Osteocyte dysfunction promotes osteoarthritis through MMP13-dependent suppression of subchondral bone homeostasis

Courtney M. Mazur , Jonathon J. Woo , Cristal S. Yee , Aaron J. Fields , Claire Acevedo , Karsyn N. Bailey , Serra Kaya , Tristan W. Fowler , Jeffrey C. Lotz , Alexis Dang , Alfred C. Kuo , Thomas P. Vail , Tamara Alliston

Bone Research ›› 2019, Vol. 7 ›› Issue (1) : 34

PDF
Bone Research ›› 2019, Vol. 7 ›› Issue (1) : 34 DOI: 10.1038/s41413-019-0070-y
Article

Osteocyte dysfunction promotes osteoarthritis through MMP13-dependent suppression of subchondral bone homeostasis

Author information +
History +
PDF

Abstract

Osteoarthritis (OA), long considered a primary disorder of articular cartilage, is commonly associated with subchondral bone sclerosis. However, the cellular mechanisms responsible for changes to subchondral bone in OA, and the extent to which these changes are drivers of or a secondary reaction to cartilage degeneration, remain unclear. In knee joints from human patients with end-stage OA, we found evidence of profound defects in osteocyte function. Suppression of osteocyte perilacunar/canalicular remodeling (PLR) was most severe in the medial compartment of OA subchondral bone, with lower protease expression, diminished canalicular networks, and disorganized and hypermineralized extracellular matrix. As a step toward evaluating the causality of PLR suppression in OA, we ablated the PLR enzyme MMP13 in osteocytes while leaving chondrocytic MMP13 intact, using Cre recombinase driven by the 9.6-kb DMP1 promoter. Not only did osteocytic MMP13 deficiency suppress PLR in cortical and subchondral bone, but it also compromised cartilage. Even in the absence of injury, osteocytic MMP13 deficiency was sufficient to reduce cartilage proteoglycan content, change chondrocyte production of collagen II, aggrecan, and MMP13, and increase the incidence of cartilage lesions, consistent with early OA. Thus, in humans and mice, defects in PLR coincide with cartilage defects. Osteocyte-derived MMP13 emerges as a critical regulator of cartilage homeostasis, likely via its effects on PLR. Together, these findings implicate osteocytes in bone-cartilage crosstalk in the joint and suggest a causal role for suppressed perilacunar/canalicular remodeling in osteoarthritis.

Cite this article

Download citation ▾
Courtney M. Mazur, Jonathon J. Woo, Cristal S. Yee, Aaron J. Fields, Claire Acevedo, Karsyn N. Bailey, Serra Kaya, Tristan W. Fowler, Jeffrey C. Lotz, Alexis Dang, Alfred C. Kuo, Thomas P. Vail, Tamara Alliston. Osteocyte dysfunction promotes osteoarthritis through MMP13-dependent suppression of subchondral bone homeostasis. Bone Research, 2019, 7(1): 34 DOI:10.1038/s41413-019-0070-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Murray CJL et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012, 380:2197-2223

[2]

Cisternas MG et al. Alternative methods for defining osteoarthritis and the impact on estimating prevalence in a US population-based survey. Arthritis Care Res. (Hoboken), 2016, 68:574-580

[3]

Goldring SR, Goldring MB. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage bone crosstalk. Nat. Rev. Rheuma., 2016, 12:632-644

[4]

Chen, D. et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res. 5, 16044 (2017).

[5]

Findlay DM, Kuliwaba JS. Bone-cartilage crosstalk: a conversation for understanding osteoarthritis. Bone Res., 2016, 4:16028

[6]

Burr DB, Gallant MA. Bone remodelling in osteoarthritis. Nat. Rev. Rheuma., 2012, 8:665-673

[7]

Zhen Gehua, Wen Chunyi, Jia Xiaofeng, Li Yu, Crane Janet L, Mears Simon C, Askin Frederic B, Frassica Frank J, Chang Weizhong, Yao Jie, Carrino John A, Cosgarea Andrew, Artemov Dmitri, Chen Qianming, Zhao Zhihe, Zhou Xuedong, Riley Lee, Sponseller Paul, Wan Mei, Lu William Weijia, Cao Xu. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nature Medicine, 2013, 19 6 704-712

