone Miner. Metab., 2013, 31: 71-81.

[25]

Watters JW, et al. . Inverse relationship between matrix remodeling and lipid metabolism during osteoarthritis progression in the STR/Ort mouse. Arthritis Rheum., 2007, 56: 2999-3009.

[26]

Hackinger S, et al. . Evaluation of shared genetic aetiology between osteoarthritis and bone mineral density identifies SMAD3 as a novel osteoarthritis risk locus. Hum. Mol. Genet., 2017, 26: 3850-3858.

[27]

Schneider E. M., Du W., Fiedler J., Hogel J., Gunther K. P., Brenner H., Brenner R. E.. The (-765 G->C) promoter variant of the COX-2/PTGS2 gene is associated with a lower risk for end-stage hip and knee osteoarthritis. Annals of the Rheumatic Diseases, 2010, 70(8): 1458-1460.

[28]

Güler, V. G. et al. The association between cyclooxygenase-2 (COX-2/PTGS2) gene polymorphism and osteoarthritis. Eklem Hast. Cerrahisi. 22, 22–27 (2011).

[29]

Papafili A, et al. . Common promoter variant in cyclooxygenase-2 represses gene expression: evidence of role in acute-phase inflammatory response. Arterioscler. Thromb. Vasc. Biol., 2002, 22: 1631-1636.

[30]

Muraoka T, Hagino H, Okano T, Enokida M, Teshima R. Role of subchondral bone in osteoarthritis development: a comparative study of two strains of guinea pigs with and without spontaneously occurring osteoarthritis. Arthritis Rheum., 2007, 56: 3366-3374.

[31]

Funck-Brentano T, Cohen-Solal M. Subchondral bone and osteoarthritis. Curr. Opin. Rheumatol., 2015, 27: 420-426.

[32]

Jee WS, Mori S, Li XJ, Chan S. Prostaglandin E2 enhances cortical bone mass and activates intracortical bone remodeling in intact and ovariectomized female rats. Bone, 1990, 11: 253-266.

[33]

Antman EM, et al. . Use of nonsteroidal antiinflammatory drugs: an update for clinicians: a scientific statement from the American Heart Association. Circulation, 2007, 115: 1634-1642.

[34]

Wagner, S., Bindler, J. & Andriambeloson, E. Animal models of collagen-induced arthritis. Curr. Protoc. Pharmacol.Chapter 5, Unit 5 51, https://doi.org/10.1002/0471141755.ph0551s43 (2008).

[35]

Stern AR, Bonewald LF. Isolation of osteocytes from mature and aged murine bone. Methods Mol. Biol., 2015, 1226: 3-10.

Funding

U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)(AR071432)

RIGHTS & PERMISSIONS

The Author(s)

PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

/