Sustained Akt signaling in articular chondrocytes causes osteoarthritis via oxidative stress-induced senescence in mice

Jing Xie , Jingting Lin , Min Wei , Yan Teng , Qi He , Guan Yang , Xiao Yang

Bone Research ›› 2019, Vol. 7 ›› Issue (1) : 23

PDF
Bone Research ›› 2019, Vol. 7 ›› Issue (1) : 23 DOI: 10.1038/s41413-019-0062-y
Article

Sustained Akt signaling in articular chondrocytes causes osteoarthritis via oxidative stress-induced senescence in mice

Author information +
History +
PDF

Abstract

Osteoarthritis (OA) is an age-related disorder that is strongly associated with chondrocyte senescence. The causal link between disruptive PTEN/Akt signaling and chondrocyte senescence and the underlying mechanism are unclear. In this study, we found activated Akt signaling in human OA cartilage as well as in a mouse OA model with surgical destabilization of the medial meniscus. Genetic mouse models mimicking sustained Akt signaling in articular chondrocytes via PTEN deficiency driven by either Col2a1-Cre or Col2a1-Cre ERT2 developed OA, whereas restriction of Akt signaling reversed the OA phenotypes in PTEN-deficient mice. Mechanistically, prolonged activation of Akt signaling caused an accumulation of reactive oxygen species and triggered chondrocyte senescence as well as a senescence-associated secretory phenotype, whereas chronic administration of the antioxidant N-acetylcysteine suppressed chondrocyte senescence and mitigated OA progression in PTEN-deficient mice. Therefore, inhibition of Akt signaling by PTEN is required for the maintenance of articular cartilage. Disrupted Akt signaling in articular chondrocytes triggers oxidative stress-induced chondrocyte senescence and causes OA.

Cite this article

Download citation ▾
Jing Xie, Jingting Lin, Min Wei, Yan Teng, Qi He, Guan Yang, Xiao Yang. Sustained Akt signaling in articular chondrocytes causes osteoarthritis via oxidative stress-induced senescence in mice. Bone Research, 2019, 7(1): 23 DOI:10.1038/s41413-019-0062-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Glyn-Jones S et al. Osteoarthritis. Lancet, 2015, 386:376-387

[2]

Manning BD, Toker A. AKT/PKB Signaling: navigating the network. Cell, 2017, 169:381-405

[3]

Hollander MC, Blumenthal GM, Dennis PA. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat. Rev. Cancer, 2011, 11:289-301

[4]

Chen WS et al. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev., 2001, 15:2203-2208

[5]

Fukai A et al. Akt1 in murine chondrocytes controls cartilage calcification during endochondral ossification under physiologic and pathologic conditions. Arthritis Rheum., 2010, 62:826-836

[6]

Peng XD et al. Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev., 2003, 17:1352-1365

[7]

Ford-Hutchinson AF et al. Inactivation of Pten in osteo-chondroprogenitor cells leads to epiphyseal growth plate abnormalities and skeletal overgrowth. J. Bone Min. Res., 2007, 22:1245-1259

[8]

Yang G et al. PTEN deficiency causes dyschondroplasia in mice by enhanced hypoxia-inducible factor 1alpha signaling and endoplasmic reticulum stress. Development, 2008, 135:3587-3597

[9]

Rokutanda S et al. Akt regulates skeletal development through GSK3, mTOR, and FoxOs. Dev. Biol., 2009, 328:78-93

[10]

Price J et al. Akt-1 mediates survival of chondrocytes from endoplasmic reticulum-induced stress. J. Cell Physiol., 2010, 222:502-508

[11]

Starkman BG, Cravero JD, Delcarlo M, Loeser RF. IGF-I stimulation of proteoglycan synthesis by chondrocytes requires activation of the PI 3-kinase pathway but not ERK MAPK. Biochem J., 2005, 389:723-729

[12]

Takeuchi R et al. Low-intensity pulsed ultrasound activates the phosphatidylinositol 3 kinase/Akt pathway and stimulates the growth of chondrocytes in three-dimensional cultures: a basic science study. Arthritis Res Ther., 2008, 10:R77

[13]

Greene MA, Loeser RF. Function of the chondrocyte PI-3 kinase-Akt signaling pathway is stimulus dependent. Osteoarthr. Cartil., 2015, 23:949-956

[14]

Xue JF, Shi ZM, Zou J, Li XL. Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy of articular chondrocytes and attenuates inflammatory response in rats with osteoarthritis. Biomed. Pharmacother., 2017, 89:1252-1261

[15]

Loeser RF. Aging processes and the development of osteoarthritis. Curr. Opin. Rheumatol., 2013, 25:108-113

[16]

Jeon OH et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med., 2017, 23:775-781

[17]

Ziegler DV, Wiley CD, Velarde MC. Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging. Aging Cell., 2015, 14:1-7

[18]

Henrotin Y, Kurz B, Aigner T. Oxygen and reactive oxygen species in cartilage degradation: friends or foes? Osteoarthr. Cartil., 2005, 13:643-654

[19]

Nakanishi A, Wada Y, Kitagishi Y, Matsuda S. Link between PI3K/AKT/PTEN Pathway and NOX Proteinin Diseases. Aging Dis., 2014, 5:203-211

[20]

Salminen A, Kaarniranta K. Insulin/IGF-1 paradox of aging: regulation via AKT/IKK/NF-kappaB signaling. Cell Signal., 2010, 22:573-577