[8]

Chen Y et al. Subchondral trabecular rod loss and plate thickening in the development of osteoarthritis. J. Bone Min. Res, 2018, 33:316-327

[9]

Bonewald LF. The amazing osteocyte. J. Bone Min. Res., 2011, 26:229-238

[10]

Qing H et al. Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J. Bone Min. Res, 2012, 27:1018-1029

[11]

Bélanger LF. Osteocytic osteolysis. Calcif. Tissue Res., 1969, 4:1-12

[12]

Teti A, Zallone A. Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited. Bone, 2009, 44:11-16

[13]

Tang SY, Herber R-P, Ho SP, Alliston T. Matrix metalloproteinase-13 is required for osteocytic perilacunar remodeling and maintains bone fracture resistance. J. Bone Min. Res., 2012, 27:1936-1950

[14]

Inoue K et al. A crucial role for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism. J. Biol. Chem., 2006, 281:33814-33824

[15]

Holmbeck K et al. The metalloproteinase MT1-MMP is required for normal development and maintenance of osteocyte processes in bone. J. Cell Sci., 2005, 118 Pt 1 147-156

[16]

Nakano Y, Toyosawa S, Takano Y. Eccentric localization of osteocytes expressing enzymatic activities, protein, and mRNA signals for type 5 tartrate-resistant acid phosphatase (TRAP). J. Histochem. Cytochem, 2004, 52:1475-1482

[17]

Kogawa Masakazu, Wijenayaka Asiri R, Ormsby Renee T, Thomas Gethin P, Anderson Paul H, Bonewald Lynda F, Findlay David M, Atkins Gerald J. Sclerostin Regulates Release of Bone Mineral by Osteocytes by Induction of Carbonic Anhydrase 2. Journal of Bone and Mineral Research, 2013, 28 12 2436-2448

[18]

Kaya S et al. Lactation-induced changes in the volume of osteocyte lacunar-canalicular space alter mechanical properties in cortical bone tissue. J. Bone Min. Res., 2017, 32:688-697

[19]

Dole NS et al. Osteocyte-intrinsic TGF-β signaling regulates bone quality through perilacunar/canalicular remodeling. Cell Rep., 2017, 21:2585-2596

[20]

Wang L, Ciani C, Doty SB, Fritton SP. Delineating bone’s interstitial fluid pathway in vivo. Bone, 2004, 34:499-509

[21]

Wang L. Solute transport in the bone lacunar-canalicular system (LCS). Curr. Osteoporos. Rep., 2018, 16:32-41

[22]

Krempien B, Friedrich E, Ritz E. Effect of PTH on osteocyte ultrastructure. Adv. Exp. Med. Biol., 1978, 103:437-450

[23]

Marie PJ, Glorieux FH. Relation between hypomineralized periosteocytic lesions and bone mineralization in vitamin D-resistant rickets. Calcif. Tissue Int, 1983, 35:443-448

[24]

Rolvien T et al. Vitamin D regulates osteocyte survival and perilacunar remodeling in human and murine bone. Bone, 2017, 103:78-87

[25]

Weinstein RS. Glucocorticoid-induced osteoporosis and osteonecrosis. Endocrinol. Metab. Clin. North Am., 2012, 41:595-611

[26]

Assouline-Dayan Y, Chang C, Greenspan A, Shoenfeld Y, Gershwin ME. Pathogenesis and natural history of osteonecrosis. Semin Arthritis Rheum., 2002, 32:94-124

[27]

Fowler TW et al. Glucocorticoid suppression of osteocyte perilacunar remodeling is associated with subchondral bone degeneration in osteonecrosis. Sci. Rep., 2017, 7

[28]

Imhof H et al. Subchondral bone and cartilage disease: a rediscovered functional unit. Invest. Radio., 2000, 35:581-588

[29]

Kawcak CE, McIlwraith CW, Norrdin RW, Park RD, James SP. The role of subchondral bone in joint disease: a review. Equine Vet. J., 2010, 33:120-126

[30]

Jauregui EJ et al. Parallel mechanisms suppress cochlear bone remodeling to protect hearing. Bone, 2016, 89:7-15

[31]

Neuhold LA et al. Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J. Clin. Invest, 2001, 107:35-44

[32]

Wang M et al. MMP13 is a critical target gene during the progression of osteoarthritis. Arthritis Res. Ther., 2013, 15:R5

[33]

Little CB et al. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum., 2009, 60:3723-3733

[34]

Stickens D et al. Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development, 2004, 131:5883-5895

[35]

Lu Y et al. DMP1-targeted Cre expression in odontoblasts and osteocytes. J. Dent. Res., 2007, 86:320-325

[36]

Dallas SL, Xie Y, Shiflett LA, Ueki Y. Mouse Cre models for the study of bone diseases. Curr. Osteoporos. Rep., 2018, 16:466-477

[37]

Alemi AS et al. Glucocorticoids cause mandibular bone fragility and suppress osteocyte perilacunar-canalicular remodeling. Bone Rep., 2018, 9:145-153

[38]

Burstein AH, Zika JM, Heiple KG, Klein L. Contribution of collagen and mineral to the elastic-plastic properties of bone. J. Bone Jt. Surg. Am., 1975, 57:956-961

[39]

Wang X, Bank RA, TeKoppele JM, Agrawal CM. The role of collagen in determining bone mechanical properties. J. Orthop. Res., 2001, 19:1021-1026

[40]

Furman BD et al. Joint degeneration following closed intraarticular fracture in the mouse knee: a model of posttraumatic arthritis. J. Orthop. Res., 2007, 25:578-592

[41]

Glasson SS, Chambers MG, Van Den Berg WB, Little CB. The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthr. Cartil., 2010, 18:S17-S23

[42]

Kamekura S et al. Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarthr. Cartil., 2005, 13:632-641

[43]

Fang H et al. Early changes of articular cartilage and subchondral bone in the DMM mouse model of osteoarthritis. Sci. Rep., 2018, 8

[44]

Alliston T, Hernandez CJ, Findlay DM, Felson DT, Kennedy OD. Bone marrow lesions in osteoarthritis: What lies beneath. J. Orthop. Res., 2018, 36:1818-1825

[45]

Lin C et al. Activation of mTORC1 in subchondral bone preosteoblasts promotes osteoarthritis by stimulating bone sclerosis and secretion of CXCL12. Bone Res., 2019, 7:5

[46]

Maldonado M, Nam J. The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. Biomed. Res. Int., 2013, 2013:284873

[47]

Anderson DD et al. Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J. Orthop. Res., 2011, 29:802-809

[48]

Sato T et al. Comparative analysis of gene expression profiles in intact and damaged regions of human osteoarthritic cartilage. Arthritis Rheum., 2006, 54:808-817

[49]

Hartenstein B et al. Epidermal development and wound healing in matrix metalloproteinase 13-deficient mice. J. Invest. Dermatol., 2006, 126:486-496

[50]

Jaiprakash A et al. Phenotypic characterization of osteoarthritic osteocytes from the sclerotic zones: A possible pathological role in subchondral bone sclerosis. Int J. Biol. Sci., 2012, 8:406-417

[51]

van Hove RP et al. Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density—is there a role for mechanosensing? Bone, 2009, 45:321-329

[52]

Wong, S. Y. P. et al. The pathogenesis of osteoarthritis of the hip: evidence for primary osteocyte death. Clin. Orthop Relat. Res. 305–312 (1987).

[53]

Hopwood B, Tsykin A, Findlay DM, Fazzalari NL. Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling, WNT and transforming growth factor-β/bone morphogenic protein signalling. Arthritis Res. Ther., 2007, 9:R100

[54]

Jia J et al. Glucocorticoid dose determines osteocyte cell fate. FASEB J., 2011, 25:3366-3376

[55]

Oursler MJ. Osteoclast synthesis and secretion and activation of latent transforming growth factor β. J. Bone Min. Res., 1994, 9:443-452

[56]

Lyons RM, Keski-Oja J, Moses HL. Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium. J. Cell Biol., 1988, 106:1659-1665

[57]

Delgado-Calle J et al. MMP14 is a novel target of PTH signaling in osteocytes that controls resorption by regulating soluble RANKL production. FASEB J., 2018, 32:2878-2890

[58]