[21]

Akasaki Y et al. FoxO transcription factors support oxidative stress resistance in human chondrocytes. Arthritis Rheumatol., 2014, 66:3349-3358

[22]

Lehtinen MK et al. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell, 2006, 125:987-1001

[23]

Zhao X et al. Peroxisome proliferator-activated receptor gamma coactivator 1alpha and FoxO3A mediate chondroprotection by AMP-activated protein kinase. Arthritis Rheumatol., 2014, 66:3073-3082

[24]

Glasson SS, Blanchet TJ, Morris EA. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthr. Cartil., 2007, 15:1061-1069

[25]

Hilton MJ, Tu X, Long F. Tamoxifen-inducible gene deletion reveals a distinct cell type associated with trabecular bone, and direct regulation of PTHrP expression and chondrocyte morphology by Ihh in growth region cartilage. Dev. Biol., 2007, 308:93-105

[26]

Luo W et al. Akt1 signaling coordinates BMP signaling and beta-catenin activity to regulate second heart field progenitor development. Development, 2015, 142:732-742

[27]

Davalli P et al. ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases. Oxid. Med Cell Longev., 2016, 2016:3565127

[28]

Kishimoto H et al. Induction of hypertrophic chondrocyte-like phenotypes by oxidized LDL in cultured bovine articular chondrocytes through increase inoxidative stress. Osteoarthr. Cartil, 2010, 18:1284-1290

[29]

Morita K et al. Reactive oxygen species induce chondrocyte hypertrophy in endochondral ossification. J Exp. Med., 2007, 204:1613-1623

[30]

Nakagawa S et al. N-acetylcysteine prevents nitric oxide-induced chondrocyte apoptosis and cartilage degeneration in an experimental model of osteoarthritis. J. Orthop. Res., 2010, 28:156-163

[31]

Lin YC et al. Chondroprotective effects of glucosamine involving the p38 MAPK and Akt signaling pathways. Rheuma. Int., 2008, 28:1009-1016

[32]

Chen J, Long F. mTORC1 signaling controls mammalian skeletal growth through stimulation of protein synthesis. Development, 2014, 141:2848-2854

[33]

Zhang Y et al. Cartilage-specific deletion of mTOR upregulates autophagy and protects mice from osteoarthritis. Ann. Rheum. Dis., 2015, 74:1432-1440

[34]

Baker DJ et al. Naturally occurringp16(Ink4a)-positive cells shorten healthy lifespan. Nature, 2016, 530:184-189

[35]

Baker DJ et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 2011, 479:232-236

[36]

Nogueira V et al. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell., 2008, 14:458-470

[37]

Lin K, Hsin H, Libina N, Kenyon C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat. Genet., 2001, 28:139-145

[38]

Loeser RF et al. Aging and oxidative stress reduce the response of human articular chondrocytes to insulin-like growth factor 1 and osteogenic protein 1. Arthritis Rheumatol., 2014, 66:2201-2209

[39]

Yin W, Park JI, Loeser RF. Oxidative stress inhibits insulin-like growth factor-I induction of chondrocyte proteoglycan synthesis through differential regulation of phosphatidylinositol 3-Kinase-Akt and MEK-ERK MAPK signaling pathways. J. Biol. Chem., 2009, 284:31972-31981

[40]

Collins JA et al. Oxidative stress promotes peroxiredoxin hyperoxidation and attenuates pro-survival signaling in aging chondrocytes. J. Biol. Chem., 2016, 291:6641-6654

[41]

Coleman MC et al. Targeting mitochondrial responses to intra-articular fracture to prevent posttraumatic osteoarthritis. Sci. Transl. Med., 2018, 10:eaan5372

[42]

Hernandez-Vaquero D, Fernandez-Carreira JM. Relationship between radiological grading and clinical status in knee osteoarthritis. A multicentric study. BMC Musculoskelet. Disord., 2012, 13:194

[43]

Guo SL et al. Akt-p53-miR-365-cyclin D1/cdc25A axis contributes to gastric tumorigenesis induced by PTEN deficiency. Nat. Commun., 2013, 4:2544

[44]

Srinivas S et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol, 2001, 1:4

[45]

Glasson SS, Chambers MG, Van Den Berg WB, Little CB. The OARSI histopathology initiative–recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthr. Cartil., 2010, 18:S17-S23

[46]

Jackson MT et al. Depletion of protease-activated receptor 2 but not protease-activated receptor 1 may confer protection against osteoarthritis in mice through extracartilaginous mechanisms. Arthritis Rheumatol., 2014, 66:3337-3348

[47]

Zhang Z et al. Curcumin slows osteoarthritis progression and relieves osteoarthritis-associated pain symptoms in a post-traumatic osteoarthritis mouse model. Arthritis Res Ther., 2016, 18:128

[48]

Milz S, Putz R. Quantitative morphology of the subchondral plate of the tibial plateau. J. Anat., 1994, 185 Pt 1 103

[49]

Little CB et al. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum., 2014, 60:3723-3733

[50]

Li XB et al. Gastric Lgr5(+) stem cells are the cellular origin of invasive intestinal-type gastric cancer in mice. Cell Res., 2016, 26:838-849

[51]

Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat. Protoc., 2009, 4:1798-1806

Funding

Beijing Nova Program(z161100004916146)

National Natural Science Foundation of China (National Science Foundation of China)(31571512)

National Basic Research Program of China (2012CB966904).

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/