Ko FC et al. In vivo cyclic compression causes cartilage degeneration and subchondral bone changes in mouse tibiae. Arthritis Rheum., 2013, 65:1569-1578

[59]

Rai MF et al. Post-traumatic osteoarthritis in mice following mechanical injury to the synovial joint. Sci. Rep., 2017, 7

[60]

Adebayo OO et al. Role of subchondral bone properties and changes in development of load-induced osteoarthritis in mice. Osteoarthr. Cartil., 2017, 25:2108-2118

[61]

Christiansen BA et al. Musculoskeletal changes following non-invasive knee injury using a novel mouse model of post-traumatic osteoarthritis. Osteoarthr. Cartil., 2012, 20:773-782

[62]

Glasson SS, Blanchet TJ, Morris EA. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthr. Cartil., 2007, 15:1061-1069

[63]

Felson DT. Osteoarthritis as a disease of mechanics. Osteoarthr. Cartil., 2013, 21:10-15

[64]

Carlson CS et al. Osteoarthritis in cynomolgus macaques: a primate model of naturally occurring disease. J. Orthop. Res., 1994, 12:331-339

[65]

Choi R, Smith M, Clarke E, Little C. Cellular, matrix, and mechano-biological differences in load-bearing versus positional tendons throughout development and aging: a narrative review. Connect Tissue Res., 2018, 59:483-494

[66]

Ma H-L et al. Osteoarthritis severity is sex dependent in a surgical mouse model. Osteoarthr. Cartil., 2007, 15:695-700

[67]

Pan J et al. Elevated cross-talk between subchondral bone and cartilage in osteoarthritic joints. Bone, 2012, 51:212-217

[68]

Hwang J et al. Increased hydraulic conductance of human articular cartilage and subchondral bone plate with progression of osteoarthritis. Arthritis Rheum., 2008, 58:3831-3842

[69]

Smith RL et al. Rabbit knee immobilization: bone remodeling precedes cartilage degradation. J. Orthop. Res., 1992, 10:88-95

[70]

Dole, N.S., Yee, C.S., Mazur, C.M., Acevedo, C. & Alliston, T. TGF-beta regulation of perilacunar/canalicular remodeling is sexually dimorphic. bioRxiv 737395. https://doi.org/10.1101/737395

[71]

University of Rochester Center for Musculoskeletal Research (2017) Safranin O/ Fast Green Stain for Cartilage. Available at: https://www.urmc.rochester.edu/musculoskeletal-research/core-services/histology/protocols.aspx [Accessed May 1, 2018].

[72]

Waldstein W et al. OARSI osteoarthritis cartilage histopathology assessment system: a biomechanical evaluation in the human knee. J. Orthop. Res, 2016, 34:135-140

[73]

Pritzker KPH et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr. Cartil., 2006, 14:13-29

[74]

Montes GS, Junqueira LC. The use of the Picrosirius-polarization method for the study of the biopathology of collagen. Mem. Inst. Oswaldo Cruz, 1991, 86:1-11

[75]

Rezakhaniha R et al. Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech. Model Mechanobiol., 2012, 11:461-473

[76]

Ploton D et al. Improvement in the staining and in the visualization of the argyrophilic proteins of the nucleolar organizer region at the optical level. Histochem J., 1986, 18:5-14

[77]

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 2014, 15

[78]

Yoshida CA et al. SP7 inhibits osteoblast differentiation at a late stage in mice. PLoS ONE, 2012, 7

[79]

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 2001, 25:402-408

[80]

Jepsen KJ, Silva MJ, Vashishth D, Guo XE, van der Meulen MCH. Establishing biomechanical mechanisms in mouse models: practical guidelines for systematically evaluating phenotypic changes in the diaphyses of long bones. J. Bone Min. Res, 2015, 30:951-966

[81]

Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone, 1993, 14:595-608

[82]

Hamilton CB et al. Weight-bearing asymmetry and vertical activity differences in a rat model of post-traumatic knee osteoarthritis. Osteoarthr. Cartil., 2015, 23:1178-1185

[83]

Onur TS et al. Joint instability and cartilage compression in a mouse model of posttraumatic osteoarthritis. J. Orthop. Res, 2014, 32:318-323

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/